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Cell-surface proteins are of great biomedical importance, as dem-
onstrated by the fact that 66% of approved human drugs listed in
the DrugBank database target a cell-surface protein. Despite this
biomedical relevance, there has been no comprehensive assessment
of the human surfaceome, and only a fraction of the predicted
5,000 human transmembrane proteins have been shown to be
located at the plasma membrane. To enable analysis of the human
surfaceome, we developed the surfaceome predictor SURFY, based
on machine learning. As a training set, we used experimentally
verified high-confidence cell-surface proteins from the Cell Surface
Protein Atlas (CSPA) and trained a random forest classifier on
131 features per protein and, specifically, per topological domain.
SURFY was used to predict a human surfaceome of 2,886 proteins
with an accuracy of 93.5%, which shows excellent overlap with
known cell-surface protein classes (i.e., receptors). In deposited
mRNA data, we found that between 543 and 1,100 surfaceome
genes were expressed in cancer cell lines and maximally 1,700 surfa-
ceome genes were expressed in embryonic stem cells and derivative
lines. Thus, the surfaceome diversity depends on cell type and
appears to be more dynamic than the nonsurface proteome. To
make the predicted surfaceome readily accessible to the research
community, we provide visualization tools for intuitive interroga-
tion (wlab.ethz.ch/surfaceome). The in silico surfaceome enables the
filtering of data generated by multiomics screens and supports the
elucidation of the surfaceome nanoscale organization.
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The cell surface is the gateway that regulates information
transfer from and to the outside world. Proteins at the cell

surface connect intracellular and extracellular signaling networks
and largely determine a cell’s capacity to communicate and in-
teract with its environment. The entirety of all possible cell-surface
proteins, the surface proteome or surfaceome, consists of recep-
tors, transporters, channels, cell-adhesion proteins, and enzymes
and is a source of potential diagnostic biomarkers of disease and
therapeutic targets (1). We define the surfaceome as all plasma
membrane proteins that have at least one amino acid residue
exposed to the extracellular space. As such, the surfaceome is a
subset of the plasma membrane proteome, which is a subset of the
membrane proteome, the entirety of all membrane proteins. In-
tegral monotopic membrane proteins that are attached to the
extracellular lipid leaflet [e.g., via a glycosylphosphatidylinositol
(GPI) anchor] are part of the human surfaceome, but most of the
surfaceome consists of ɑ-helical transmembrane (TM) proteins
(Fig. 1A). The bioinformatic differentiation between proteins re-
siding in intracellular membranes (i.e., Golgi or endoplasmic re-
ticulum), in the plasma membrane, and on the cell surface is not
straightforward, and current classifications are mainly based on
experimental or functional evidence (Fig. 1B). The lack of an
accurate and comprehensive classification of all existing cell-
surface proteins impedes their measurement and thereby nega-
tively impacts research to better understand their role in biological
processes and their clinical potential.
Predicting that a protein resides at the cell surface requires (i)

the detection of a TM domain or a lipid anchor; (ii) the definition
of the orientation of a protein within the membrane, including the

identification of an extracellular exposed domain; and (iii) sub-
cellular location prediction. (i) Bioinformatic tools for predicting
TM domains, signal peptides, and GPI-linked proteins are avail-
able (2–9). (ii) Prediction of the correct orientation of the protein
within the membrane is computationally more challenging, and
experimental evidence for TM topologies is scarce, as are atomic-
resolution structures of human TM proteins. The Membrane
Protein Data Bank (10) lists only 124 human membrane protein
structures; this is only 2% of proteins for which structures are
known (1). (iii) Subcellular localization of a protein can to some
extent be predicted by computational methods (11). Although
multiple tools have been published for generalized subcellular
localization prediction (12, 13), only two of these are specific for
prediction of the subcellular localization of membrane proteins
(14, 15). Both apply machine-learning algorithms, which rely on
large training sets. Because of limited experimental data, the
training sets used are based on annotations from the Gene On-
tology Consortium, which are themselves frequently inferred or
predicted (16). Previous attempts to compile a human surfaceome
resource (17–19) integrated existing annotation and prediction of
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TM domains and signal peptides, but did not make use of the
latest experimental techniques or computational modeling.
The experimental assessment of the surfaceome is complicated

by the hydrophobic nature of TM domains and the low abundance
of cell-surface proteins compared with intracellular proteins. To
overcome these hurdles, we previously developed the Cell Surface
Capture (CSC) technology (20) that allows large-scale and highly
specific identification and quantification of glycosylated cell-
surface-residing proteins. The steps of the chemoproteomic CSC
strategy are highly specific chemical labeling of cell-surface pro-
teins on living cells, subsequent purification of N-glycosylated
peptides, and mass-spectrometric identification of extracellularly
exposed glycopeptides and their parent cell-surface proteins (21–
33). By using this CSC strategy, an extensive experimental resource
on cell-surface-residing and extracellularly exposed proteins was
constructed. The Cell Surface Protein Atlas (CSPA; wlab.ethz.ch/
cspa/) is a public resource which contains experimental evidence
for cell-surface proteins identified in 41 human cell types (34).

