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Context‑dependent extinction 
learning emerging from raw 
sensory inputs: a reinforcement 
learning approach
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The context‑dependence of extinction learning has been well studied and requires the hippocampus. 
However, the underlying neural mechanisms are still poorly understood. Using memory‑driven 
reinforcement learning and deep neural networks, we developed a model that learns to navigate 
autonomously in biologically realistic virtual reality environments based on raw camera inputs alone. 
Neither is context represented explicitly in our model, nor is context change signaled. We find that 
memory‑intact agents learn distinct context representations, and develop ABA renewal, whereas 
memory‑impaired agents do not. These findings reproduce the behavior of control and hippocampal 
animals, respectively. We therefore propose that the role of the hippocampus in the context‑
dependence of extinction learning might stem from its function in episodic‑like memory and not in 
context‑representation per se. We conclude that context‑dependence can emerge from raw visual 
inputs.

Treatment of anxiety disorders by exposure therapy is often followed by unwanted renewal of the seemingly 
extinguished fear. A better understanding of the cognitive and neural mechanisms governing extinction learn-
ing and fear renewal is therefore needed to develop novel therapies. The study of extinction learning goes back 
to Ivan Pavlov’s research on classical  conditioning1. Pavlov and his colleagues discovered that the conditioned 
response (CR) to a neutral conditioned stimulus (CS) diminishes over time, if the CS is presented repeatedly 
without reinforcement by an unconditioned stimulus (US). This phenomenon is called extinction learning.

The arguably best understood extinction learning paradigm is fear extinction, in which an aversive stimulus, 
e.g. an electric foot shock, is used as  US2. The conditioned fear response diminishes during extinction, only to 
return later under certain  circumstances3. While such return of fear can occur spontaneously (spontaneous 
recovery), or can be induced by unsignaled presentation of the US (reinstatement), it can also be controlled by 
context changes (ABA renewal) as follows: Subjects acquire a fear response to a CS, e.g. a neutral tone, by repeat-
edly coupling it with an US, e.g. a foot shock, in context A. Then the fear response is extinguished in a different 
context B, and eventually tested again in context A in the absence of the US. Renewal means that the fear response 
returns in the test phase despite the absence of the  US4. ABA renewal demonstrates that extinction learning does 
not delete the previously learned association, although it might weaken the  association3. Furthermore, ABA 
renewal underscores that extinction learning is strongly context-dependent4–10.

Fear extinction is thought to depend mainly on three cerebral regions: The amygdala, responsible for initial 
fear learning, the ventral medial prefrontal cortex, guiding the extinction process, and the hippocampus, con-
trolling the context-specific retrieval of  extinction3 and/or encoding contextual  information11. Here, we focus 
on the role of the hippocampus in extinction learning tasks. Lesions or pharmacological manipulations of the 
hippocampus have been reported to induce deficits in context  encoding3,11, which in turn impede context dis-
ambiguation during extinction  learning5–8. In particular, André and Manahan-Vaughan found that intracerebral 
administration of a dopamine receptor agonist, which alters synaptic plasticity in the  hippocampus12, reduced 
the context-dependent expression of renewal in an appetitive ABA renewal task in a T-maze9. This task depends 
on the the specific involvement of certain subfields of the  hippocampus13.

However, it remains unclear how behavior becomes context-dependent and what neural mechanisms underlie 
this learning. The majority of computational models targets exclusively extinction tasks that involve classical 
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conditioning, like the earliest model of conditioning, the Rescorla-Wagner  model14 (for an overview, see Ref.3). 
However, in its original form this model treats extinction learning as unlearning of previously acquired associa-
tions between CS and US and so could not account for the phenomenology of extinction learning, including 
renewal in particular. Nevertheless, the Rescorla–Wagner model inspired the development of reinforcement 
learning (RL) and many recent models of extinction learning. For instance, Ludvig et al. added experience 
 replay15 to the Rescorla–Wagner model to account for a range of phenomena associated with extinction in clas-
sical conditioning: spontaneous recovery, latent inhibition, retrospective revaluation, and trial spacing  effects16. 
However, their approach required explicit signals for cues and context, and did not learn from realistic visual 
information. Moreover, Ludvig et al. acknowledged that their method required the integration of more advanced 
RL techniques in order to handle operant conditioning tasks.

Computational models of extinction learning based on operant/instrumental conditioning are rather  rare3. 
One of the few models was developed by Redish et al. and was based on RL driven by temporal differences. Their 
model emphasized the importance of a basic memory system to successfully model renewal in operant extinction 
 tasks17. However, their model relied on the existence of dedicated signals for representing cues and contexts, and 
did not learn from realistic visual input.

Overcoming the caveats of existing approaches, we propose a novel model of operant extinction learning that 
combines deep neural networks with experience replay memory and reinforcement learning, the deep Q-network 
(DQN)  approach15. Our model does not require its architecture to be manually tailored to each new scenario 
and does not rely on the existence of explicit signals representing cues and contexts. It can learn complex spatial 
navigation tasks based on raw visual information, and can successfully account for instrumental ABA renewal 
without receiving a context signal from external sources. Our model also shows better performance than the 
model by Redish et al.: faster acquisition in simple mazes, and more biologically plausible extinction learning 
in a context different from the acquisition context. In addition, the deep neural network in our model allows 
for studying the internal representations that are learned by the model. Distinct representations for contexts A 
and B emerge in our model during extinction learning from raw visual inputs obtained in biologically plausible 
virtual reality (VR) scenarios and reward contingencies.

