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Abstract: An efficient method for the selective preparation of trifluoromethyl-substituted azepin-
2-carboxylates and their phosphorous analogues has been developed via Cu(I)-catalyzed tandem
amination/cyclization reaction of functionalized allenynes with primary and secondary amines.
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1. Introduction

Azepane and its functionalized derivatives are important structural motifs present
in variety of natural products and bioactive molecules with a wide range of medicinal
and pharmaceutical properties [1–8] including antidiabetic [9–11], anticancer [12–14], and
antiviral [15–17] activities, thus attracting a significant interest of the researchers in a new
lead compound discovery. The most cited example of a natural product containing an
azepane core is the fungal metabolite protein kinase inhibitor Balanol [18]. Additional ex-
amples of bioactive synthetic azepane-based compounds are depicted on Figure 1. Despite
remarkable efforts being made to develop efficient synthetic methods for these seven-
membered azacycles [19–31], slow cyclization kinetics have hindered the development of
robust methods for the direct construction of these medium-ring heterocyclic systems [32].
Therefore, the development of new effective strategies for the selective preparation of
azepane derivatives with unique substitution patterns is of great interest.
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seven-membered azacycles [19–31], slow cyclization kinetics have hindered the devel-
opment of robust methods for the direct construction of these medium-ring heterocyclic 
systems [32]. Therefore, the development of new effective strategies for the selective 
preparation of azepane derivatives with unique substitution patterns is of great interest. 
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Figure 1. Bioactive molecules containing azepane rings. 

On the other hand, organofluorine compounds are currently finding increasingly 
important applications in modern pharma, crop protection, and materials science [33–
38]. This fact stimulates synthetic chemists to develop new efficient methodologies for 
the selective introduction of fluorine and fluorinated groups into different organic mol-
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Figure 1. Bioactive molecules containing azepane rings.

On the other hand, organofluorine compounds are currently finding increasingly
important applications in modern pharma, crop protection, and materials science [33–38].
This fact stimulates synthetic chemists to develop new efficient methodologies for the
selective introduction of fluorine and fluorinated groups into different organic molecules. In
this context, fluorine-containing amino acids, especially their constrained cyclic derivatives,
attract a considerable interest as crucial targets in bioorganic and medicinal chemistry for
the design of potent and highly selective bioactive compounds [38–41].
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Recently, we have developed a convenient one-step protocol for the preparation of
functionalized allenes based on [2,3]-sigmatropic rearrangement of propargyl-containing
nitrogen ylides generated in situ from α-CF3-diazo compounds 1 (Scheme 1A) [42]. The
synthetic potential of 2 has been clearly revealed in their intermolecular transformation
under transition metal catalysis such as Cu(I)-catalyzed hydroamination [43] and Ru(II)-
catalyzed dimerization (Scheme 1B) [44]. In addition, allenynes 2 [R = −(CH2)nC≡CH]
have proved to be unique doubly unsaturated synthons to afford the bicyclic amino acid
derivatives via intramolecular Pauson–Khand [42] and [2+2]-cycloaddition [45,46] reactions
(Scheme 1C).
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According to our long-term program on the study of transition metal-catalyzed reac-
tions of unsaturated α-amino acid derivatives [47–54], now we want to disclose an efficient
approach to novel α-CF3-containing azepine-2-carboxylates and their phosphorous ana-
logues via a new type of catalytic allenyne transformation involved the combination of
intermolecular amine addition with intramolecular cyclization (Scheme 1D). To the best of
our knowledge, this reaction constitutes the first example of tandem amination/cyclization
of allenynes under metal-catalysis.

2. Results and Discussion

Given our recent finding that an allene system is readily capable of undergoing the
selective hydroamination with secondary and primary amines in the presence of copper
catalysts [41], we were curious to investigate what will happen with allenyne bearing
propargyl group with acidic proton on terminal triple bond under the similar catalytic
conditions. To answer this question, we began our study by testing the reaction between
allenyne 2a and aniline. Cationic Cu(I) complex Cu(MeCN)4PF6 was chosen as the most
competent catalyst for allene hydroamination process. Anhydrous THF, toluene, 1,2-
dichloroethane (DCE), and 1,4-dioxane were employed as the solvents. As a result, the
reaction was found to smoothly proceed in the presence of 10 mol% Cu(MeCN)4PF6 and
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2.0 equiv. of aniline in dioxane at 90 ◦C for 8 h to give an unusual azepine derivative 3a in
65% NMR yield (Table 1, entry 1).