Although the CSPA is an extensive biomedical resource, it only
spans a limited number of cell types and cellular-activation stages
and is therefore unlikely to encompass all possible human surfa-
ceome members. To obtain a comprehensive picture of the human
surfaceome, we set out to complement the experimental resource
using computational prediction. Here, we present the machine-
learning-based predictor SURFY, which leverages the CSPA as
the necessary basis for a high-quality training dataset. Machine-
learning algorithms enable pattern recognition, classification, and
prediction based on models derived from existing data (35). Ap-
plied to the human proteome, SURFY predicted that the human
surfaceome includes 2,886 proteins across all human cell types and
developmental stages. The predicted set has excellent overlap with
existing annotation of bona fide cell-surface proteins, with 99% of
Cluster of Differentiation (CD) proteins included.
To understand the surfaceome variability between different

cell types, gene-expression profiles from two independent data-
sets were analyzed according to our in silico surfaceome. From
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Fig. 1. Surfaceome definition and construction. (A) Visual representation of surfaceome definition. Proteins shown in red are regarded as surfaceome
members; those in blue are not. (B) Compositions of nonsurface (negative) and surface (positive) training sets used for the machine-learning model. Sub-
cellular location of the nonsurface training set are labeled as follows: 1, endoplasmic reticulum; 2, endosome; 3, Golgi apparatus; 4, lysosome; 5, mito-
chondrion; 6, nucleus; 7, peroxisome; 8, cytosol; and 9, multiple locations. (C) Receiver operating characteristics for the full model derived from out-of-bag
error estimates (red line) (Dataset S1, 11.6). Gray line indicates the performance of random guessing. The three SURFY score cutoffs at 1%, 5%, and 15% FPRs
are indicated. (D) Distribution of the predicted scores for the training sets (Upper) and for the remaining ɑ-helical TM proteins (Lower). The bars of the
nonsurface training set are stacked on top of the bars of the surface training set. Score cutoffs for estimated 1%, 5%, and 15% FPRs are indicated at the
bottom. The predicted score distribution for CD antigens in and outside the training set are highlighted in yellow. (E) Gini index scores (41) for the 10 most
important features used in building the predictive random forest model used by SURFY. Scores are plotted as means ± SDs. Features used for calculating
SURFY scores are highlighted in red. AUC, area under the curve; Avg., average; C-glyc., C-glycosylation; TMD, TM domain.
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these analyses, we identified a set of housekeeping surfaceome
proteins. We also demonstrated that the surfaceome can be
applied to narrow down large datasets for defining candidate
sets for further validation, which ultimately leads to relevant
therapeutic targets.
In summary, our surfaceome predictor SURFY enabled de novo

prediction of surfaceome proteins. The in silico surfaceome is a
unique public resource that, when combined with cell-type-specific
expression data, can be used for phenotyping of cells guiding
subsequent antibody development against prequalified targets and
that will serve as a hypothesis generator for more targeted analyses
by single-cell proteotype analysis by mass or flow cytometry or by
genetically barcoded antibodies called phage-antibody next-generation
sequencing (PhaNGS; ref. 36). The in silico surfaceome will allow
unprecedented exploration of the surfaceome landscape within and
across human cell-type populations.

Results
Training Sets and Protein Topology Assessment for Surfaceome
Prediction. Since the milieu in the extracellular space and in the
cytoplasm differ in pH, redox state, and interaction partners, we
hypothesized that this should be reflected in different biochemical
properties of extracellular, TM, and intracellular domains of
membrane proteins, which could inform a machine-learning ap-
proach to discriminate between intracellular membrane and cell-
surface-residing proteins. To calculate domain-specific features
for the machine-learning algorithm, we first needed to define
these domains. The TM topology is defined by a protein’s TM
domains, its orientation within the membrane, and locations of
additional membrane attachment sites, if present (Fig. 1A). In a
hierarchical approach, we combined topology information pro-
vided by the CSPA in the form of noncytoplasmic identification of
N-glycopeptides for 1,309 proteins, by UniProt in the form of TM
domain annotations for 4,471 proteins, and by prediction using
Phobius (7) for 2,123 proteins. This yielded complete topologies
for 7,903 human proteins, of which there were 5,500 ɑ-helical TM
proteins, two β-barrel proteins, 12 proteins with intramembrane
loops, and 2,389 proteins with a signal peptide but no TM domain.
As only a small fraction of the proteins with just a signal peptide
are expected to be membrane-anchored by some other means (e.g.,
lipidation), we focused our machine-learning approach on the
ɑ-helical TM proteins. The exact borders of all ɑ-helical TM re-
gions were reassessed by using Phobius (7). The ɑ-helical TM
domains of our final topologies were on average 21.9 ± 2.3 resi-
dues (mean ± SD) in length.