Materials and methods
Modeling framework. All simulations in this paper were performed in a VR testbed designed to study 
biomimetic models of rodent behavior in spatial navigation and operant extinction learning tasks (Fig.  1). 
The framework consists of multiple modules, including a VR component based on the Blender rendering and 
simulation engine (The Blender Foundation, https ://www.blend er.org/), in which we built moderately complex 
and biologically plausible virtual environments. In the VR, the RL agent is represented by a small robot that is 
equipped with a panoramic camera to simulate the wide field of view of rodents. The topology module defines 
allowed positions and paths for the robot and provides pose data together with environmental rewards. In con-
junction with image observations from the VR module, these data make up a single memory sample that is 
stored in the experience replay module. The DQN component relies on this memory module to learn its network 

Figure 1.  Model overview. Modules are sketched as rounded rectangles, other rectangles represent data 
and commands, the information/control flow is indicated by arrows. See the “Materials and methods” for an 
explanation of our model.

https://www.blender.org/
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weights and generates action proposals that drive the virtual robot. Communication between the VR module and 
the RL-learning framework is established via a standard OpenAI Gym interface18 (https://gym.openai.com/).

The modeling framework allows for two modes of operation: an online model, in which simulations are run 
in real-time and physics-based simulations are supported, and an offline mode, in which multiple simulations 
can be run in parallel on pre-rendered camera images. The latter operating mode increases the computational 
efficiency of our model, and facilitates the rapid generation of large numbers of learning trials and repetitions. 
All results in this paper were obtained using the offline mode.

Visually driven reinforcement learning with deep Q‑networks. The agent learns autonomously to 
navigate in an environment using  RL19: Time is discretized in time steps t; the state of the environment is repre-
sented by St ∈ S , where S is the set of all possible states. The agent observes the state St and selects an appropriate 
action, At ∈ A(St) , where A(St) is the set of all possible actions in the current state. In the next time step, the 
environment evolves to a new state St+1 , and the agent receives a reward Rt+1.

In our modeling framework, the states correspond to spatial positions of the agent within the VR. The agent 
observes these states through visual images captured by the camera from the agent’s position (e.g. Fig. 2). The 
set of possible states, S , is defined by the discrete nodes in a manually constructed topology graph that spans the 
virtual environment (Fig. 3). State space discretization accelerates the convergence of RL. The possible actions in 
each state, A(St) , are defined by the set of outgoing connections from the node in the topology graph. Once an 
action is chosen, the agent moves to the connected node. In the current implementation, the agent does not rotate.

For the learning algorithm we adopt a specific variant of RL called Q-learning, where the agent learns a 
state-action value function Q(S,A) , which represents the value to the agent of performing action A in state S. 
The agent learns from interactions with the environment by updating the state-action value function according 
to the following  rule19: 

 where α is the learning rate and γ is the discount factor that devalues future rewards relative to immediate ones. 
The Q-learning update rule has been shown mathematically to converge to a local optimum. Since the state-
action value function is likely very complex and its analytical model class is unknown, we use a deep neural 
network to approximate Q(S, A)15. In our simulations, the DQN consists of fully connected, dense layers between 
the input and output layer and the weights are initialized with random values. We use the tanh-function as the 
activation function.

The weights in the DQN are updated using the backpropagation  algorithm20. This algorithm was developed 
for training multi-layered networks in supervised learning tasks, where a network learns to associate inputs with 
target outputs. For a given input, the difference between the network’s output and the target output is calculated; 
this is called the error. The network weights are then updated so as to reduce the error. Updating begins in the 
output layer and is applied successively down to the preceding layer. However, in reinforcement learning, which 
we use here, the goal is different and there are no target input-output associations to learn. Nevertheless, the 
backpropagation algorithm can still be applied because the DQN represents the Q function and Eq. (1b) repre-
sents the error that should be used to update the Q function after an experience. In other words, in Q learning 
the target function is not known but the error is, and that is all that is needed to train the DQN. Furthermore, to 
stabilize the convergence, we use two copies of the DQN, which are updated at different rates: The online network 
is updated at every step, while the target network is updated every N steps by blending it with the online network.

The input to the network consists of (30,1)-pixel RGB images, which are captured in the virtual environment. 
The network architecture comprises an input layer (with 90 neurons for 30 pixels × 3 channels), four hidden layers 
(64 neurons each), that enable the DQN to learn complex state-action value functions, and an output layer that 
contains a single node for each action the agent can perform. We use the  Keras21 and  KerasRL22 implementation 
for the DQN in our model.

To balance between exploration and exploitation our agent uses an ǫ-greedy  strategy19: In each state St , the 
agent either selects the action that yields the highest Q(St ,At) with a probability of 1− ǫ (exploitation), or chooses 
a random element from the set of available actions A(St) with a probability of ǫ (exploration). To ensure sufficient 
exploration, we set ǫ = 0.3 in all simulations, unless otherwise noted.

In our model, experiences are stored in memory to be replayed later. An experience contains information 
about the state observed, action taken, and rewards received, i.e. (St ,At , St+1,Rt+1) . The memory module uses 
first-in-first-out memory, i.e. if the memory’s capacity c is exceeded, the oldest experiences are deleted first to 
make room for novel ones. In each time step, random batches of memory entries are sampled for experience 
 replay15. The DQN is trained with those replayed experiences; replay memory access is quite fast, and random 
batches of experiences are sampled from the replay memory in each training cycle in order to drive learning and 
update the weights of the DQN. Experience replay in RL was inspired by hippocampal replay of sequential neural 
activity encountered during experience, which is hypothesized to play a critical role in memory consolidation 
and  learning23,24. We therefore suggest that lesions or drug-induced impairments of the hippocampal forma-
tion can be simulated by reducing the agent’s replay memory capacity. The interleaved use of new and replayed 
experiences in our model resembles awake replay in  animals25 and makes a separate replay/consolidation phase 
unneccesary since it would not add any new information.

(1a)Q(St ,At) ← Q(St ,At)+ δQt

(1b)δQt = α

[

Rt+1 + γ max
a∈A(St )

Q(St+1, a)− Q(St ,At)

]

,

https://gym.openai.com/
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Positive or negative rewards drive  RL19. These rewards are task-specific and will be defined separately for 
each simulation setup below.