Table 1. Optimization of amination/cyclization of allenyne 2a with aniline 1.
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Entry Amine
(Equiv.) Catalyst (mol%) Solv./Temp. (◦C) Time (h) Yield 2 (%)

1 2.0 Cu(MeCN)4PF6 (10) dioxane/90 8 65 (43 3)
2 2.0 Cu(MeCN)4PF6 (10) dioxane/90 16 60
3 2.0 Cu(MeCN)4PF6 (5) dioxane/90 8 35
4 1.5 Cu(MeCN)4PF6 (10) dioxane/80 8 77
5 1.5 Cu(MeCN)4PF6 (10) DCE/80 16 35
6 1.5 Cu(MeCN)4PF6 (10) toluene/80 16 43
7 1.5 Cu(MeCN)4PF6 (10) THF/70 16 75
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10 1.2 Cu(MeCN)4PF6 (10) dioxane/70 6 91 (65 3)
11 2.0 - dioxane/90 16 NR

1 Reagents and conditions: Allenyne 2a (0.2 mmol), solvent (3 mL). 2 Determined by 19F NMR spectroscopy. 3

Isolated yield.

A prolonged reaction did not lead to a better yield of the product, while causing
the formation of a small number of impurities (measured by 19F NMR spectroscopy).
The subsequent decrease of the catalyst loading to 5 mol% resulted in a notably lower
conversion of 2a affording 3a in 35% yield (entry 3) along with significant amounts of
starting materials. At the same time, the decline of amine amount and reaction temperature
have improved the yield of the desired product 3a (entry 4). Copper(I) salts (CuCl or CuI)
have proved to be inactive for the process (entries 8 and 9). Finally, the optimum conditions
include the heating of a mixture of allenyne 2a and 1.2 equiv. aniline in the presence of
10 mol% of catalyst in dioxane at 70 ◦C for 6 h (entry 10).

With the optimized conditions in hand, we examined a series of primary and secondary
amines (such as substituted anilines, morpholine, and piperidine) as substrates for this
catalytic transformation. As a result, we found that the reaction proceeded smoothly with
all tested substrates furnishing the corresponding CF3-containing azepine-2-carboxylate
derivatives 3a–j in moderate to good yields (Scheme 2). However, the only limitation was
found for primary aliphatic amines, such as iso-propyl and butyl amine; all our attempts to
initiate their reactions with allenyne 2a failed.

The characterization of the compounds obtained was performed using standard physic-
ochemical methods (NMR spectroscopy and high-resolution mass spectrometry). The
location of exo- and endocyclic double bonds inherent to the seven-membered azepine
structure 3 was determined using 2D NMR spectroscopy. Thus, characteristic cross-peaks
are observed in the spectrum between protons of the terminal =CH2 group at position 8
and protons of neighboring CH2 groups at positions 3 and 5 (both are spin AB-systems),
unambiguously indicating their spatial proximity (Figure 2).

A feasible mechanism of this tandem transformation may involve the initial formation
of copper acetylide as a key step, which is similar to the well-established Cu(I)-catalyzed
click reaction [55,56], due to higher acidity of acetylene proton. Then, apparently, nucle-
ophilic addition of the amine to acetylide occurs according to its inherent polarity, followed
by intramolecular cyclization at the central carbon atom of the pre-activated allene system
to afford the seven-membered product after typical skeleton reorganization (Scheme 3).
More detailed mechanistic study of this unprecedented reaction is currently in progress.



Molecules 2022, 27, 5195 4 of 14Molecules 2022, 27, x FOR PEER REVIEW 4 of 15 
 

 

 
Scheme 2. Synthesis of trifluoromethylated azepine-2-carboxylates 3. 

The characterization of the compounds obtained was performed using standard 
physicochemical methods (NMR spectroscopy and high-resolution mass spectrometry). 
The location of exo- and endocyclic double bonds inherent to the seven-membered aze-
pine structure 3 was determined using 2D NMR spectroscopy. Thus, characteristic 
cross-peaks are observed in the spectrum between protons of the terminal =CH2 group at 
position 8 and protons of neighboring CH2 groups at positions 3 and 5 (both are spin 
AB-systems), unambiguously indicating their spatial proximity (Figure 2). 

Scheme 2. Synthesis of trifluoromethylated azepine-2-carboxylates 3.