Development of the Surfaceome Predictor SURFY.Machine-learning
classification requires a numerical representation of the objects
to be classified and negative and positive training sets. In con-
trast to previous approaches for subcellular localization pre-
diction, we calculated most protein features individually for each
topological domain (noncytoplasmic, cytoplasmic, signal peptide,
and TM domain). We selected the following sequence-, anno-
tation-, and prediction-based features to represent each protein:
number, average length, and relative fraction of ɑ-helical TM
regions and signal peptides; frequencies of each of the 20 amino
acids; four carefully selected physicochemical properties from
AAindex1 (37); frequency of N-glycosylation consensus sequence
motifs (N-X-S/T); predicted numbers of C-, N-, and O-linked
glycosylation sites [GlycoMine (38)]; and 12 selected UniProt
features annotating functional domains such as EGF-like do-
mains or protein kinase domains. Details of the selected features
from AAindex1 and UniProt are discussed in Methods. The final
feature matrix consisted of 131 numerical features for each of
the 7,903 proteins. The positive and negative training sets
(910 and 657 proteins, respectively; Dataset S1, 11.1 and 11.2)
were composed of data from the CSPA and other annotation
resources (Fig. 1B and SI Appendix, Fig. S1) and were generated

as described in Methods. The training sets were used to build a
random forest model that showed a predictive accuracy of 93.5%
(Fig. 1C).
Once trained, we used SURFY to calculate surface scores for

the 5,500 ɑ-helical TM proteins (Dataset S1, 11.3). The surface-
score distribution showed a clear bimodal appearance, suggest-
ing that the model successfully captured features that distinguish
surface from nonsurface proteins (Fig. 1D). Feature importance
was assessed by using the Gini index (39) and revealed five
features to be most important (Fig. 1E and Dataset S1, 11.4 and
11.5). The frequency of noncytoplasmic N-X-S/T motifs was by
far the most discriminative feature. Furthermore, the length and
number of TM domains (Figs. 1E and 2 A and B), the frequency
of noncytoplasmic cysteines, and the frequency of predicted
noncytoplasmic C-glycosylation sites substantially influenced the
surfaceome score calculated by SURFY.

Human Surfaceome Predicted by SURFY. To define the proteins
belonging to the surfaceome, we compared datasets at different
estimated false positive rates (FPRs) of 1%, 5%, and 15% (Fig.
1C); sensitivities of 96.9%, 92.7%, and 80.7% were obtained for
the 2,242; 2,756; and 3,284 proteins, respectively. We choose the
surfaceome with a 5% FPR as the representative human surfa-
ceome (SURFY scores > 0.5818), as this dataset balanced sen-
sitivity and specificity. In addition, 130 annotated GPI-linked
human proteins (UniProt keyword: GPI-anchor) that do not
have TM domains were included, resulting in a total surfaceome
set of 2,886 human proteins (Dataset S1, 11.7). The non-
surfaceome set consisted of the 689 proteins from the negative
training set and another 1,527 proteins with low SURFY scores
(scores < 0.3989; 2,216 proteins in total). The 528 proteins with
midrange scores (0.3989 < score < 0.5818) were considered
borderline cases and were not included in further analyses. The
surfaceome set contained 99% of all CD proteins (Fig. 1D),
supporting the validity of the surfaceome prediction. Distribu-
tions of the SURFY scores assigned to other protein classes such
as receptors and enzymes are plotted in SI Appendix, Fig. S2. The
model was also applied to analyze the 2,403 proteins without ɑ-
helical TM domains, including the 130 proteins with GPI an-
chors (SI Appendix, Fig. S3), but predictions for these additional
classes of proteins, most of them presumably secreted, should be
considered speculative.

Characterization of the Predicted Human Surfaceome. To uncover
the structural and biochemical differences in surface proteins
and proteins that are localized to intracellular membranes such as
the Golgi and endoplasmic reticulum, we compared the set of
2,886 surfaceome proteins to the set of 2,216 nonsurfaceome
membrane proteins based on the five most discriminant SURFY
score features (Fig. 1E). The frequency of N-glycosylation se-
quence motifs (N-X-S/T) in the noncytoplasmic regions of a TM
protein was the most discriminative feature for the model. Non-
surface membrane proteins had an average of 0.42 such motifs per
100 noncytoplasmic amino acids, whereas surfaceome proteins
showed a 3.5-fold enrichment to an average of 1.47 of these motifs
per 100 extracellular amino acids (Fig. 2 A, Left). Only 137 surface
proteins (4.7%) had no extracellular N-glycosylation motif at all,
but 1,298 of the nonsurface membrane proteins (58.6%) lacked a
noncytoplasmic N-glycosylation motif.
A clear enrichment of surface membrane proteins among all

