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Abstract

Background: Initial insights into oncology clinical trial outcomes are often gleaned manually 

from conference abstracts. We aimed to develop an automated system to extract safety and efficacy 

information from study abstracts with high precision and fine granularity, transforming them into 

computable data for timely clinical decision-making.

Methods: We collected clinical trial abstracts from key conferences and PubMed (2012–2023). 

The SEETrials system was developed with three modules: preprocessing, prompt engineering with 

knowledge ingestion, and postprocessing. We evaluated the system’s performance qualitatively 

and quantitatively and assessed its generalizability across different cancer types— multiple 

myeloma (MM), breast, lung, lymphoma, and leukemia. Furthermore, the efficacy and safety 

of innovative therapies, including CAR-T, bispecific antibodies, and antibody-drug conjugates 

(ADC), in MM were analyzed across a large scale of clinical trial studies.

Results: SEETrials achieved high precision (0.964), recall (sensitivity) (0.988), and F1 score 

(0.974) across 70 data elements present in the MM trial studies Generalizability tests on four 

additional cancers yielded precision, recall, and F1 scores within the 0.979–0.992 range. Variation 

in the distribution of safety and efficacy-related entities was observed across diverse therapies, 

with certain adverse events more common in specific treatments. Comparative performance 

analysis using overall response rate (ORR) and complete response (CR) highlighted differences 

among therapies: CAR-T (ORR: 88 %, 95 % CI: 84–92 %; CR: 95 %, 95 % CI: 53–66 %), 

bispecific antibodies (ORR: 64 %, 95 % CI: 55–73 %; CR: 27 %, 95 % CI: 16–37 %), and ADC 

(ORR: 51 %, 95 % CI: 37–65 %; CR: 26 %, 95 % CI: 1–51 %). Notable study heterogeneity was 

identified (>75 % I2 heterogeneity index scores) across several outcome entities analyzed within 

therapy subgroups.

Conclusion: SEETrials demonstrated highly accurate data extraction and versatility across 

different therapeutics and various cancer domains. Its automated processing of large datasets 

facilitates nuanced data comparisons, promoting the swift and effective dissemination of clinical 

insights.

Keywords

Oncology clinical trial; Automated safety and efficacy extraction; Large scale analysis; 
Conference abstracts; GPT-4; Large language models

1. Introduction

Multiple myeloma (MM) remains an incurable malignancy, marked by elevated rates 

of relapse and therapy resistance despite significant advancements in treatment options 

and survival rates over the last 15 years [1]. Furthermore, the introduction of numerous 

new therapies has led to uncertainty in therapy selection and sequencing, compounded 

by limited consensus guidelines and recent systematic literature reviews [2, 3]. Effective 
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clinical decision-making is supported by a robust evidence base, typically sourced from 

clinical trials [4]. The prompt dissemination of clinical trial findings, including both risks 

and benefits, is fundamental for informed patient care [5] and crucial in refining patient 

recruitment strategies for subsequent trial phases—particularly in urgent medical fields like 

oncology [6].

Conference abstracts often serve as crucial sources of initial findings, unveiling clinical trial 

results and providing insights into the efficacy and safety of investigational treatments. 

Yet, the initial disclosures via conference abstracts present retrieval and integration 

challenges, with over half of study outcomes and nearly a third of randomized trial 

results from these abstracts not advancing to full publication [7–9]. In addition, publication 

bias disproportionately excludes “not positive, positive but not statistically significant, 

or negative” results [10,11] despite their critical influence on clinical decision-making. 

Recognizing these issues, extracting data from both journal articles and conference abstracts 

is essential for thorough evidence synthesis and for facilitating robust comparisons. 

Nevertheless, the extraction of clinical outcomes for large-scale analysis can be formidable 

when relying solely on manual methods.

In the following chapters, we will review related work for automatic data extraction, outline 

the main contributions of our study, describe the methods for data collection, SEETrials 

system development, evaluation, and data analysis, and discuss results.

2. Literature review

Advancements in Natural Language Processing (NLP) have notably enhanced medical 

research by enabling the automatic extraction of data from unstructured texts [12–14]. 