Operant learning tasks simulated in our model. General setup. All trials used in our simulations 
had a common structure. Each trial began with the agent located at one of the defined starting nodes. In each 
following time step, the agent could chose to execute one action that was allowed in the current state as defined 
by the topology graph. Each time step incurred a negative reward of − 1 to encourage the agent to find the short-
est path possible from the start to the goal node. Trials ended when either the agent reached the goal node, or 
the number of simulated time steps exceeded 100 (time-out). The experience replay memory capacity was set to 
c = 5000 . Different contexts were defined by the illumination color of the house lights. Context A was illumi-
nated with red house lights and context B with white house lights.

Figure 2.  Examples of virtual environments and camera views. (a,b) Overview of T-maze in two different 
contexts. Two different contexts are generated by using different colors for the overall illumination. (c,d) Camera 
views in T-maze from the agent’s perspective. (e,f) Overview of shock zone maze used to study inhibitory 
avoidance. (g,h) Camera views in the shock zone maze.
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Linear track. As a proof-of-concept and to facilitate a comparison to Redish et al.’s model, we first studied spa-
tial learning on a simple linear track. The track was represented by a one-dimensional topology graph consist-
ing of N = 3, . . . , 15 nodes. Since Redish et al.’s model requires clearly separable state representations, we used 
binary encoded node state indices in this simulation, instead of the raw camera input as in the other simulations. 
The starting node was always the first node, while the target node was node N. The agent received a reward of 
+1.0 for reaching the target node.

Morris watermaze. Next, we simulated spatial navigation in the more challenging Morris  watermaze26 to show 
that our model can learn operant spatial tasks in 2-d from raw visual input. The watermaze was circular with 
a diameter of 2 m. It was placed in the center of a typical lab environment to provide distal cues. The topology 
graph for this maze consisted of a rectangular grid that covered the center part of the watermaze (Fig. 3a). Four 
nodes {N(orth),E(ast),S(outh),W(est)} were used as potential starting nodes. They were selected in analogy to 
a protocol introduced by Anisman et al.27: Trials were arranged into blocks of 4 trials. Within each block, the 
sequence of starting locations was a random permutation of the sequence (N, E, S, W). The goal node was always 
centered in the NE quadrant and yielded an additional reward of + 1.0.

Extinction learning in T‑maze. To study the emergence of context-dependent behavior, we simulated the fol-
lowing ABA renewal  experiment9: In a simple T-Maze, rats were rewarded for running to the end of one of the 
side arms (target arm). The acquisition context A was defined by a combination of distal and proximal visual 
cues, as well as odors. Once the animals performed to criterion, the context was changed to B, which was dis-
tinct from A, and the extinction phase began. In this phase, animals were no longer rewarded for entering the 
former target arm. Once the animals reverted to randomly choosing between the two side arms, the context was 
switched back to A and the test phase started. Control animals showed renewal and chose the former target arm 
more frequently than the other arm, even though it was no longer rewarded.

In our modeling framework, we maintained the spatial layout of the experimental setup and the richness of 
visual inputs in a laboratory setting, which is usually oversimplified in other computational models. A skybox 
showed a standard lab environment with distal cues for global orientation, and maze walls were textured using a 
standard brick texture (Fig. 2a–d). We made a few minor adjustments to accommodate the physical differences 
between rats and the simulated robot. For instance, we had to adjust the size of the T-maze and use different 
illumination to distinguish contexts A and B. In the rat experiments, the two contexts were demarcated by odor 
cues in addition to visual  cues9. The simplifications in our model make the distinction between contexts harder, 
as odor was a powerful context disambiguation cue in the original experiment.

The topology graph in the T-Maze consisted of seven nodes (Fig. 3b). Reaching a node at the end of the side 
arms yielded a reward of + 1.0 to encourage goal-directed behavior in the agent. The left endpoint was the target 
node and yielded an additional reward of + 10.0 only in the acquisition phase, not in the extinction and test 
phases. As in the experiments, a trial was scored as correct, if the agent entered the target arm, and as incorrect, 
if the other arm was selected or the trial timed out. Finally, to compare our model account of ABA renewal to 
that of Redish et al.17, we used the same topology graph, but provided their model with inputs that represented 
states and contexts as binary encoded indices.

A simulated session consisted of 300 trials in each of the experimental phases: acquisition, extinction and 
test. So, altogether a session consisted of 900 trials.

Extinction learning in inhibitory avoidance. To model learning in a task that requires complex spatial behavior 
in addition to dynamically changing reinforcements, we use an inhibitory avoidance task in an ABA renewal 
design. The agent had to navigate from a variable starting location to a fixed goal location in the shock zone maze 

Figure 3.  Topology graphs for different simulation environments. (a) Morris watermaze. (b) T-maze. (c) 
Shock zone maze. The red polygon indicates the shock zone. Nodes in the graph indicate allowed positions, and 
solid lines allowed transitions between positions. Start nodes are marked green, and (potential) goal nodes are 
marked red. The dashed lines sketch the maze perimeter.
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(Fig. 2e–h), while avoiding a certain region of the maze, the shock zone. Distal cues were provided in this envi-
ronment using the same skybox as in the watermaze simulation. The topology graph was built using Delaunay 
triangulation (Fig. 3c). The start node was randomly chosen from four nodes (green dots). Reaching the goal 
node (red dot) earned the agent a reward of + 1.0. If the agent landed on a node in the shock zone (red area, Figs.  
2e–f, 3c), it would receive a punishment (reward= −20.0 ). In both the extinction and test phases, the shock zone 
was inactive and no negative reward was added for landing on a node within the shock zone.

Neural representations of context in ABA renewal tasks. To study the influence of experience replay 
and model the effect of hippocampal lesions/inactivations, we compared agents with intact memory ( c = 5000 ) 
to memory-impaired agents with c = 150.