Taking into account that α-amino phosphonates are the structural mimics of α-amino
acids exhibiting a broad spectrum of remarkable biological properties including antibac-
terial, antiviral, anticancer, and some other types of bioactivity [57–63], we checked the
reactivity of phosphonate-containing allenyne 2b in the amination/cyclization reaction
with amines under the found catalytic conditions. It turned out that 2b has demonstrated
comparable to carboxylate analogue 2a reactivity towards primary and secondary amines
yielding the corresponding trifluoromethylated azepine-2-phosphonates 4a–e in moderate
to good yields (Scheme 4).

In general, the NMR yields of 4 exceeded 80% (determined by 19F NMR spectroscopy)
in all studied reactions; however, moderate yields in some cases were caused by purifi-
cation to obtain analytically pure samples using column chromatography followed by
re-crystallization.
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3. Materials and Methods
3.1. General Information

All solvents used in the reactions were freshly distilled from appropriate drying
agents before use. All reagents were used as purchased from Sigma-Aldrich (Munich,
Germany). Analytical TLC was performed with Merck silica gel 60 F254 plates (Darmstadt,
Germany); visualization was accomplished with UV light, iodine vapors, or by spraying
with Ce(SO4)2 solution in 5% H2SO4. Chromatography was carried out using Merck silica
gel (Kieselgel 60, 0.063–0.200 mm, Darmstadt, Germany) and petroleum ether/ethyl acetate,
ethyl acetate, ethyl acetate/methanol as an eluent. NMR spectra were obtained with
Bruker AV-300 (19F, 31P) and AV-400 (1H, 13C, 19F, 31P) spectrometers (Karlsruhe, Germany)
operating at 400 MHz for 1H (TMS reference), at 101 MHz for 13C, 282 and at 376 MHz for
19F (CCl3F reference), and at 121 MHz for 31P (H3PO4 reference). High-Resolution Mass
Spectrometry spectra were carried out using AB Sciex TripleTOF 5600+ (Framingham, MA,
USA) supported different ionization sources. The starting allenynes 2a,b were synthesized
via the previously described protocol [42].

3.2. General Procedure

A mixture of amine (0.485 mmol), allenyne (0.404 mmol), and [Cu(CH3CN)4PF6]
(10 mol%) in anhydrous 1,4-dioxane (3 mL) was stirred under argon at 70 ◦C for 6–16 h.
Then, the reaction mixture was cooled to room temperature, solvent was removed under
reduced pressure, and the residue was subjected to column chromatography on silica gel
(petroleum ether/ethyl acetate or ethyl acetate/methanol for phosphonate derivatives) to
yield the purified product (See Supplementary Materials).

Methyl 1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-
2-carboxylate (3a)

Molecules 2022, 27, x FOR PEER REVIEW 7 of 15 
 

 

Methyl 
1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-car
boxylate (3a) 

 
Yield: 65% as a light brown solid. 1H NMR (400 MHz, CDCl3) δ 7.17 (t, J = 7.9 Hz, 2H), 6.72 
(t, J = 7.3 Hz, 1H), 6.57 (d, J = 7.8 Hz, 2H), 5.81 (s, 1H), 5.24 (s, 1H), 5.11 (s, 1H), 4.03 (d, J = 
3.7 Hz, 2H), 3.93 (s, 1H), 3.74 (s, 3H), 3.63 (d, J = 13.7 Hz, 1H), 3.55 (d, J = 13.6 Hz, 1H), 2.57 
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 147.7, 137.2, 137.1, 129.2, 124.8 (q, J = 290.8, 
276.5 Hz), 118.9, 117.9, 113.0, 111.0, 70.4 (q, J = 25.0 Hz), 55.1, 52.8, 45.2, 40.2. 19F NMR (376 
MHz, CDCl3) δ −68.30. HRMS (ESI) calcd. for C17H20F3N2O2 [M + H]+: 341.1471, found: 
341.1472. 

Methyl 
1-methyl-4-methylene-6-(p-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-car
boxylate (3b) 

 
Yield: 61% as a light brown solid. 1H NMR (400 MHz, CDCl3) δ 6.97 (d, J = 8.1 Hz, 2H), 
6.49 (d, J = 8.2 Hz, 2H), 5.81 (s, 1H), 5.23 (s, 1H), 5.10 (s, 1H), 4.06–3.95 (m, 2H), 3.79 (s, 1H), 
3.75 (s, 3H), 3.65–3.50 (m, 3H), 2.56 (s, 3H), 2.24 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 
167.5, 145.5, 137.4, 137.2, 129.7, 127.1, 124.9 (q, J = 290.7 Hz), 113.1, 111.0, 70.4 (d, J = 25.5 
Hz), 55.1, 52.8, 45.7, 40.3, 20.5. 19F NMR (376 MHz, CDCl3) δ −68.33. HRMS (ESI) calcd. for 
C18H22F3N2O2 [M + H]+: 355.1628, found: 355.1628. 