membrane proteins was found for proteins with seven TM domains,
a class consisting of >95% G-protein-coupled receptors (GPCRs).
In contrast, intracellular membrane proteins were enriched in
double-pass TM domain proteins (Fig. 2B). The ɑ-helical TM do-
mains were slightly longer in surface proteins, with a median length
of 22 amino acids, than were these domains in nonsurface proteins,
which had a median length of 21 residues (Fig. 2C). This likely
reflects differences in lipid bilayer composition.
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C-linked mannosylation sites predicted by GlycoMine appeared
almost exclusively in the noncytoplasmic regions of surfaceome
proteins (Fig. 2 A, Center). Surface proteins also showed a twofold
enrichment in cysteine, with 3.38% cysteines in their extracellular
domains compared with 1.72% cysteines in nonsurface proteins
(Fig. 2 A, Right). The compositions of intracellular domains of
surface proteins resembled those of the intracellular domains of
nonsurface proteins with respect to the features analyzed, especially
in the frequency of N-glycosylation sequence motifs, predicted C-
glycosylation sites, and cysteine frequency. This observation could
help increase performance of TM topology prediction tools in
prediction of the orientation of plasma membrane proteins (40).
The functional classification showed that receptors and ligand

proteins were assigned nearly exclusively by SURFY to the sur-
faceome set (Fig. 2D and Dataset S1, 11.7). This demonstrates the
accuracy of the SURFY-predicted surfaceome. Other functional
classes are evenly distributed among different cellular membrane
structures (e.g., transporters). Some are more prominent among
intracellular membrane proteins (e.g., enzymes).

Characteristics of Previously Unclassified Surface Proteins. The pre-
dicted human surfaceome showed good overlap with current
subcellular localization annotation resources [UniProt keyword
“cell membrane,” YLoc subcellular localization prediction (13),
and the bioinformatic surfaceome of da Cunha et al. (17)], with
1,223 proteins appearing in all four surfaceome lists (Fig. 2E).
Proteins with a cell membrane annotation in UniProt, but not
present in our surfaceome (1,480 proteins), are mostly proteins
that are attached or integrated into the plasma membrane from
the intracellular side that do not have an extracellularly exposed
amino acid. By our definition, these proteins do not belong to the
surfaceome and contain, for example, Ras/Rho-related proteins or
phosphatidylinositol phosphate kinases. Conversely, a large ma-
jority of the surfaceome proteins identified by SURFY that have
no cell membrane annotation are simply annotated in UniProt as
“membrane” without further specification. YLoc is a machine-
learning approach for the prediction of subcellular location (13)
that does not consider features in a topological domain-specific
manner, which we found was critical. The bioinformatic surfa-
ceome of da Cunha et al. (17) solely relies on Gene Ontology
annotations and shows limited accuracy for cell-surface proteins.
Among the 142 proteins exclusively present in our surfaceome,

49 proteins belong to the family of HLA class I histocompatibility
antigens, and 26 proteins were identified in the CSPA. For
67 proteins predicted by SURFY to be cell-surface proteins, there
is no evidence for cell-surface localization in UniProt, YLoc, or
the da Cunha surfaceome. As a proof-of-concept study, we vali-
dated proteins, for which antibodies were available, by immuno-
fluorescence, flow cytometry (SI Appendix, Fig. S4), and also a
deep-coverage CSC experiment (Fig. 2F and Dataset S1, 11.8).
Most of these proteins are not well characterized; however, we
found some additional proteins, to be present in the Cell Atlas of
the Human Protein Atlas data and in recent publications,
confirming cell-surface localization (41–43) (Dataset S1, 11.9).
These lines of evidence underscore the value of our computa-
tional approach to identify previously uncharacterized cell-
surface proteins.

Surfaceome Proteostasis. Protein stability varies widely among
proteins in a cell, and a global assessment of gene-expression
control revealed that cell-surface proteins have rather stable
mRNAs but high protein turnover rates (44). In a recently
published dataset with protein turnover rates for surfaceome
proteins (45), we found half-lives for ∼300 surfaceome members.
A comparison of the half-lives of surfaceome proteins to those of
transcription factors or to all proteins measured revealed sig-
nificantly lower half-lives for the surfaceome proteins (Fig. 2G).
The set of 300 surface proteins for which data were available

represents only 10% of the surfaceome, but their higher turnover
rates are in line with the findings of Schwanhäusser et al. (44)
and support the hypothesis that high surfaceome turnover rates
reflect the cellular ability to react quickly to extracellular stimuli.

Cell-Surface Phenotyping Using Transcriptome Data. The availability
of our predicted surfaceome set enables analyses of surfaceomes
across cell types and states. Even though quantitative proteomic
data can provide information about the actual abundance of a
protein of interest in a specific subcellular location, the high dy-
namic range of protein abundances typically hinders the identifi-
cation of low-abundance proteins (46). Transcriptome data are
more likely to include genes expressed at low levels due to the PCR
amplification step and could therefore provide a blueprint of sur-
faceome candidates present in a specific cell type that could then be
investigated further by more sensitive targeted proteomics methods
such as selected reaction monitoring/parallel reaction monitoring
(PRM) (47) and/or untargeted data-independent acquisition (DIA)
of all theoretical fragment ion spectra mass spectrometry analyses
(48) or biochemical methods.
To assess the overall variability of surfaceome across different