To study the representations in the DQN layers, we used dimensionality reduction as follows: We defined 
Il(z, x) to represent the activation of layer l ∈ [0, 1, . . . , 5] when the DQN is fed with an input image captured at 
location x in context z ∈ {A,B} , where l = 0 is the input layer, and l = 5 the output layer. Let XA and XB be the sets 
of 1000 randomly sampled image locations in context A and B, respectively. We expected that the representations 
Il(A,XA) and Il(B,XB) in the DQN’s higher layers form compact, well-separated clusters in activation space by the 
end of extinction. This would enable agents to disambiguate the contexts and behave differently in the following 
test phase in context A from how they behaved in context B at the end of extinction, which is exactly renewal. 
By contrast, for memory-impaired agents we would expect no separate clusters for the representations of the two 
contexts, which would impair the agent’s ability to distinguish between contexts A and B, which in turn would 
impair renewal. We applied Linear Discriminant Analysis (LDA) to find a clustering that maximally separates 
Il(A,XA) and Il(B,XB) . The cluster distances dl are related to the context discrimination ability of network layer l.

Results
We developed a computational framework based on reinforcement learning driven by experience memory replay 
and a deep neural network to model complex operant learning tasks in realistic environments. Unlike previous 
computational models, our computational modeling framework learns based on raw visual inputs and does not 
receive pre-processed inputs.

Proof‑of‑principle studies of spatial learning. As a proof-of-principle and to facilitate a direct com-
parison to an earlier model, we first studied spatial learning on a simple linear track with simplified inputs, i.e. 
the positions were represented by binary indices. To vary the difficulty of the task, the track was represented by 
a 1-d topology graph with variable node count. The first node was always the starting node and the agent was 
rewarded for reaching the last node. The larger the number of nodes in the graph, the more difficult it was for 
the agent to solve the task. Hence, the average number of trials, in which the agent reached the goal node before 
the trial timed out, decreased with the number of nodes N (Fig. 4a, blue line). The reason for this result is simple. 
The agent had to find the goal node by chance at least once before it could learn a goal-directed behavior. This 
was less likely to occur in longer tracks with a larger number of intermediate nodes.

Comparing our model to existing approaches turned out to be difficult, since operant extinction learning 
has not received much attention in the past. The model proposed by Redish et al.17 was eventually chosen as a 
reference. Even though this model was developed for different kinds of tasks, it could solve the spatial learning 
task on the linear track if inputs provided to the model were simplified to represent states as indices (Fig. 4b, 
red line). However, Redish et al.’s model did not perform as well as our model regardless of the track length. 

Figure 4.  Performance on spatial navigation tasks. (a) Number of times the agent finds the goal location given 
a total of 5000 simulation steps on a linear track in our model (blue line) and comparison  model17 (red line). 
Results are averaged over 50 simulations for each track length. (b) Escape latency in the virtual watermaze 
decreases with learning trials. Data averaged over 1000 agents, error bars represent standard deviations.
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This result is due to experience memory in our model, which could replay samples of successful navigation to 
speed up learning.

Next, we studied more complex spatial learning in a 2-d  watermaze26 with raw camera inputs. Since the 
agent was rewarded for finding the location of the escape platform as quickly as possible, we quantified learning 
performance by the escape latency (Fig. 4a). The learning curve indicates clearly that the system’s performance 
improved rapidly with learning trials, i.e. the latency decreased. Our result compared well to those reported in 
the literature on  rodents28.

Extinction and renewal of operant behavior. Having shown that our model agent can learn simple 
spatial navigation behaviors based on raw camera inputs, we turned our attention to more complex learning 
experiments such as operant extinction and renewal. Initial tests were run in the T-maze. Performance was 
measured with cumulative response curves (CRCs). If the agent entered the target arm, the CRC was increased 
by one. If the other arm was entered or the trial timed out, the CRC was not changed. Hence, consistent correct 
performance yielded a slope of 1, (random) alternation of correct and incorrect responses yielded a slope of 0.5, 
and consistent incorrect responses yielded a slope of 0. The CRC for our model looked just as expected for an 
ABA renewal experiment (Fig. 5a). After a very brief initial learning period, the slope increased to about 1 until 
the end of the acquisition phase, indicating nearly perfect performance. At the transition from the acquisition 
to the extinction phase, the slope of the CRCs stayed constant in the first 50 extinction trials, indicating that the 
agent generalized the learned behavior from context A to context B, even though it no longer received a larger 
reward for the left turn. After 50 extinction trials, the slope decreased gradually (Fig. 5a, red arrow), indicating 
extinction learning. Finally, the change from context B back to context A at the onset of the test phase triggered 
an abrupt rise of the CRC slope, indicating a renewal of the initially learned behavior. The CRC for Redish et al.’s 
model looked similar to that for our model (Fig. 5b), but exhibited two key differences that were not biologi-
cally plausible. First, the CRCs split into one group that showed no extinction, and hence no renewal either, and 
another group that showed extinction and renewal. Second, the latter group showed a sharp drop of the CRC 
slope in the very first extinction trial (Fig. 5b, red arrow), indicating an immediate shift in behavior upon the 
first unrewarded trial.