Methyl 
6-(4-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pine-2-carboxylate (3c) 

 
Yield: 59% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.3 Hz, 2H), 6.52 
(d, J = 8.4 Hz, 2H), 5.80 (s, 1H), 5.22 (s, 1H), 5.09 (s, 1H), 4.02–3.92 (m, 2H), 3.74 (s, 6H), 3.61 
(d, J = 13.6 Hz, 1H), 3.52 (d, J = 13.5 Hz, 1H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 
167.4, 152.4, 142.0, 137.4, 137.2, 124.9 (q, J = 290.5 Hz), 118.8, 114.8, 114.2, 110.9, 70.4 (q, J = 
24.9 Hz), 55.8, 55.0, 52.7, 46.1, 40.2. 19F NMR (376 MHz, CDCl3) δ −68.33. HRMS (ESI) 
calcd. for C18H22F3N2O3 [M + H]+: 371.1577, found: 371.1579. 

Methyl 
1-methyl-4-methylene-6-(o-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-carb
oxylate (3d) 

Yield: 65% as a light brown solid. 1H NMR (400 MHz, CDCl3) δ 7.17 (t, J = 7.9 Hz, 2H),
6.72 (t, J = 7.3 Hz, 1H), 6.57 (d, J = 7.8 Hz, 2H), 5.81 (s, 1H), 5.24 (s, 1H), 5.11 (s, 1H), 4.03
(d, J = 3.7 Hz, 2H), 3.93 (s, 1H), 3.74 (s, 3H), 3.63 (d, J = 13.7 Hz, 1H), 3.55 (d, J = 13.6 Hz,
1H), 2.57 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 147.7, 137.2, 137.1, 129.2, 124.8 (q,
J = 290.8, 276.5 Hz), 118.9, 117.9, 113.0, 111.0, 70.4 (q, J = 25.0 Hz), 55.1, 52.8, 45.2, 40.2.
19F NMR (376 MHz, CDCl3) δ −68.30. HRMS (ESI) calcd. for C17H20F3N2O2 [M + H]+:
341.1471, found: 341.1472.

Methyl 1-methyl-4-methylene-6-(p-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-
2-carboxylate (3b)
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C18H22F3N2O2 [M + H]+: 355.1628, found: 355.1628. 

Methyl 
6-(4-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pine-2-carboxylate (3c) 

 
Yield: 59% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.3 Hz, 2H), 6.52 
(d, J = 8.4 Hz, 2H), 5.80 (s, 1H), 5.22 (s, 1H), 5.09 (s, 1H), 4.02–3.92 (m, 2H), 3.74 (s, 6H), 3.61 
(d, J = 13.6 Hz, 1H), 3.52 (d, J = 13.5 Hz, 1H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 
167.4, 152.4, 142.0, 137.4, 137.2, 124.9 (q, J = 290.5 Hz), 118.8, 114.8, 114.2, 110.9, 70.4 (q, J = 
24.9 Hz), 55.8, 55.0, 52.7, 46.1, 40.2. 19F NMR (376 MHz, CDCl3) δ −68.33. HRMS (ESI) 
calcd. for C18H22F3N2O3 [M + H]+: 371.1577, found: 371.1579. 

Methyl 
1-methyl-4-methylene-6-(o-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-carb
oxylate (3d) 

Yield: 61% as a light brown solid. 1H NMR (400 MHz, CDCl3) δ 6.97 (d, J = 8.1 Hz, 2H),
6.49 (d, J = 8.2 Hz, 2H), 5.81 (s, 1H), 5.23 (s, 1H), 5.10 (s, 1H), 4.06–3.95 (m, 2H), 3.79 (s, 1H),
3.75 (s, 3H), 3.65–3.50 (m, 3H), 2.56 (s, 3H), 2.24 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.5,
145.5, 137.4, 137.2, 129.7, 127.1, 124.9 (q, J = 290.7 Hz), 113.1, 111.0, 70.4 (d, J = 25.5 Hz),
55.1, 52.8, 45.7, 40.3, 20.5. 19F NMR (376 MHz, CDCl3) δ −68.33. HRMS (ESI) calcd. for
C18H22F3N2O2 [M + H]+: 355.1628, found: 355.1628.
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Methyl 6-(4-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-
1H-azepine-2-carboxylate (3c)
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Yield: 59% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.3 Hz, 2H), 6.52 
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calcd. for C18H22F3N2O3 [M + H]+: 371.1577, found: 371.1579. 