cell types, we matched the surfaceome with transcriptome data
from 610 cancer cell lines (49). We found that 2,331 surfaceome
genes (of 2,704 matched IDs) were expressed in at least one cell
line. Of the 373 surfaceome genes (13%) that were not expressed
in any of these cell lines, the majority (297) encode olfactory
receptors. The number of surfaceome genes expressed in indi-
vidual cell lines ranged from 543 to 1,100 (Fig. 3A). The number
of CD genes expressed varied from 74 to 196. Interestingly,
lymphoid cells had a substantially less diverse surfaceome ex-
pression profile than cells from other tissues (Fig. 3 A and C).
Lung and neuronal cells were among the cell types with the most
diverse surfaceome profiles. The size of the surfaceome was
correlated with the sum of expression levels of all surfaceome
genes (Fig. 3A), even though the sum of all expressed genes was
rather constant across cell lines (SI Appendix, Fig. S5). There was
not a significant correlation between the size of the surfaceome
and the physical size of the cell (Fig. 3D). Notably, the distri-
bution of expression levels of surfaceome genes per cell line was
relatively constant (Fig. 3B). This means that, independent of the
size of the surfaceome (i.e., the number of different surfaceome
genes expressed) (Fig. 3A), the median amount of mRNA mol-
ecules encoding for surfaceome genes stayed constant (Fig. 3B).
It should be noted that gene expression numbers do not neces-
sarily translate into quantity of protein at the cell surface due to
coexisting intracellular protein pools. Nevertheless, single genes
can vary substantially in their gene expression level from cell line
to cell line, as exemplified by PD-L1 (Fig. 3E).
To investigate how specific the expression of cell-surface

proteins is to individual cell types, we counted for each surfa-
ceome member in how many different cell lines it was expressed.
The occurrence of expressed surfaceome genes over the 610 cell
lines showed a sigmoidal shape, with many genes only expressed
in one cell line (23%; 500 genes) and only 10% of genes
expressed in every cell line (240 genes) (Fig. 3F and Dataset S1,
11.10). This distribution pattern shows that the surfaceome is
highly cell-line-specific, even compared with other gene sets that
are thought to be cell-type specific. For example, 44% of tran-
scription factors are expressed in each of the 610 cell lines (SI
Appendix, Fig. S6). To investigate functional differences between
ubiquitously expressed and cell-type-specific expressed genes, we
grouped them based on frequency of expression across the cell
lines evaluated (Fig. 3F and Dataset S1, 11.10). Group 1 has
relatively low median gene expression levels (0.77 log2 RPKME;
SI Appendix, Fig. S7), but, if proteins are detectable at the cell
surface, these proteins could serve as cellular markers. Group
5 genes are expressed in most cell lines (Fig. 3F) and are gen-
erally more strongly expressed (4.14 log2 RPKME; SI Appendix,
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Fig. S7). We refer to this group of genes as surfaceome
“housekeeping” genes (Dataset S1, 11.10). Functional annota-
tion revealed many receptors, especially GPCRs, in group 1,
whereas in group 5, many proteins are unclassified. Surfaceome
genes between groups 1 and 5 were evenly divided in three
groups (groups 2, 3, and 4; Fig. 3F), but did not differ drastically
in terms of their functional annotations. In summary, we show
that integrating the surfaceome set with complementary data
results in cell-type-specific surfaceome landscapes and allows for
the identification of a small testing set of candidates for cell-line-/
type-/state-specific cell-surface markers. However, selected candi-
dates based on mRNA expression levels still need to be validated
on the protein level, since correlation between mRNA expression
and protein expression can be rather poor, as discussed later.

Surfaceome Genes Allow for Cell-Line Classification. To test the
hypothesis that the surfaceome contains information about cel-
lular identity, we performed a principal component analysis with

the expressed surfaceome genes of the 610 cell lines (SI Ap-
pendix, Fig. S8). This analysis revealed that the lymphoid cells
(light green) and the lung cells (light blue) are clearly separated
from the other tissues. The remaining tissue types are less clearly
separated from each other; however, many of them group to-
gether [i.e., skin cells (light brown) and head–neck cells (or-
ange)]. To more specifically compare and visualize the functional
differences of cell-type-specific surfaceomes, we assembled them
in a Voronoi tree map. Proteins were hierarchically grouped by
functional classification and colored according to their expres-
sion levels. This allowed identification of cell-specific gene
modules, as demonstrated in Fig. 4. In the Voronoi tree map of
the B-cell line RAMOS, the concerted expression of MHC class
I proteins was immediately detectable (Fig. 4A), suggesting the
identity of a B-cell line without consultation of orthogonal data.
In the colorectal carcinoma cell line HT-29, the cluster of
expressed Integrins was apparent (Fig. 4B), which correlates well
with the adhesive behavior of these cells (50). In the neuroblastoma
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cell line IMR-32, the majority of tetraspanin was expressed, which
has been proposed to influence cancer invasion and metastasis (51).
Our online tool allows creation of Voronoi tree maps for user-

defined surfaceome interrogation (wlab.ethz.ch/surfaceome).
Input data are mapped onto the functionally annotated in silico
surfaceome for immediate visualization of coregulated proteins.