Figure 5.  Dynamics of acquisition, extinction, and renewal-testing in T-maze. (a) Top: Cumulative response 
curves (CRCs) in an operant ABA renewal paradigm in the T-maze. Shown are 50 simulated CRCs (colored 
lines), and the mean CRC (black line). The inset shows the beginning of the extinction phase in context B, where 
the CRCs continue with the same slope as at the end of the acquisition phase in context A. This indicates that 
the association learned in context A generalized to context B. The red arrow points where the slopes start to 
change. Bottom: The slope of the mean CRC reveals rapid acquisition, gradual extinction learning, and renewal. 
(b) Top: In contrast to our model, Redish et al.’s  model17 changes its behavior immediately upon the switch from 
context A to context B (red arrow). Hence, this model does not generalize the learned association from context 
A to context B. In addition, one group of CRCs does not exhibit any extinction learning, and hence no renewal. 
Bottom: The slope of the mean CRC shows the sudden change in behavior at the onset of the extinction phase.
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To test our model in an even more challenging task, we used an inhibitory avoidance learning paradigm in the 
shock zone maze, which combined complex spatial navigation, positive and negative rewards (see “Methods”), in 
an ABA renewal paradigm. In this task, agents had to navigate to a goal location in a 2-d environment along the 
shortest path possible, while at the same time avoiding a shock zone with an irregular shape (Fig. 2e,f). A trial 
was considered correct if the agent reached the goal without entering the shock zone on the way. This definition 
allowed us to use the CRC to quantify the trial-by-trial performance of simulated agents. The curve increased by 
one if a trial was correct and remained constant otherwise. That means, a slope of 1 in the CRC indicated perfect 
avoidance of the shock zone, and zero slope represented no avoidance at all.

Even in this complex learning task, the memory-intact agent in our model showed biologically realistic 
behavior. The mean CRC started with a slope of about 0.0 in the acquisition phase (Fig. 6a). After ≈ 100 trials, 
the CRC slope increased to about 0.8, as the agent learned to circumnavigate the shock zone. At the beginning 
of the extinction phase, the agent continued to avoid the shock zone, even though shocks were no longer applied 
and even though the context had changed from A to B. However, by the end of the extinction phase, the agent 
learned to reach the goal faster by traversing the shock zone, as indicated by a CRC slope of about 0.0. When 

Figure 6.  Learning dynamics of inhibitory avoidance in simulated renewal paradigms. Panels (a–c show results 
from ABA renewal, panel d compares ABA renewal to ABC renewal. (a) Cumulative response curve (CRC) 
in the shock zone maze averaged across 1000 memory-intact agents (error bars indicate std). Agents showed 
clear evidence for extinction, i.e. flattening of CRC at the end of the extinction phase, and renewal, i.e. positive 
slope at the beginning of the renewal phase. (b) By contrast, memory-impaired agents showed faster extinction 
(flattening of CRC) and no renewal (flat CRC at onset of renewal testing). (c) Renewal strength FR(c, ǫ) as 
a function of the capacity of the experience replay memory c and the ǫ-greedy exploration parameter. The 
renewal strength increases with c; note that the largest renewal effect is observed along the ridge for c > 4000 
and 0.25 < ǫ < 0.35 . (d) Renewal strength in the T-Maze in two neutral contexts C1 and C2 (ABC renewal), 
compared to standard ABA renewal strength. (R,G,B) illumination values for the contexts were: (1.0,0.0,0.0) for 
context A, (0.0,0.0,0.0) for context B, (0.3,0.0,0.7) for context C1 , and (0.7,0.0,0.3) for C2 . Bars colored according 
to the house light color in the renewal test context (A,C2 or C1 ). The strength of ABC renewal decreases as the 
similarity between context C and A decreases. Results were averaged over 100 runs.
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the context was switched back to context A at the onset of the test phase, the CRC slope rose sharply, indicating 
renewal (Fig. 6a). Over the course of the test phase, the agents learned that the shock zone was no longer active 
in context A and that it could be safely traversed, causing a smooth drop of the CRC slope to about 0.0 in the 
final trials. These results showed that the agents in our model could learn context-dependent behavior even in 
a highly complex operant learning task in a two-dimensional environment.

To confirm that renewal in our model is indeed triggered by the context change, we tested for ABC renewal 
in the T-Maze, i.e., acquisition in context A (red house lights), extinction in context B (white house lights), and 
renewal in one of two neutral contexts, C1 or C2 . In the C1 context, we set the house light to a mixture of 30% red 
and 70% blue. In C2 , house lights were set to 70% red and 30% blue. Based on the literature, renewal strength in 
the ABC paradigm was expected to be diminished compared to to ABA renewal. We also expected that renewal 
would become weaker when context C was more dissimilar to context A, i.e., C1 should yield a lower renewal 
strength than C2 . Our model showed both expected effects (Fig. 6d), confirming that indeed ABA renewal in 
our model is driven by the context change.

The role of experience replay in learning context‑dependent behavior. We next explored the 
role of experience replay in the emergence of context-dependent behavior in our model agent. To this end, we 
repeated the above simulation with a memory-impaired agent. The memory-impaired agent learned in much the 
same way as the memory-intact agent did during acquisition (Fig. 6b), but exhibited markedly different behavior 
thereafter. First, extinction learning was faster in the memory-impaired agent, consistent with experimental 
observations. This result might seem unexpected at first glance, but it can be readily explained. With a low 
memory capacity, experiences from the preceding acquisition phase were not available during extinction and the 
learning of new reward contingencies during extinction led to catastrophic forgetting in the  DQN29. As a result, 
the previously acquired behavior was suppressed faster during extinction. Second, no renewal occurred in the 
test phase, i.e., the CRC slope remained about zero at the onset of the test phase. This is the result of catastrophic 
forgetting during extinction. Our results suggest that ABA renewal critically depends on storing experiences 
from the acquisition phase in experience memory and making them available during extinction learning. This 
result is consistent with experimental observations that hippocampal animals do not exhibit renewal and sug-
gests that the role of the hippocampus in memory replay might account for its role in renewal.

The agent’s learning behavior in our model crucially depended on two hyperparameters, namely the capacity 
of the experience replay memory c, and the exploration parameter ǫ . To analyze the impact of these hyperparam-
eters, we performed and averaged 20 runs in the shock zone maze for different parameter combinations of c and 
ǫ . Let S−(c, ǫ) and S+(c, ǫ) be the slopes of the mean CRCs in the last 50 steps of extinction and first 50 steps of 
the test phase, respectively. In the ideal case of extinction followed by renewal: S−(c, ǫ) = 0.0 and S+(c, ǫ) = 1.0 . 
We therefore defined the renewal strength for each combination of hyperparameters as

which is near 1 for ideal renewal and near 0 for no renewal. As expected from our results on memory-impaired 
agents above, the renewal strength was near zero for low memory capacity (Fig. 6c). It increased smoothly 
with increasing memory capacity c, so that a memory capacity c > 4000 allowed the agents to exhibit renewal 
reliably. The renewal strength displayed a stable ridge for c > 4000 and 0.25 < ǫ < 0.35 . This not only justified 
setting ǫ = 0.3 in our other simulations, but also showed that our model is robust against small deviations of ǫ 
from that value.