Recently, large language models (LLMs) have demonstrated exceptional proficiency in 

contextual understanding and textual data processing [15–17]. Various LLMs, including 

generative pre-trained transformer (GPT) models, have been examined for information 

extraction from radiology clinical documents including tumor size, type, and status of 

invasion or metastasis [18–21], as well as for extracting social determinants of health 

[22], cognitive exam dates and scores [23], substance use disorder severity [24], and rare 

disease symptoms and signs [25]. In the clinical trial domain, LLMs show promise in 

trial information retrieval [26], criteria text generation [27], and clinical trial eligibility 

criteria analysis [28]. Several studies have explored the capability of LLMs in the automated 

extraction of treatment safety and efficacy outcome information [29–32] as summarized 

in Table 1. For instance, Tang et al. [29] and Kartchner et al. [32] extracted the study 

design, disease characteristics, intervention, comparator, and outcomes. Wang et al. [30] 

extracted treatment efficacy outcomes as part of an automated systematic literature review 

system, which included query expansion, article screening, data extraction, and data analysis 

modules. Although these studies demonstrated the potential of automatic data extraction 

and evidence generation in complicated clinical trial studies, the model performances, 

especially in extracting outcome data elements, need improvement. Gartlehner et al. [31] 

showed a high accuracy of 96.3 % with an F1 score of 0.98 in extracting trial study 

design and treatment outcome data elements, but this was tested in only 10 studies as 

a proof-of-concept. Moreover, the application of LLMs to extract comprehensive clinical 
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trial study design and treatment outcomes from conference abstracts, especially with tables, 

remains largely unexplored.

In this study, we present “SEETrials,” an LLM-based pipeline specifically designed 

to automatically extract detailed safety and efficacy outcome information. The main 

contributions of our study are summarized below.

1. Our SEETrials system automatically extracts detailed safety and efficacy 

outcome information with fine granularity and high accuracy across all data 

elements through prompt engineering, converting it into a computable format 

to facilitate downstream data analysis. This includes handling data extraction 

from tables, a critical capability that not only applies to conference abstracts but 

can also be lever-aged for extracting data from multiple tables within full-text 

articles.

2. By focusing on MM clinical trials and concentrating on three recent classes 

of interventions including chimeric antigen receptor T cell (CAR-T) therapy, 

bispecific antibodies (BsAbs) therapy, and antibody-drug conjugates (ADC) 

studies, we demonstrate the practical utility of our approach in enhancing clinical 

evidence generation for decision-making.

3. Our system shows its applicability across various cancer trial studies including 

both solid and blood cancers.

3. Materials and methods

3.1. Data

For the model development, evaluation, and data analysis, we collected a total of 245 

MM clinical trial abstracts (2012–2023) from various drug groups, focusing on five 

different therapies. The sources included the American Society of Clinical Oncology 

(ASCO: https://ascopubs.org/jco/meeting), American Society of Hematology conferences 

(ASH: https://ashpublications.org/blood/issue/142/Supplement%201), and PubMed (https://

pubmed.ncbi.nlm.nih.gov/) websites. The selection was based on keywords (“clinical trial” 

AND “each therapy”).

The therapies covered in this study are 1) chimeric antigen receptor T cell (CAR-T) therapy 

2) Bispecific Antibodies (BsAbs) therapy 3) Antibody-drug conjugates (ADC) therapy 4) 

Others including Cereblon E3 ligase modulator therapy (CELMoD), Histone deacetylase 

inhibitor (HDACi) and immune checkpoint inhibitors (ICI). The breakdown of abstract 

numbers for each therapy and phase is presented in Supplement Table 1.

Of these, 93 abstracts concerning CAR-T, BsAbs, and ADC therapies were earmarked 

for in-depth quantitative comparison analysis. Exclusion criteria included studies without 

reported outcomes or those superseding initial results with expanded trial cohorts. A manual 

review was conducted to validate the extracted data for quantitative analysis.

An additional 115 abstracts across four other cancers—breast, lung, lymphoma, and 

leukemia—were collected to assess the system’s generalizability. This included acute 
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lymphocytic leukemia (7), acute myelocytic leukemia (6), chronic lymphocytic leukemia 

(7), and chronic myeloid leukemia (5).

3.2. SEETrials

We developed SEETrials using GPT-4 to extract clinical trial details from annual conference 

presentations and published journal abstracts. The system’s architecture is delineated in Fig. 

1, with each step detailed below. In summary, SEETrials is comprised of three modules, 

preprocessing, prompt engineering, and post-processing.

3.2.1. Pre-processing—This initial module is responsible for the systematic collection 

of abstracts from the ASCO and ASH conferences, as well as the PubMed database. 