Methyl 
1-methyl-4-methylene-6-(o-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-carb
oxylate (3d) 

Yield: 59% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.3 Hz, 2H), 6.52
(d, J = 8.4 Hz, 2H), 5.80 (s, 1H), 5.22 (s, 1H), 5.09 (s, 1H), 4.02–3.92 (m, 2H), 3.74 (s, 6H),
3.61 (d, J = 13.6 Hz, 1H), 3.52 (d, J = 13.5 Hz, 1H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3)
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J = 24.9 Hz), 55.8, 55.0, 52.7, 46.1, 40.2. 19F NMR (376 MHz, CDCl3) δ −68.33. HRMS (ESI)
calcd. for C18H22F3N2O3 [M + H]+: 371.1577, found: 371.1579.

Methyl 1-methyl-4-methylene-6-(o-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-
2-carboxylate (3d)
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Yield: 40% as a light brown solid. 1H NMR (400 MHz, CDCl3) δ 7.11–7.04 (m, 2H), 6.70–
6.64 (m, 1H), 6.46 (d, J = 7.9 Hz, 1H), 5.77 (s, 1H), 5.27 (s, 1H), 5.13 (s, 1H), 4.14–4.04 (m, 
2H), 3.82 (s, 1H), 3.74 (s, 3H), 3.64 (d, J = 13.7 Hz, 1H), 3.56 (d, J = 13.6 Hz, 1H), 2.57 (s, 3H), 
2.17 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 145.6, 137.2, 137.2, 130.1, 127.1, 124.9 (q, J 
= 290.9 Hz), 121.9, 118.9, 117.5, 111.0, 110.3, 70.9–69.9 (m), 55.1, 52.8, 45.3, 40.2, 17.6. 19F 
NMR (376 MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C18H22F3N2O2 [M + H]+: 355.1628, 
found: 355.1629. 

Methyl 
1-methyl-4-methylene-6-(m-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-car
boxylate (3e) 

 
Yield: 63% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 7.1 (t, J = 7.5 Hz, 1H), 
6.5 (d, J = 7.0 Hz, 1H), 6.4–6.4 (m, 2H), 5.8 (s, 1H), 5.2 (s, 1H), 5.1 (s, 1H), 4.1–4.0 (m, 2H), 
3.8 (s, 3H), 3.6 (d, J = 13.7 Hz, 1H), 3.5 (d, J = 13.6 Hz, 1H), 2.6 (s, 3H), 2.3 (s, 3H). 13C NMR 
(101 MHz, CDCl3) δ 167.4, 147.8, 139.0, 137.2, 137.2, 129.1, 124.9 (q, J = 290.5 Hz), 118.9–
118.9 (m), 118.8, 113.7, 111.0, 110.2, 70.4 (q, J = 25.2 Hz), 55.1, 52.7, 45.4, 40.2, 21.7. 19F NMR 
(376 MHz, CDCl3) δ −68.4. HRMS (ESI) calcd. for C18H22F3N2O2 [M + H]+: 355.1628, found: 
355.1628. 

Methyl 
6-(3-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pine-2-carboxylate (3f) 

 
Yield: 58% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.06 (t, J = 8.1 Hz, 1H), 6.29 
(d, J = 7.9 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 6.11 (s, 1H), 5.80 (s, 1H), 5.22 (s, 1H), 5.10 (s, 
1H), 4.08–3.94 (m, 2H), 3.75 (s, 6H), 3.61 (d, J = 13.7 Hz, 1H), 3.53 (d, J = 13.5 Hz, 1H), 2.56 
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 160.9, 149.2, 137.2, 137.1, 130.0, 124.9 (q, J = 
290.5 Hz), 118.9, 111.0, 106.1, 103.1, 99.0, 70.4 (q, J = 25.3 Hz), 55.1, 55.1, 52.7, 45.3, 40.2. 19F 
NMR (376 MHz, CDCl3) δ −68.42. HRMS (ESI) calcd. for C18H22F3N2O3 [M + H]+: 371.1577, 
found: 371.1578. 