Surfaceome Adaptation During Neurogenesis. The quest to find
accurate cell-surface markers for the identification and classifi-
cation of stem and progenitor cells at various differentiation
stages remains a high priority in the field of stem-cell research.
To determine whether surfaceome analysis could be used to aid
in classification, we analyzed surfaceome gene expression in a
transcriptional dataset of human embryonic stem cells (hESCs)
and neural progenitors at various stages of differentiation (52).
The number of surfaceome genes expressed varied from 1,610 to
1,700 (Fig. 5A). Interestingly, this was substantially higher (by
∼50%) than in any of the 610 cancer cell line transcriptomes
analyzed. This finding is in line with a previous study showing
that cancer cells harbor a reduced protein repertoire compared
with primary cells (53).
We hypothesized that the onset of neurogenesis should be

reflected in the surfaceome. The number of different surfaceome
genes expressed remained relatively constant over time, but the
amount of total surfaceome-coding mRNA synthesized in-
creased between day 12 and 16, which possibly reflects a boost in
proliferation (Fig. 5A). Li et al. termed this stage the neural

progenitor cell (NPC) proliferation state (52). Furthermore, we
soft-clustered the expression profiles of surfaceome genes and
found five clusters (Fig. 5C and Dataset S1, 11.11). Functional
annotation of the clustered genes revealed that cluster 1 contains
an enrichment in genes coding for axon guidance and synapse
formation. Cluster 1 surfaceome genes are most strongly expressed
on day 0, which suggests that already hESCs are expressing genes
for neurogenesis. Cluster 2 harbors gene-expression profiles for
proteins involved in migration. An increased number of genes
involved in neurotransmitter channel (namely, the GABA recep-
tors) and ion transport was found in cluster 3, and in cluster 4,
expression profiles of genes encoding for proteins involved in
neurogenesis and neural migration were gathered. Surfaceome
genes grouped in cluster 5 showed an enrichment in channels,
transporter, and adhesion functionality, possibly reflecting the
outgrowth of axons and increased attachment to the extracellular
matrix (Fig. 5C).
To compare the surfaceome of undifferentiated cells (day 0)

to a surfaceome of a progeny (day 22), we created a Voronoi tree
map of expression differences (Fig. 5D). Since gene entries in the
Voronoi tree map are grouped based on their assigned functions,
strong up- or down-regulation of functional groups are revealed
and suggested to be coregulated. For example, several gap
junction proteins (GJA1, GJB2, and GJB3), known to be major
mediators of cell–cell communication during embryogenesis
(54), were strongly expressed at day 0 and decreased with in-
creased differentiation (Fig. 5 B and D).
The in silico surfaceome advances the quest for stem cell

markers, since it identifies protein candidates that are directly
accessible from the extracellular space and could be used as
stem-cell-specific markers. In addition, surfaceome genes that
display similar expression profiles could occur in a functionally
relevant signaling synapse and directly reveal cell-surface inter-
actions (49). Such nanoscale information about the surfaceome
will allow informed development of multivalent affinity binders
for highly specific targeting and enrichment of stem cells and
their derivatives.

Discussion
SURFY Accurately Identifies Cell-Surface Proteins. By integrating
annotation, experimental evidence, and computational methods,
we generated a surfaceome-specific protein classifier termed
SURFY. SURFY, with an accuracy of 93.5% based on a random
forest model analysis of training sets, clearly outperformed other
location prediction tools (YLoc: 62.2%; MemLoci: 77.8%) (13,
15) as well as TMHMM (3) and SignalP (55) used in combina-
tion with subcellular localization databases (19, 56). SURFY is
an approach for subcellular localization prediction based on a
number of biologically relevant features and consideration of
TM topologies. Within the human proteome of 20,193 proteins
(UniProt version 2015_01), SURFY classified 2,756 ɑ-helical
TM proteins as located and exposed at the cell surface. The
addition of 130 currently annotated GPI-anchored proteins
resulted in a 2,886-protein surfaceome, which corresponds to
14.3% of the entire human proteome.