Notably, annual conferences like ASCO and ASH permitted the inclusion of table-format 

data within abstracts. Within this stage, any tables present in the conference abstracts are 

meticulously converted to a text format to facilitate further analysis.

3.2.1.1. Abstract collection.: PubMed enabled direct saving in text format. Abstracts from 

ASCO and ASH websites were initially captured in a Word file and then converted to a text 

file (UTF-8) to facilitate the loading of a substantial number of abstracts for automated data 

extraction.

3.2.1.2. Automatic table organizer.: To address the formatting challenges posed by 

documents containing tables (e.g., misaligned or unorganized tables), we introduced an 

“Automatic Table Organizer” step. This step realigns the columns and rows to ensure the 

tables are properly formatted.

3.2.1.3. Preparation of two abstract sets for one abstract with table.: After running 

the Automatic Table Organizer, we prepare two sets of abstracts for input into our GPT 

system: one set includes the organized tables and the other excludes the tables. This dual 

input enhances the accuracy of data extraction from both main text and tables.

3.2.2. Prompt engineering—The module focuses on creating tailored prompts that 

enable the comprehensive and precise extraction and consolidation of data. These prompts 

are designed to guide the LLM in effectively identifying and merging relevant trial 

outcomes.

3.2.2.1. Knowledge ingestion.: Prompts in specific areas often benefit from incorporating 

background knowledge within the prompt. To enhance the LLM’s analytical capabilities, 

we integrated background knowledge from oncology clinical trials such as definitions and 

examples of safety and efficacy outcomes into the prompt. Subject experts in this study 

encompassed various tasks: 1) identifying types of treatment efficacy and safety entities in 

cancer clinical trials, 2) formulating descriptions for the entire cohort, sub-cohorts, and each 

arm for different interventions or dosages specified in the prompts, 3) ensuring the clinical 

accuracy of the prompts, 4) providing feedback for prompt adjustments/calibration, and 5) 

manually reviewing system output to establish the gold standard for system validation.
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3.2.2.2. Cohort/study group identification.: Clinical trial studies present various 

outcomes from different study groups, including the entire group, specific subgroups (e.g., 

those with specific biomarkers or risk factors), and individual cohorts. To enhance the 

accuracy of outcome extraction for each group, subgroup, and cohort, we employed two 

separate GPT prompts due to the token limit of the GPT-4 API model (8,192): one prompt 

for “Individual cohorts and entire group”. Another prompt for “ Individual cohorts and 

subgroup”

3.2.2.3. Combining process with two GPT outcomes.: To merge outputs from the 

“Individual cohorts and entire group” and “ Individual cohorts and subgroup”, we created 

an additional prompt. This prompt was designed to combine the extracted information and 

eliminate any overlaps, ensuring a comprehensive final output.

3.2.3. Post-processing—In the final post-processing module, the extracted outcome 

data are refined and structured to suit the requirements of subsequent data analysis tasks. 

This module addresses two key formatting challenges.

3.2.3.1. Handling undesired entity allocations.: Correct any undesired allocations of 

entities and their corresponding values in the outputs.

3.2.3.2. Handling multiple values in a single column.: In some cases, the value’s 

columns contained more than two values, like “9 patients (28 %). We try to ensure that 

each cell within the value’s column contains a singular value, optimizing the presentation for 

computational analysis.

3.3. Evaluation

The evaluation took place using two approaches: Quantitative and qualitative evaluation. For 

qualitative evaluation, predominantly appearing error types were evaluated. For Quantitative 

evaluation, precision, recall, and F1 scores as well as accuracy of SEETrials are reported for 

each abstract. Accuracy (Accuracy = TP + TN/TP + TN + FP + FN) measures the proportion 

of correct predictions, both True positive and True Negative. Precision ((Precision = TP/(TP 

+ FP)) is calculated as the ratio of correctly predicted positive entities to the total predicted 

positive entities. Recall, also known as sensitivity, is calculated as the ratio of correctly 

predicted positive entities to all actual positive entities (Recall = TP/(TP + FN)). The 

F1-score is the harmonic mean of precision and recall and is calculated using the formula: 

F1-score = 2 × ((Precision × Recall)/(Precision + Recall)). In these equations, TP stands for 

true positives, FP stands for false positives, and FN stands for false negatives.