Methyl 
6-(2,4-dimethylphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-a
zepine-2-carboxylate (3g) 

Yield: 40% as a light brown solid. 1H NMR (400 MHz, CDCl3) δ 7.11–7.04 (m, 2H), 6.70–6.64
(m, 1H), 6.46 (d, J = 7.9 Hz, 1H), 5.77 (s, 1H), 5.27 (s, 1H), 5.13 (s, 1H), 4.14–4.04 (m, 2H),
3.82 (s, 1H), 3.74 (s, 3H), 3.64 (d, J = 13.7 Hz, 1H), 3.56 (d, J = 13.6 Hz, 1H), 2.57 (s, 3H),
2.17 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 145.6, 137.2, 137.2, 130.1, 127.1, 124.9
(q, J = 290.9 Hz), 121.9, 118.9, 117.5, 111.0, 110.3, 70.9–69.9 (m), 55.1, 52.8, 45.3, 40.2, 17.6.
19F NMR (376 MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C18H22F3N2O2 [M + H]+:
355.1628, found: 355.1629.

Methyl 1-methyl-4-methylene-6-(m-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-
2-carboxylate (3e)
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NMR (376 MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C18H22F3N2O2 [M + H]+: 355.1628, 
found: 355.1629. 

Methyl 
1-methyl-4-methylene-6-(m-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-car
boxylate (3e) 

 
Yield: 63% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 7.1 (t, J = 7.5 Hz, 1H), 
6.5 (d, J = 7.0 Hz, 1H), 6.4–6.4 (m, 2H), 5.8 (s, 1H), 5.2 (s, 1H), 5.1 (s, 1H), 4.1–4.0 (m, 2H), 
3.8 (s, 3H), 3.6 (d, J = 13.7 Hz, 1H), 3.5 (d, J = 13.6 Hz, 1H), 2.6 (s, 3H), 2.3 (s, 3H). 13C NMR 
(101 MHz, CDCl3) δ 167.4, 147.8, 139.0, 137.2, 137.2, 129.1, 124.9 (q, J = 290.5 Hz), 118.9–
118.9 (m), 118.8, 113.7, 111.0, 110.2, 70.4 (q, J = 25.2 Hz), 55.1, 52.7, 45.4, 40.2, 21.7. 19F NMR 
(376 MHz, CDCl3) δ −68.4. HRMS (ESI) calcd. for C18H22F3N2O2 [M + H]+: 355.1628, found: 
355.1628. 

Methyl 
6-(3-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pine-2-carboxylate (3f) 

 
Yield: 58% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.06 (t, J = 8.1 Hz, 1H), 6.29 
(d, J = 7.9 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 6.11 (s, 1H), 5.80 (s, 1H), 5.22 (s, 1H), 5.10 (s, 
1H), 4.08–3.94 (m, 2H), 3.75 (s, 6H), 3.61 (d, J = 13.7 Hz, 1H), 3.53 (d, J = 13.5 Hz, 1H), 2.56 
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 160.9, 149.2, 137.2, 137.1, 130.0, 124.9 (q, J = 
290.5 Hz), 118.9, 111.0, 106.1, 103.1, 99.0, 70.4 (q, J = 25.3 Hz), 55.1, 55.1, 52.7, 45.3, 40.2. 19F 
NMR (376 MHz, CDCl3) δ −68.42. HRMS (ESI) calcd. for C18H22F3N2O3 [M + H]+: 371.1577, 
found: 371.1578. 

Methyl 
6-(2,4-dimethylphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-a
zepine-2-carboxylate (3g) 

Yield: 63% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 7.1 (t, J = 7.5 Hz, 1H),
6.5 (d, J = 7.0 Hz, 1H), 6.4–6.4 (m, 2H), 5.8 (s, 1H), 5.2 (s, 1H), 5.1 (s, 1H), 4.1–4.0 (m, 2H),
3.8 (s, 3H), 3.6 (d, J = 13.7 Hz, 1H), 3.5 (d, J = 13.6 Hz, 1H), 2.6 (s, 3H), 2.3 (s, 3H). 13C
NMR (101 MHz, CDCl3) δ 167.4, 147.8, 139.0, 137.2, 137.2, 129.1, 124.9 (q, J = 290.5 Hz),
118.9–118.9 (m), 118.8, 113.7, 111.0, 110.2, 70.4 (q, J = 25.2 Hz), 55.1, 52.7, 45.4, 40.2, 21.7. 19F
NMR (376 MHz, CDCl3) δ−68.4. HRMS (ESI) calcd. for C18H22F3N2O2 [M + H]+: 355.1628,
found: 355.1628.
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Methyl 6-(3-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-
1H-azepine-2-carboxylate (3f)
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6-(3-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pine-2-carboxylate (3f) 