The renewal strength was very low for small values of ǫ regardless of memory capacity. This points to an 
important role of exploration in renewal. With a low rate of exploration in the extinction phase, the model 
agent persevered and followed the path learned during acquisition. This led to S−(c, ǫ) ≈ S+(c, ǫ) , and hence 
FR(c, ǫ) ≈ 0 , and explained why the exploration parameter has to take relatively large values of 0.25 < ǫ < 0.35 
to generate robust renewal.

Emergence of distinct neural representations for contexts. Having shown that our model learned 
context-dependent behavior in complex tasks, we turned our attention to the mechanism underlying this behav-
ior in a specific experiment. We simulated an experiment in appetitive, operant extinction learning that found 
that increasing the dopamine receptor agonists in the hippocampus had a profound effect on ABA renewal 
in a simple T-maze9 (Fig. 7a). The model agent received rewards for reaching the end of either side arm, but 
the reward was larger in the left (target) arm. Like in the experimental  study9, we quantified the performance 
of the simulated agents by the number of trials, out of 10, that the agents chose the target arm at different 
points of the simulated experiment: {early acq.,late acq., early ext., late ext., early test, late test}. In the acquisi-
tion phase in context A, memory-intact agents initially chose randomly between the left and right arm, but by 
the end of acquisition they preferentially chose the target arm (Fig. 7b, blue filled bars). In the extinction phase 
in context B, agents initially continued to prefer the target arm, i.e. they generalized the association formed in 
context A to context B, but this preference attenuated by the end of extinction. Critically, when the context was 
then switched back to the acquisition context A in the test phase, agents preferred the target arm again, even 
though it was no longer associated with a larger reward. This is the hallmark of ABA renewal. The renewal score 
SR = (earlytest/lateext.)− 1.0 indicated the relative strength of the renewal effect in the T-maze experiments. 
SR ≈ 0.59 for the memory-intact agent. Since there was no special reward for preferentially choosing the target 
arm, the agent stopped doing so by the end of the test phase.

The memory-impaired agent showed the same acquisition learning as the memory-intact agent, but exhibited 
faster extinction learning and no renewal ( SR ≈ −0.14 , Fig. 7b, unfilled bars). These results are consistent with 
our modeling results in the inhibitory avoidance task discussed above and the experimental results from  rats9.

(2)FR(c, ǫ) = S+(c, ǫ)− S−(c, ǫ),
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We hypothesized that context-dependent ABA renewal emerged in memory-intact agents because the higher 
layers of the DQN developed distinct representations of contexts A and B, which would allow the DQN to associ-
ate different reward contingencies with similar inputs. We therefore studied the evolution of context representa-
tions in the DQN based on the cluster distances between the representations of the two contexts (see “Methods”). 
It is important to keep in mind that, in the DQN, different layers have different functions: Lower layers are more 
closely related to sensory processing, while higher layers (closer to the output layer) fulfill evaluative tasks. 
Hence, lower layers reflect the properties of the visual inputs to the network. Since images from the context A 
form a cluster and are different from images from context B (contexts A and B were distinguished by different 
illumination colors), image representations in lower layers form distinct clusters. Hence, the cluster distance in 
the input layer, d0 , was nonzero and remained so through the simulation (Fig. 7c,d). At the end of acquisition 
(red curve), the agents had been exposed only to visual inputs from context A, so there was no benefit for the 
DQN to represent the contexts A and B differently. Therefore, the difference in the context representations in 
the input layer was gradually washed out in higher layers, i.e., d1, . . . , d4 < d0 . As a result, distinct image repre-
sentations are mapped onto the same evaluation. In other words, the network generalizes the evaluation it has 

Figure 7.  ABA renewal arises because experience replay drives the emergence of two distinct context 
representations. (a) André and Manahan-Vaughan showed that renewal was reduced by a pharmacological 
manipulation that interfered with synaptic plasticity in the hippocampus. (Adapted from Fig. 1 in Ref.9.) 
Renewal score in experimental animals: SR ≈ 0.45 , renewal score in control animals: SR ≈ 1.08 . (b) In our 
model, agents with intact experience replay memory showed ABA renewal in the T-Maze task, i.e. an increase in 
response rate in early test despite the continued absence of reward ( SR ≈ 0.59 ). By contrast, memory-impaired 
agents did not exhibit renewal and had a lower renewal score ( SR ≈ −0.14 ). (c) Cluster distances between 
network representations of context A and B in the T-maze for memory-intact agents. Results were averaged over 
1000 runs of our model. The representation of contexts A and B in higher layers of the deep neural network 
( l ≥ 3 ) formed distinct clusters that were well separated. They were learned in the extinction phase, since the 
distinction was not present at the end of the acquisition phase. (d) By contrast, memory-impaired agents did not 
show distinct context representations in any learning phase.
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learned in context A to context B, just as subjects do. However, after extinction (blue curve), the replay memory 
contained observations from both contexts A and B, which were associated with different reward contingencies. 
This required that the higher layers of the DQN discriminate between the contexts, and d3, d4 > d0 . The network’s 
ability to represent the two contexts differently, and thus maintain different associations during the extinction 
phase, gave rise to renewal in the subsequent testing phase (green curve), where the experience replay memory 
encoded novel observations from context A, yet still contained residual experiences from context B. Reward 
contingencies were identical in both contexts, and there was no longer a benefit to maintaining distinct context 
representations, hence, d3, d4 � d0 . Note that d3 and d4 were also much smaller at the end of the test phase than 
they were at the end of extinction, and would eventually vanish if the renewal test phase was extended.