3.4. Data analysis

In the descriptive data analysis, we extensively scrutinized the distribution of entities 

and provided a quantitative overview, encompassing both the absolute number and the 

percentage of abstracts where each entity is mentioned out of the total abstracts analyzed for 

each therapy. This analysis was performed in conjunction with the categorization of entities 

based on different trial phases.
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We also conducted the quantitative statistical analysis using R software (version 4.0.0), 

employing the meta, metasens, and metafor packages. A random-effects model was 

employed, weighting studies by the inverse variance method to favor large population 

studies. Logit transformations normalized the proportions of overall response rates (ORR), 

complete response (CR), Neutropenia (≥Grade 3), and Cytokine Release Syndrome (CRS) 

for effect size pooling. Subgroup analysis was performed for each therapy to investigate 

treatment effects comprehensively. Statistical heterogeneity among studies was assessed 

using the I2 inconsistency index and Cochran Q test. Effect sizes were reported with 95 % 

confidence to address variability. Two-sided P values with a significance level of P < 0.05 

determined statistical relevance.

4. Results

4.1. Evaluation of the SEETrials

Our SEETrials system demonstrated high precision, recall (sensitivity), and F1 scores, 

achieving overall metrics of 0.964, 0.988, and 0.974, respectively, across all trial phases. The 

overall accuracy was 0.952. Supplement Table 2 displays the average performance scores for 

both the overall dataset and each phase of the MM studies. Comprehensive details, including 

the performance scores for individual abstracts, as well as true positive, false positive, and 

false negative numbers, are provided in Supplement Table 3.

To further validate SEETrials across a broader range of cancer types, we implemented our 

system on clinical trial reports from four other randomly chosen cancer types, including both 

solid cancers (lung and breast) and hematologic cancers (lymphoma and leukemia). The 

average precision, recall, F1 scores, and accuracy were 0. 979, 0.992, 0.985, 0.971(breast 

cancer), 0.988, 0.984, 0.985, 0.972(lung cancer), and 0.983, 0.988, 0.985, 0.971(leukemia/

lymphoma), respectively. Supplement Table 4 presents the average performance scores for 

each cancer type, while Supplement Table 5 provides comprehensive details, including the 

performance scores for individual abstracts, along with the numbers of true positive, false 

positive, and false negative.

4.2. Qualitative error analysis

We conducted a qualitative error analysis on all documents with errors (68 from MM, 28 

from Leukemia/Lymphoma, and 35 from Lung/Breast cancer studies). We classified errors 

into three categories, including extraction failures, cohort recognition errors, and inaccurate 

extractions, and quantified. Extraction failure was the most common error across all cancer 

studies, occurring in 55.9 % (n = 38) of MM, 60.7 % (n = 17) of Leukemia/Lymphoma, and 

65.7 % (n = 23) of Lung/Breast cancer studies. Cohort recognition errors were found in 26.5 

% (n = 18), 25 % (n = 7), and 14.3 % (n = 5), respectively. Inaccurate extraction occurred 

in 17.6 % (n = 12), 14.3 % (n = 4), and 20.2 % (n = 7) of studies, respectively (Supplement 

Table 6). Notably, no instances of hallucination were observed during the data extraction 

process. Supplement Table 7 provides illustrative examples of cohort recognition errors. 

Clinical trial study abstracts often contain diverse clinical information for multiple cohorts/

arms, including dose-escalation, dose-expansion, recommended phase 2 dosage (RP2D) 

groups, entire groups, and subgroups. The system occasionally struggled to allocate values 
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correctly due to the lack of explicit descriptions in the text. Additional errors included 

extracting the author’s affiliation as the study location in PubMed abstracts, cohort size 

discrepancies, and occasional extraction of only percentage values without other relevant 

information. Improvements are needed for consistent value extraction and allocation.

4.3. Analyzing efficacy and safety data from abstracts

We extracted data from 130 abstracts related to CAR-T, 63 to BsAbs, 38 to ADC, 6 to 

CELMoD, 4 to HDACi, and 4 to ICI therapies. Among these, there were 75, 47, 46, 

and 16 abstracts corresponding to phases 1, 1/2, 2, and 3. 61 abstracts did not have 

phase information. The distribution of clinical trial phases in each therapy is detailed in 

Supplement Table 1. The complete list of extracted data elements from all studies is detailed 

in Supplement Fig. 1.

Fig. 2 visually summarizes frequently appearing efficacy and safety-related entity 

percentages across the three therapies, CAR-T, BsAbs, and ADC. We present a 

comprehensive breakdown of trial numbers and the percentages of each efficacy-related and 

safety-related entity out of all mentioned entities (Figs. 3 and 4, respectively) categorized by 

clinical trial phases (phases 1, 1/2, 2, and 3) for both efficacy and safety-related entities.