Distinguishing Features of Cell-Surface Proteins. The predictive ac-
curacy of SURFY is achieved by the combination of five dis-
criminative features. The individual sequence- and topology-based
features alone are insufficient for proper classification of surface
proteins. Nevertheless, these five features harbor notable bi-
ological relevance for cell-surface proteins. The first distinguishing
feature is the N-X-S/T sequence motif. N-glycosylation within this
motif plays an important role in functions of many surface proteins
(57), but not every sequence motif isN-glycosylated (58). We show
that this N-glycosylation sequence motif is 3.5-fold enriched in
extracellular domain sequences compared with sequences of in-
tracellular proteins or intracellular domains of surface proteins. In
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absolute terms, there are on average an additional 1.05 N-X-S/T
motifs per 100 amino acids in extracellular domains than in in-
tracellular proteins. Under the assumption that the 0.42 motifs per
100 amino acids in nonsurface proteins represents the frequency
of unoccupied motifs and the increase by 1.05 motifs in the ex-
tracellular domains represent the frequency of occupied motifs,
we can conclude an N-glycosylation site occupancy of 71%, which
is in good agreement with a previous analysis on a smaller dataset,
reporting 65% site occupancy (59).
The second distinguishing feature of surface-protein extra-

cellular domains is the increased frequency of cysteine residues
(3.4% compared with 2.3% proteome-wide). This presumably
reflects the fact that disulfide cross-links are vital for folding
surface proteins into their native conformation and for their
structural stability (60).
The third feature is the presence of a possible C-glycosylation

site. The biological function of C-glycosylation is unknown, and
only 17 human proteins are annotated with this modification so far
(UniProtKB version 2015_01). That 1,070 surface proteins and
only 35 nonsurface TM proteins had at least one predicted non-
cytoplasmic C-glycosylation site clearly indicates an extracellular
function of this modification or the underlying predicted motif.
The final two distinguishing features of surface proteins are

length and number of TM domains. We found that α-helical TM
domains of surface proteins are on average 1 amino acid longer

than nonsurface proteins. It has been reported that ɑ-helical TM
domains of human plasma membrane proteins are on average
∼4 amino acids longer and also less bulky than proteins localized
to the endoplasmic reticulum or Golgi (61). Sharpe et al. (61)
restricted their analysis to single-pass TM proteins, where the
differences in TM domain structure are expected to be more
pronounced than those we observed. Cholesterol is known to
increase the thickness of lipid bilayers and is the reason that
the plasma membrane is thicker than endoplasmic reticulum or
Golgi membranes. A difference in thickness is also observed
between cholesterol-enriched domains (e.g., lipid rafts) and
disordered regions within the plasma membrane (62). Our ran-
dom forest approach could be expanded to explore potential
correlations with TM domain size and lipid raft localization. The
number of TM domains of surface proteins displays a clear bias
toward 7- and >10-TM domains, reflecting cell-surface-related
functions from GPCRs, as well as transporters and channels,
maintaining cellular metabolism.

Proteins Not Included in the in Silico Surfaceome. The surfaceome
predicted by SURFY shows all known cell-surface protein
groups. It encompasses virtually the complete set of receptor
proteins; the only exceptions are some small groups of in-
tracellular receptor proteins. All but 3 of the 804 GPCRs, a class
of proteins which is a major target for drugs (63), are found in
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the in silico surfaceome. Inherent to every prediction is that a
certain cutoff has to be selected as a tradeoff between sensitivity
and specificity. The presented in silico surfaceome was defined
with an estimated 5% FPR. To better understand the FPR, we
took a closer look at the 33 proteins within the negative training
set that have high SURFY scores, qualifying them as surface
proteins and presumably false-positive hits. However, current
versions of UniProt and COMPARTMENTS annotations in-
dicate that some of them (namely, LRRT1, SE6L1, TM130,
TMM59, and TPC2) are expressed at the cell surface, indicating
that our FPR estimate of 5% is rather conservative. We also
found that a few proteins known to localize to the cell-surface
proteins scored below the threshold and are thus not predicted
to be at the cell surface. An example is TFR1 (score 0.3272).
TFR1 has a large extracellular domain and also N-glycosylation
sites, but the frequency of N-glycosylation sites (0.69) and of
cysteine (1.1) per 100 noncytoplasmic amino acids is low, and its
TM domain is rather short (18 amino acids). The combination of
these features resulted in a low SURFY score. The frequency of
noncytoplasmic N-glycosylation sites is the most discriminant
feature of the SURFY algorithm since the majority of surfa-
ceome proteins are indeed glycosylated (57). Proteins with no
noncytoplasmic N-X-S/T motif are not likely to score as surfa-
ceome proteins (as was the case for CD3e); however, the in silico
surfaceome contains 59 proteins without the N-X-S/T motif.
Based on the different assessments with known protein groups
(i.e., CD proteins and receptors) and the characteristics of the
predicted surface proteins, we are confident that the surfaceome
encompasses to the most complete and most correct list of cell-
surface proteins reported so far.