 
Yield: 58% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.06 (t, J = 8.1 Hz, 1H), 6.29 
(d, J = 7.9 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 6.11 (s, 1H), 5.80 (s, 1H), 5.22 (s, 1H), 5.10 (s, 
1H), 4.08–3.94 (m, 2H), 3.75 (s, 6H), 3.61 (d, J = 13.7 Hz, 1H), 3.53 (d, J = 13.5 Hz, 1H), 2.56 
(s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 160.9, 149.2, 137.2, 137.1, 130.0, 124.9 (q, J = 
290.5 Hz), 118.9, 111.0, 106.1, 103.1, 99.0, 70.4 (q, J = 25.3 Hz), 55.1, 55.1, 52.7, 45.3, 40.2. 19F 
NMR (376 MHz, CDCl3) δ −68.42. HRMS (ESI) calcd. for C18H22F3N2O3 [M + H]+: 371.1577, 
found: 371.1578. 

Methyl 
6-(2,4-dimethylphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-a
zepine-2-carboxylate (3g) 

Yield: 58% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.06 (t, J = 8.1 Hz, 1H), 6.29
(d, J = 7.9 Hz, 1H), 6.19 (d, J = 8.0 Hz, 1H), 6.11 (s, 1H), 5.80 (s, 1H), 5.22 (s, 1H), 5.10 (s, 1H),
4.08–3.94 (m, 2H), 3.75 (s, 6H), 3.61 (d, J = 13.7 Hz, 1H), 3.53 (d, J = 13.5 Hz, 1H), 2.56 (s, 3H).
13C NMR (101 MHz, CDCl3) δ 167.4, 160.9, 149.2, 137.2, 137.1, 130.0, 124.9 (q, J = 290.5 Hz),
118.9, 111.0, 106.1, 103.1, 99.0, 70.4 (q, J = 25.3 Hz), 55.1, 55.1, 52.7, 45.3, 40.2. 19F NMR
(376 MHz, CDCl3) δ −68.42. HRMS (ESI) calcd. for C18H22F3N2O3 [M + H]+: 371.1577,
found: 371.1578.

Methyl 6-(2,4-dimethylphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-
1H-azepine-2-carboxylate (3g)
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Yield: 50% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97–6.83 (m, 1H), 6.39 
(d, J = 7.9 Hz, 1H), 5.79 (s, 1H), 5.27 (s, 1H), 5.12 (s, 1H), 4.13–3.97 (m, 1H), 3.75 (s, 2H), 3.64 
(d, J = 13.7 Hz, 1H), 3.55 (d, J = 13.3 Hz, 1H), 2.57 (s, 2H), 2.23 (s, 2H), 2.15 (s, 2H). 13C NMR 
(101 MHz, CDCl3) δ 167.4, 143.4, 137.4, 137.2, 131.0, 127.4, 126.6, 124.9 (q, J = 290.7 Hz), 
122.1, 118.9, 111.0, 110.5, 70.4 (q, J = 25.8 Hz), 55.1, 52.7, 45.7, 40.2, 20.4, 17.5. 19F NMR (376 
MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C19H24F3N2O2 [M + H]+: 369.1784, found: 
369.1789. 

Methyl 
6-(4-fluorophenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,5-tetrahydro-1H-azepi
ne-2-carboxylate (3h) 

N
Me

F3C
MeO2C

N
H

F  
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.87 (t, J = 8.7 Hz, 2H), 6.54–
6.46 (m, 2H), 5.77 (s, 1H), 5.22 (s, 1H), 5.11 (s, 1H), 4.07–3.92 (m, 2H), 3.74 (s, 3H), 3.64–3.48 
(m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 157.3, 155.0, 143.9, 137.2, 136.9, 
124.9 (q, J = 290.6 Hz), 119.0, 115.8, 115.6, 113.9, 113.8, 111.0, 70.4 (q, J = 25.1, 24.6 Hz), 55.1, 
52.8, 45.8, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.35, −127.72. HRMS (ESI) calcd. for 
C17H19F4N2O2 [M + H]+: 359.1377, found: 359.1377. 

Methyl 
1-methyl-4-methylene-2-(trifluoromethyl)-6-(3-(trifluoromethyl)phenylamino)-2,3,4,5-tetrahydro
-1H-azepine-2-carboxylate (3i) 

 
Yield: 48% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.25–7.22 (m, 1H), 6.95 (d, J = 
7.8 Hz, 1H), 6.77–6.68 (m, 2H), 5.76 (s, 1H), 5.23 (s, 1H), 5.13 (s, 1H), 4.14–3.98 (m, 2H), 3.73 
(s, 3H), 3.65–3.49 (m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 147.8, 137.0, 
136.4, 129.7, 127.1 (d, J = 272.8 Hz), 124.8 (q, J = 290.7 Hz), 119.0, 116.2, 114.4 (d, J = 3.9 Hz), 
111.2, 109.0 (d, J = 3.9 Hz), 70.4 (q, J = 25.4, 25.0 Hz), 55.1, 52.8, 45.0, 40.3, 29.8. 19F NMR 
(376 MHz, CDCl3) δ −62.92, −68.60. HRMS (ESI) calcd. for C18H19F6N2O2 [M + H]+: 
409.1345, found: 409.1344. 