As expected, cluster distances for the DQN in memory-impaired agents (Fig. 7d) did not change between 
the phases of the experiment and remained at low values throughout. This was the consequence of the reduced 
experience replay memory capacity and accounted for the lack of renewal in memory-impaired agents. Since the 
agents had no memory of the experiences during acquisition in context A, the DQN suffered from catastrophic 
 forgetting29 when exposed to a different reward contingency in context B and therefore the DQN could not 
develop separate representations of the two contexts during extinction.

Discussion
We have developed a computational model to study the emergence of context-dependent behavior in complex 
learning tasks within biologically realistic environments based on raw sensory inputs. Learning is modeled as 
deep Q-learning with experience  replay15. Here, we apply our model to a sparsely researched topic: modeling 
of operant extinction  learning3. We found that our model accounts for many features that were observed in 
experiments, in particular, in context-dependent ABA renewal, and the importance of hippocampal replay in 
this processes. Our model has several advantages relative to previous models. Compared to Redish et al.’s model 
of operant extinction  learning17, our model learned faster on the linear track, and showed more plausible extinc-
tion learning in that our model generalized from the acquisition to the extinction context. Further, our model 
allowed for the investigation of internal representations of the inputs and, hence, the comparison to neural 
representations. Finally, our model makes two testable predictions: Context-dependent behavior arises due to 
the learning of clustered-representations of different contexts, and context representations are learned based on 
memory replay. We discuss these predictions in further detail below.

Learning context representations. One common suggestion in the study of learning is that stimuli 
can be distinguished a priori into discrete cues and contextual stimuli based on some inherent  properties30. 
For instance, cues are discrete and rapidly changing, whereas the context is diffuse and slowly changing. Prior 
models of extinction learning, e.g. Refs.16,17, rely on external signals that isolate sensory stimuli and the current 
context. They maintain different associations for different contexts and switch between associations based on the 
explicit context signal. Since this explicit context switching is biologically unrealistic, Gershman et al. suggested 
a latent cause model in which contexts act as latent causes that predict different reward  contingencies31. When 
expected rewards do not occur, or unexpected rewards are delivered, the model infers that the latent cause has 
changed. However, the model still depends on explicit stimulus signals, and requires complex Bayesian inference 
techniques to create and maintain the latent causes.

An alternative view is that there is no categorical difference between discrete cues and contextual information 
during associative learning, i.e., all sensory inputs drive learning to some  extent14. Two lines of experimental 
evidence support this learning hypothesis. First, the learning of context can be modulated by attention and the 
informational value of  contexts32. This finding suggests that contextual information is not fixed and what counts 
as contextual information depends on task  demands33. Second, the context is associated with the US to some 
 degree34, instead of merely gating the association between CS and US. There are suggestions that the association 
strength of the context is higher in the early stage of conditioning than later, when it becomes more apparent that 
the context does not predict the  US34. However, when context is predictive of CS-US pairing, the CR remains 
strongly context-dependent after multiple learning  trials35.

In line with the learning view, the internal deep Q-network in our model received only raw camera inputs and 
no explicit stimuli or context signaling. The model autonomously adapted the network weights to given learning 
tasks based on reward information collected during exploration and from the experience replay memory. By 
analyzing the model’s internal deep Q-network, we found that distinct context representations emerged sponta-
neously in the activations of the network’s higher layers over the course of learning, if the agent was exposed to 
two contexts with different reward contingencies. Distinct contextual representations emerge rather slowly in 
our study due to the role of the context in ABA renewal. If the task had been different, e.g. the agent had been 
exposed to US in context A and no US in context B in interleaved trials from the outset, distinct contextual rep-
resentations in the higher layers of the network would have emerged faster. Nevertheless, they would have been 
learned in our model and not assumed to exist a priori as in almost all previous models.

Finally, we emphasize that, in addition to this task-dependent contextual representation in higher layers, the 
network’s lower layers exhibit task-independent differences in neural activity in different contexts. We do not 
call the latter “contextual representations” since they are mere reflections of the sensory differences between 
inputs from different contexts.

The neural representation of context. The hippocampus has been suggested to play a role in the encod-
ing, memorization, and signaling of contexts, especially in extinction  learning3,11. However, there is no con-
clusive evidence to rule out that the hippocampus is involved in the renewal phenomenon primarily due to its 
other well-established role in general-purpose memory storage and  retrieval36–38. In our model, the emergence 
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of distinct contextual representations critically depended on experience replay, suggesting that experience replay 
facilitates the formation of stable memory representations—as predicted by neuroscientific  studies23,39.

In line with previous  suggestions6,10, we therefore propose that contexts might be represented, in brain regions 
outside the hippocampus and that learning of these representations is facilitated by memory of experiences 
(inputs, actions and rewards), which are stored with the help of the hippocampus. However, we note that our 
model does not preclude that the hippocampus generates contextual representations of its own and that these 
representations drive behavior. Our model only indicates that hippocampal replay of low-level inputs suffices 
to generate context representations in other regions, such as the PFC. Unlike previous computational models of 
extinction learning, our model delineates the simulated fast hippocampal replay (experience replay memory) 
from other cortical regions (deep Q-network) that learn more slowly. As the network learns abstract representa-
tions of the visual inputs, the lower layers most likely correspond to visual areas in the cortex, while the higher 
layers serve functions similar to those served by the prefrontal cortex (PFC). Contextual representations in 
higher layers of the network emerge slowly in our study because the relevance of the contexts in an ABA renewal 
paradigm emerges slowly. If the task had been different, e.g., the agent had been exposed to US in context A and 
no US in context B in interleaved trials from the beginning, like in contextual fear conditioning, the distinct 
contextual representations in the higher layers of the network would have emerged faster. Nevertheless, they 
would have been learned in our model, and not assumed to exist a priori as in almost all previous models.