The ORR emerged as the most frequently reported entity in clinical trial abstracts, 

constituting 84.1 % in CAR-T, 77.4 % in BsAbs, and 78.6 % in ADC studies. CR was 

mentioned in 76.2 % of CAR-T and 45.2 % of BsAbs abstracts. Very good partial responses 

(VGPR) were mentioned in 57.1 % of ADC and 41.9 % of BsAbs abstracts (Supplement 

Table 8). Supplement Table 9 provides the percentage of abstracts mentioning each safety-

related entity, categorized by phases and therapies. For ORR, 41.5 %, 50.0 %, and 36.4 % 

were from phase 1 studies, and 15.1 %, 25.0 %, and 27.3 % were from phase 1/2 studies 

for CAR-T, BsAbs, and ADC, respectively. Similarly, for VGPR, 40.9 %, 61.5 %, and 25.0 

% were from phase 1 studies, and 31.8 %, 23.1 %, and 25 % were from phase 2 studies for 

CAR-T, BsAbs, and ADC, respectively.

In safety-related entity analysis, cytokine release syndrome (CRS) was prominently 

mentioned in CAR-T (86.7 % of abstracts) and BsAbs (70.4 % of abstracts) studies but 

not in ADC studies (0 %). Infection was frequently cited in BsAbs (51.9 %) compared 

to CAR-T (11.7 %) and ADC (0 %) abstracts. Conversely, thrombocytopenia was more 

commonly mentioned in ADC (55.6 %), compared to CAR-T (30 %) and BsAbs (33.3 

%). Notably, Fatal adverse events (AEs) or Severe AEs more prevalently appeared in ADC 

(44.4 % and 44.4 %, respectively) abstracts compared to CAR-T (21.7 % and 3.3 %) and 

BsAbs (29.6 % and 7.4 %) (Supplement Table 10). When assessing the percentage of 

abstracts mentioning each safety-related entity by phases and therapies (Supplement Table 

11), our data revealed that most safety-related entities such as CRS, neurotoxicity, and 

thrombocytopenia were mentioned more frequently in phase 1 studies compared to phase 1/2 

or phase 2 studies, except for fatal AEs in CAR-T (7.7 %, 30.8 %, and 38.5 %, respectively) 

and BsAbs (12.5 %, 37.5 %, and 37.5 %, respectively).

For the comparative analysis of treatment outcome values among CAR-T, BsAbs, and ADC 

therapies, we included a total of 93 distinct studies identified using NCT IDs. For studies 
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lacking NCT IDs, we manually examined the authors, their affiliations, and study titles. 

Of these, 87 were included in the efficacy comparison and 74 were included in the safety 

comparison. Supplement Table 12 provides a detailed breakdown of the trial numbers by 

therapies and phases. The degrees of study heterogeneity for ORR (I2 = 87 %, 97 %, and 96 

%, respectively) (Supplement Fig. 2A) and CR (I2 = 90 %, 91 %, and 94 %, respectively) 

(Fig. 4B) were high (over 75 %) in all three therapies even after categorized by phases 

for ORR (Phase 1: I2 = 81 %, 76 %, and 85 %; Phase 2: I2 = 88 %, 97 %, and 95 %, 

respectively) (Fig. 5A and B) and for CR (Phase 1: I2 = 87 %, 39 %, and 96 %; Phase 2: I2 

= 91 %, 96 %, and NA, respectively) (Fig. 5C and D) except phase 1 BsAbs studies (I2 = 39 

%). The 95 % CIs of estimated ORR and CR were 84–92 % and 53–66 % (CAR-T), 55–73 

% and 16–37 % (BsAbs), and 37–65 % and 1–51 % (ADC). We conducted a similar analysis 

on CRS (including studies mentioning all grades but excluding studies only mentioning 

grade ≥ 3) and Neutropenia grade ≥ 3 for each therapy. The 95 % CIs of estimated CRS 

and grade ≥ 3 neutropenia were 64–86 % and 65–93 % (CAR-T), 51–74 % and 38–55 % 

(BsAbs), and N/A and 2–29 % (ADC). The results were visualized in Supplement Figure 3 

(overall) and Fig. 6(for phases 1 and 2) (see Fig. 6).