The Expressed Surfaceome. By matching the surfaceome to the
transcriptional profile of 610 cancer cell lines, we showed that
2,331 predicted cell-surface proteins are expressed in at least one
cell line, and the majority of surfaceome genes that are not
expressed in the cell lines analyzed encode olfactory receptors.
Deep surfaceome profiling using CSC technology identified
507 surfaceome proteins on HeLa cells (Dataset S1, 11.8),
whereas RNA-sequencing data indicated that 801 surfaceome
genes are expressed (49). Surface proteins identified by CSC dis-
played generally a stronger expression at the mRNA level, in-
dicating that surfaceome genes with low expression are below the
current detection limit of mass-spectrometry-based methods (SI
Appendix, Fig. S9). Surfaceome gene expression analysis therefore
has the possibility to identify low-abundance cell-surface proteins
to target them by more sensitive approaches (like PRM or DIA).
Care must be taken when translating gene expression levels

into cell-surface protein abundance. Although it has been shown
that this derivation is possible with a gene-specific conversion
factor (64), it was also demonstrated that the mRNA–protein
correlation is less accurate for cell surface than for cytoplasmic
proteins (44). The comparison of abundance of surfaceome
proteins from the quantitative proteome of Beck et al. (65) with
gene expression data from Klijn et al. (49) showed only a low
correlation (SI Appendix, Fig. S10). In addition, the total protein
pool of a cell-surface protein can differ from its actual abun-
dance at the cell surface. For example, the glucose transporter
GTR4 is stored in vesicles and only transported to the cell sur-
face after insulin stimulation (66). Based on mRNA expression
levels from a large screen, SURFY allows for the selection of a
small set of cell-specific precandidates, which are feasible to
validate on the protein level.
Interestingly, certain surfaceome proteins are expressed on

literally every cell line (231 proteins) or only on a single or very
few cell lines (529 proteins) (Dataset S1, 11.10). We hypothesize
that the group of constitutively expressed proteins are encoded
by surfaceome housekeeping genes. These genes are expressed at
substantially higher median expression over all cell lines than are

those genes that encode surface proteins expressed by very few
lines (SI Appendix, Fig. S7). If the housekeeping surfaceome
proteins show stable abundance at the cell surface, they could
serve as a basis for normalization in absolute quantitative sur-
faceome proteotype screens.
In summary, we have presented a comprehensive description

of the in silico human surfaceome. This public resource of
2,886 proteins can be used to query proteotype and tran-
scriptomic datasets for context-dependent biomarkers and drug-
target candidates (19, 56). Furthermore, the in silico surfaceome
will provide a guiding role in future studies assessing the plas-
ticity and response of the cell-surface proteome to differentia-
tion, perturbations, or other cellular processes. The recently
published GeneGini coefficient to compare expression levels will
be a helpful tool for such surfaceome studies (67). To interrogate
the in silico surfaceome, we developed a publicly accessible
online tool enabling the interactive visualization of quantitative
surfaceomes based on a preconfigured Voronoi tree map. The
surfaceome website allows for quantitative visual comparison of
expressed surfaceomes on static background Voronoi tree maps
and will provide insights into the systemic and dynamic response
of a cell’s surfaceome to perturbations or drugs (wlab.ethz.ch/
surfaceome). The human in silico surfaceome will further pro-
vide the basis for dynamic interactome studies to decipher cell-
surface-specific proximal interaction networks and cellular
nanoscale organization, deepening our understanding of how
cells sense and communicate with their microenvironment. The
computational machine-learning strategy shown here could also be
developed further to enable new insights into model organism
surfaceomes.

Methods
Consolidating TM Topologies for the Human Membrane Proteome. The basis
and reference for the presented human surface proteome analysis was the
human proteome in UniProtKB/Swiss-Prot (Version 2015_01) (68). We first
matched the 8,010 human peptides from the CSPA to the reference proteome,
generating a list of constraints for the topology of a total of 1,387 proteins
by enforcing identified N-glycosylation sites to be noncytoplasmic. Additional
details can be found SI Appendix, SI Methods.

Defining Training Sets for Predictive Modeling. The positive training set was
composed of human ɑ-helical TM domain-containing proteins appearing in
at least two of the following three datasets: (i) the “high confidence” subset
of the CSPA containing 735 proteins, (ii) the UniProtKB/Swiss-Prot (Version
2015_01) containing 2,043 proteins attributed with the “cell membrane”
keyword, and (iii) the subcellular localization database COMPARTMENTS
(69) containing 826 high-confidence plasma membrane proteins (five stars),
which belong to the COMPARTMENTS inherent “plasma membrane” posi-
tive benchmark set and also belong to the COMPARTMENTS inherent neg-
ative benchmark sets for each of the remaining subcellular locations (all but
“extracellular space”). Additional details can be found in SI Appendix,
SI Methods.

Derivation of a Numerical Feature Vector for Each Protein. Numerical features
were defined as follows for each topological domain (cytoplasmic, non-
cytoplasmic, TM, and signal peptide, if applicable): amino acid frequencies;
the number, average length, and relative fraction of ɑ-helical TM regions; the
presence of and average length of a signal peptide; and the relative fraction
of cytoplasmic and noncytoplasmic regions. Additional details can be found
in SI Appendix, SI Methods.

Supervised Learning and Predictive Modeling of Human Cell-Surface Proteins.
We chose the random forest algorithm (70) as implemented in the “ran-
domForest” package (71) of the statistical computing environment R (Ver-
sion 3.1.0) (72) for supervised, binary classification. Additional details can be
found SI Appendix, SI Methods.
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