We propose that our hypothesis above could be tested using high-resolution calcium  imaging40 of the PFC 
in behaving rodents. Our model predicts that different contexts are encoded by PFC population activity that 
form well-separated clusters by the end of extinction learning, allowing the animals to disambiguate contexts, 
and leading to renewal. In hippocampal animals, however, we expect that novel contexts are not encoded in 
separate PFC clusters, but instead their representations in the PFC population will overlap with those of previ-
ously acquired contexts. Furthermore, our model suggests that context representations in the brain are highly 
dynamic during renewal experiments, adapting to the requirements of each experimental phase. Distinct context 
representations would therefore arise in control animals over the course of extinction learning, and not neces-
sarily be present from the start, cf.41.

The role of the hippocampus in renewal. Our hypotheses about contextual representations discussed 
above naturally beg the question: What role does hippocampus play in renewal? The experimental evidence 
leaves no doubt that the hippocampus plays a critical role in  renewal3,7,11,42. In our model, we focused on the 
role of experience replay observed in the hippocampus, i.e. we propose that hippocampus is involved in renewal 
because of its ability to store and replay basic experiences. In our model, replay of experiences from the acqui-
sition phase was critical to learn distinct context representations in the extinction phase. This is consistent 
with observations in  humans43. Only subjects whose activation in the bilateral hippocampus was higher dur-
ing extinction in a novel context than in the acquisition context showed renewal later. With limited experi-
ence memory, learning during extinction in our model overwrites previously acquired representations, also 
known as catastrophic forgetting. This in turn prevented renewal from occurring when the agent was returned 
to the acquisition context. If lesioning the hippocampus in animals has a similar effect as limiting the experience 
memory in our simulation, as we propose, our model predicts that impairing the hippocampus pre-extinction 
weakens renewal, while impairing the hippocampus post-extinction should have no significant influence on the 
expression of renewal.

Both of these predictions are supported by some experimental studies, and challenged by others. Regarding 
the first prediction, some studies have confirmed that hippocampal manipulations pre-extinction have a negative 
impact on ABA renewal. For instance, ABA renewal was disrupted by pharmacological activation of dopamine 
receptors prior to extinction  learning9. By contrast, other studies suggest that disabling the hippocampus pre-
extinction has no impact on later renewal. For instance, inactivation of the dorsal hippocampus with muscimol, 
an agonist of GABAA  receptors44, or scopolamine, a muscarinic acetylcholine receptor  antagonist8, prior to 
extinction learning did not weaken ABA renewal during testing. The apparent contradiction could be resolved, if 
the experimental manipulations in Refs.8,44 did not interfere with memories encoded during acquisition, as other 
manipulations of the hippocampus would, but instead interfered with the encoding of extinction learning. As 
a result, the acquired behavior would persist during the subsequent renewal-test. Indeed, activation of GABAA 
receptors, or the inactivation of muscarinic receptors reduce excitation of principle cells, thereby changing 
signal-to noise ratios in the hippocampus. We hypothesize that, as a result, animals exhibited reduced extinction 
learning following  scopolamine8 or  muscimol44, consistent with impaired encoding of extinction. By contrast, 
dopamine receptor activation during extinction  learning9, did not reduce extinction learning, but impaired 
renewal. The results of the latter study are more consistent with the results of our model when memory capacity 
is reduced pre-extinction: extinction learning was slightly faster and renewal was absent.

In support of our second prediction, a study showed that antagonism of β-adrenergic receptors, which are 
essential for long-term hippocampus-dependent memory and synaptic  plasticity45, post-extinction had no effect 
on ABA  renewal46. By contrast, several studies suggested that lesioning the hippocampus post-extinction reduces 
renewal of context-dependent aversive experience. For instance, ABA renewal in the test phase was abolished 
by  excitotoxic42 and  electrolytic7 lesions of the dorsal hippocampus after the extinction phase. More targeted 
lesions of dorsal CA1, but not CA3, post-extinction impaired AAB  renewal6. The authors of these studies gener-
ally interpreted their results to indicate that the hippocampus, or more specifically CA1, are involved in retriev-
ing the contextual information necessary to account for renewal. However, damage to these subregions can be 
expected to have generalized effects on hippocampal information processing of any kind. Another possibility is 
that post-extinction manipulations, which were made within a day of extinction learning, interfered with systems 
consolidation. This is very plausible in terms of dopamine receptor  activation9 as this can be expected to promote 
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the consolidation of the extinction learning event. To model this account in our framework, one would have to 
split the learning and replay during extinction phase, which occur in parallel in our current implementation, into 
two separate stages. Only new learning would occur during the extinction phase, while experience replay (of the 
acquisition phase) would occur during sleep or wakeful quiescence after the extinction phase, as suggested by 
the two-stage model of systems consolidation. In this case, the associations formed during acquisition would be 
initially overwritten during extinction learning, as they were in our simulations without experience memory, and 
then relearned during the replay/consolidation  period23,24. If systems consolidation was altered during this period, 
extinction learning would still be retained, but the association learned during acquisition would be overwritten 
and hence there would be no renewal. In line with this interpretation, recent findings suggest that extinction 
learning and renewal engage similar hippocampal subregions and neuronal  populations13, thus, suggesting that 
manipulating the hippocampus can have an impact on prior learned experience and thus, subsequent renewal.

In conclusion, we have shown that, in an ABA renewal paradigm, contextual representations can emerge in 
a neural network spontaneously driven only by raw visual inputs and reward contingencies. There is no need 
for external signals that inform the agent about cues and contexts. Since contextual representations might be 
learned, they might also be much more dynamic than previously thought. Memory is critical in facilitating 
the emergence of distinct context representations during learning, even if the memory itself does not code for 
context representation per se.
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