5. Discussion

Our knowledge-driven LLM system, SEETrials, demonstrated the capabilities of GPT-4 

in extracting and processing clinical trial data. The success of SEETrials in automatically 

identifying intervention outcomes and their associations with specific cohorts is underscored 

by robust performance metrics and speaks to the potential of LLMs to revolutionize data 

extraction from condensed and complex medical texts.

The system’s proficiency in handling data from annual conference abstracts is particularly 

noteworthy. These abstracts are often the first public report of a clinical trial’s findings and 

can influence clinical practice ahead of peer-reviewed publications. SEETrials’ capacity to 

process this information rapidly and reliably is invaluable, ensuring that the latest clinical 

insights are accessible to healthcare professionals and researchers without delay. During 

the validation phase, we observed that manually abstracting a conference proceeding takes 

approximately 30 min per abstract. For a large conference like ASCO, which features around 

7000 online abstracts—including approximately 1500 related to hematologic malignancies 

and over 500 focused on plasma cell dyscrasias—summarizing the plasma cell dyscrasia-

related abstracts alone would require around 250 h of manual effort. In contrast, SEETrials 

processes the same volume of information in just 3–6 min per abstract, depending on the 

presence of a table, resulting in more than 80%-time savings. On average, conducting a 

systematic literature review takes 17 months, with a range from 12 to 24 months [33], and 

the data extraction step, which is one of the most time-consuming parts of the process, 

could benefit significantly from automation. SEETrials also showcased the generalizability 

of a prompt initially tailored for specific cancer (i.e., multiple myeloma) to effectively 

extract trial information from diverse cancer types (breast cancer, lung cancer, and leukemia/

lymphoma) with consistently high-performance scores across various disease clinical trial 

studies (F1 scores within the 0.979–0.992 range). This enables uniform analysis of clinical 

trial outcomes across diseases. To our knowledge, this study pioneers exploring GPT-

powered models for comprehensive clinical trial outcomes extraction from diverse abstract 
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types, in addition to our previously established system “AutoCriteria”—a generalizable 

clinical trial eligibility criteria extraction system powered by a large language model [28].

Importantly, our study extends beyond mere data extraction. By conducting a comparative 

analysis of CAR-T, BsAbs, and ADC therapies specifically within MM clinical trials, we 

have gleaned insights into the varying safety and efficacy profiles across different treatment 

modalities and trial phases. The predominance of certain efficacy markers, such as ORR, 

in phase 1 trials underscores the importance of these early-phase trials in gauging initial 

treatment impact. Conversely, the emphasis on survival and treatment duration in phase 

2 trials highlights the shift towards understanding the long-term benefits and potential 

risks of therapies as they progress through the clinical trial pipeline. Our findings also 

align with existing literature, revealing consistent safety profiles in CAR-T, BsAbs, and 

ADC studies such as higher CRS rates in CAR-T therapy and infection rates in ADCs 

[34,35]. Understanding these outcomes’ variations across therapies and phases is crucial for 

contextualizing clinical trial results.

Moreover, our findings highlight a concerning trend: the increase in reports of fatal adverse 

events in later trial phases, particularly for CAR-T and ADC therapies. It suggests that 

early-phase studies may not fully capture the adverse event profile, especially for treatments 

with complex mechanisms of action or those applied to severely ill patient populations. This 

observation calls for a re-evaluation of safety monitoring protocols, especially as therapies 

advance beyond the dose-escalation stages. We also observed a higher number of abstracts 

mentioning fatal or severe AEs entities in ADC studies compared to CAR-T and BsAbs.

We noted significant variability in the effectiveness of the same treatments, even when 

categorized by phases, for outcomes such as Objective Response Rate (ORR), Complete 

Response (CR), Cytokine Release Syndrome (CRS), and neutropenia. A possible reason 

for the exceptionally low ORR observed in some Phase 1 studies may be attributed to 

combining data from different dosage groups, as indicated in the abstracts.

5.1. Limitations and future works

We recognize several limitations in our study. The exclusive focus on abstracts, while 

practical, limits the depth of our analysis. Critical nuances contained within full-text articles 

are often lost in abstracts, which could lead to incomplete or skewed understandings of 

the safety and efficacy profiles of therapies. Additionally, the omission of details such as 

prior treatment histories, specific high-risk patient groups, and biomarker statuses from 

our analysis may have prevented a fully informed assessment of the treatments’ impacts. 

Expanding the system’s capabilities to include full-text articles—particularly for extracting 

data from tables, detailed patient histories, and biomarker information—could significantly 

enhance the dataset and lead to more comprehensive insights.

Clinical trial reporting often contains conflicting information. To address this, we utilized 

SEETrials to analyze outcomes on a large scale, comparing results between preliminary 

conference abstracts and subsequent full publications. This approach could be crucial in 

evaluating the consistency and evolution of reported data [36], providing valuable insights 

for the medical community and shaping clinical decision-making. Furthermore, integrating 
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SEETrials’ extracted results with expert-curated databases like HemOnc could foster a 

collaborative approach to oncology data analysis, ensuring that the most relevant and 

accurate information is available to guide patient care and research [37]. Additionally, 

SEETrials can be integrated into existing clinical trial workflows by automating the data 

extraction process from systematic literature reviews to real-time analysis of ongoing 

clinical trials. In the pre-trial phase, SEETrials can assist with a comprehensive systematic 

literature review; during trials, it can be used to monitor safety profiles and efficacy trends 

through conference proceeding analysis; and in the post-trial phase, it can be used to 

generate evidence for regulatory submissions.

The extracted data can be integrated into a user-friendly interface for question-and-answer 

purposes, with the added functionality of generative LLMs to deliver up-to-date care 

information for clinical practice. To ensure interpretability and explainability of the model’s 

extractions, features can be implemented that allow users to trace data extractions back 

to specific text or table locations in the original abstracts. The interface can also present 

summarized results with visualized graphs, offering a comprehensive view of large volumes 

of data processed through the SEETrials pipeline. This would provide a powerful tool for 

enhancing the efficiency and accuracy of clinical decision-making and research.

SEETrials’ modular architecture supports flexible scaling. To ensure that SEETrials can 

handle large-scale deployment, across different deployment scenarios, the system needs 

to be tested on datasets comprising thousands of clinical trial abstracts from medical 

conferences. This is essential to verify its scalability while maintaining performance and 

accuracy.

6. Conclusion

We developed SEETrials, an LLM-based system for automatically extracting detailed safety 

and efficacy outcomes from oncology clinical trials, including those with complex data 

structures like tables. SEETrials demonstrated high accuracy (0.964), precision (0.964), 

recall (0.988), and F1 score (0.974) across 70 data elements in multiple myeloma trial 

studies, with strong generalizability across other cancer types.

Our analysis of CAR-T, bispecific antibodies, and ADC therapies revealed significant 

variations in treatment outcomes and identified notable heterogeneity across studies. 

SEETrials proves to be an efficient, accurate, and broadly applicable tool for enhancing 

clinical evidence generation and supporting decision-making in oncology research.
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Fig. 1. 
SEETrials system overview.

SEETrials is an autonomous system designed to extract critical details from clinical trial 

studies presented at annual conferences and published journal abstracts. Utilizing the 

capabilities of GPT-4, the system is delineated in subsequent sections, with a schematic 

overview of its components.

ASCO, American Society of Clinical Oncology; ASH, American Society of Hematology; 

LLM, Large language model; GPT, Generative Pre-trained Transformer; ORR, overall 

response rate; MRD, minimum residual disease.
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Fig. 2. 
The comparative landscape of efficacy and safety entities across CAR-T, BsAbs, and 

ADC therapies. This visual summary illustrates the percentages of 11 efficacy and 13 

safety-related entities across CAR-T cell therapy, BsAbs, and ADC therapies, providing 

a comprehensive overview of their comparative clinical profiles. A) Entities related to 

treatment effectiveness. B) Entities related to treatment safety.

CAR-T, chimeric antigen receptor T cell; BsAbs, Bispecific antibody; ADC, antibody-

drug conjugate; ORR, overall response rate; CR, complete response; VGPR, very good 

partial response; PR, partial response; PFS, progression-free survival; MRD, minimum 

residual disease; OS, overall survivor; DoR, duration of response; SD, stable disease; PD, 

progressive disease; TTR, time to response; MR, minimal response; TTP, time to progress; 

TTTD, time to treatment discontinuation; TTTF, time to treatment failure; TTNT, time to 

next treatment; DCR, disease control rate; CRS, cytokine release syndrome; Aes, adverse 

events; ICANS, immune effector cell associated neurotoxicity syndrome.
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Fig. 3. 
A detailed breakdown of abstract numbers with each efficacy-related entity (A, C, E) and 

percentages of each entity out of all mentioned entities (B, D, F) is presented, categorizing 

clinical trials into phases 1, 1/2, 2, and 3. A and B: CAR-T cell therapies. C and D: BsAbs 

therapies. E and F: ADC therapies.

CAR-T, chimeric antigen receptor T cell; BsAbs, Bispecific antibody; ADC, antibody-drug 

conjugate; ORR, overall response rate; CR, complete response; (VG)PR, (very good) partial 

response; PFS, progression-free survival; MRD, minimum residual disease; OS, overall 

survivor; DoR, duration of response; SD, stable disease; PD, progressive disease; TTR, time 

to response; MR, minimal response.
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Fig. 4. 
A detailed breakdown of abstract numbers with each safety-related entity (A, C, E) and 

percentages of each entity out of all mentioned entities (B, D, F) is presented, categorizing 

clinical trials into phases 1, 1/2, 2, and 3. A and B: CAR-T cell therapies. C and D: BsAbs 

therapies. E and F: ADC therapies.

CAR-T, chimeric antigen receptor T cell; BsAbs, Bispecific antibody; ADC, antibody-drug 

conjugate; CRS, cytokine release syndrome; Fatal AEs, fatal adverse events; ICANS, 

immune effector cell associated neurotoxicity syndrome; DLT, Dose Limiting Toxicity.
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Fig. 5. 
Combined and subgroup analysis of overall response rate and complete response based on 

therapies categorized in phase 1 and 2 trials. A. Overall response rates in phase 1 trial. B. 

Overall response rates in phase 2 trial. C. Complete response in phase 1 trial. D. Complete 

response in phase 2 trial. Horizontal lines through the squares indicate 95 % Confidence 

Intervals (CIs). The diamond symbol aggregates these estimates, presenting the pooled mean 

effect size and its 95 % CI. CAR-T, chimeric antigen receptor T cell; BsAbs, Bispecific 

antibody; ADC, antibody-drug conjugate.
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Fig. 6. 
Combined and subgroup analysis of cytokine release syndrome and neutropenia (≥Gr3) 

based on therapies categorized in phase 1 and 2 trials. A. Cytokine release syndrome in 

phase 1 trial. B. Cytokine release syndrome in phase 2 trial. C. Neutropenia (≥Gr3) in 

phase 1 trial. D. Neutropenia (≥Gr3) in phase 2 trial. Horizontal lines through the squares 

indicate 95 % Confidence Intervals (CIs). The diamond symbol aggregates these estimates, 

presenting the pooled mean effect size and its 95 % CI.CAR-T, chimeric antigen receptor T 

cell; BsAbs, Bispecific antibody; ADC, antibody-drug conjugate.
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Table 1

Summary of studies utilizing LLMs for automated data extraction of treatment safety and efficacy outcomes.

Author (Year) Extracted Data 
Elements

Input Data 
Format

LLM 
Models

Results

Tang et al. 
(2024)

Study details, 
intervention, 
comparator, and 
treatment outcomes

Text, 100 
abstracts of 
articles

GPT-3.5 and 
GPT-4

The average accuracy of GPT-4 ranged from 0.688 to 0.964
Low performance in intervention (0.688)

Kartchner et al. 
(2023)

Study details, 
intervention, disease 
characteristics

Text, Articles. ChatGPT 
and GPT-JT

ChatGPT (Accuracy: 0.141–0.956 for study details, 
interventions, disease characteristics data elements) 
outperformed GPT-JT in most data fields.
The average Precision, Recall, and F1 score were 
0.496, 0.431, 0.441, respectively Accuracy for some 
adverse event data elements was low (e. g., neutropenia, 
thrombocytopenia, adverse event grade)

Wang et al. 
(2024)

Treatment outcomes 
(7 efficacy related 
outcomes)

Text Table, 25 
full articles

GPT-4 and 
Sonnet

Established a customized TrialMind model. The accuracy 
of the TrialMind model ranges from 0.65 to 0.84 
in outcome extraction, indicating that extracting study 
outcome elements is challenging

Gartlehner et al. 
(2024)

Study details and 
treatment outcomes

Text, 10 articles Claude 2 An accuracy of 96.3 % with an F1 score of 0.98 across 10 
study reports

SEETrials Study details and 
treatment outcomes

Text & Table, 215 
conference and 
article abstracts

GPT-4 Established a customized SEETrials model.
The overall precision, recall, and F1 scores were 0.958, 
0.944, 0.951, respectively, across 70 data elements in MM 
studies. 
Generalizability tests across other cancers yielded 
precision, recall, and F1 scores within the range of 0.966–
0.986
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