Methyl 
1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-ca
rboxylate (3j) 

Yield: 50% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97–6.83 (m, 1H), 6.39
(d, J = 7.9 Hz, 1H), 5.79 (s, 1H), 5.27 (s, 1H), 5.12 (s, 1H), 4.13–3.97 (m, 1H), 3.75 (s, 2H), 3.64
(d, J = 13.7 Hz, 1H), 3.55 (d, J = 13.3 Hz, 1H), 2.57 (s, 2H), 2.23 (s, 2H), 2.15 (s, 2H). 13C NMR
(101 MHz, CDCl3) δ 167.4, 143.4, 137.4, 137.2, 131.0, 127.4, 126.6, 124.9 (q, J = 290.7 Hz),
122.1, 118.9, 111.0, 110.5, 70.4 (q, J = 25.8 Hz), 55.1, 52.7, 45.7, 40.2, 20.4, 17.5. 19F NMR
(376 MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C19H24F3N2O2 [M + H]+: 369.1784,
found: 369.1789.

Methyl 6-(4-fluorophenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,5-tetrahydro-1H-
azepine-2-carboxylate (3h)
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Yield: 50% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97–6.83 (m, 1H), 6.39 
(d, J = 7.9 Hz, 1H), 5.79 (s, 1H), 5.27 (s, 1H), 5.12 (s, 1H), 4.13–3.97 (m, 1H), 3.75 (s, 2H), 3.64 
(d, J = 13.7 Hz, 1H), 3.55 (d, J = 13.3 Hz, 1H), 2.57 (s, 2H), 2.23 (s, 2H), 2.15 (s, 2H). 13C NMR 
(101 MHz, CDCl3) δ 167.4, 143.4, 137.4, 137.2, 131.0, 127.4, 126.6, 124.9 (q, J = 290.7 Hz), 
122.1, 118.9, 111.0, 110.5, 70.4 (q, J = 25.8 Hz), 55.1, 52.7, 45.7, 40.2, 20.4, 17.5. 19F NMR (376 
MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C19H24F3N2O2 [M + H]+: 369.1784, found: 
369.1789. 

Methyl 
6-(4-fluorophenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,5-tetrahydro-1H-azepi
ne-2-carboxylate (3h) 

N
Me

F3C
MeO2C

N
H

F  
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.87 (t, J = 8.7 Hz, 2H), 6.54–
6.46 (m, 2H), 5.77 (s, 1H), 5.22 (s, 1H), 5.11 (s, 1H), 4.07–3.92 (m, 2H), 3.74 (s, 3H), 3.64–3.48 
(m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 157.3, 155.0, 143.9, 137.2, 136.9, 
124.9 (q, J = 290.6 Hz), 119.0, 115.8, 115.6, 113.9, 113.8, 111.0, 70.4 (q, J = 25.1, 24.6 Hz), 55.1, 
52.8, 45.8, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.35, −127.72. HRMS (ESI) calcd. for 
C17H19F4N2O2 [M + H]+: 359.1377, found: 359.1377. 

Methyl 
1-methyl-4-methylene-2-(trifluoromethyl)-6-(3-(trifluoromethyl)phenylamino)-2,3,4,5-tetrahydro
-1H-azepine-2-carboxylate (3i) 

 
Yield: 48% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.25–7.22 (m, 1H), 6.95 (d, J = 
7.8 Hz, 1H), 6.77–6.68 (m, 2H), 5.76 (s, 1H), 5.23 (s, 1H), 5.13 (s, 1H), 4.14–3.98 (m, 2H), 3.73 
(s, 3H), 3.65–3.49 (m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 147.8, 137.0, 
136.4, 129.7, 127.1 (d, J = 272.8 Hz), 124.8 (q, J = 290.7 Hz), 119.0, 116.2, 114.4 (d, J = 3.9 Hz), 
111.2, 109.0 (d, J = 3.9 Hz), 70.4 (q, J = 25.4, 25.0 Hz), 55.1, 52.8, 45.0, 40.3, 29.8. 19F NMR 
(376 MHz, CDCl3) δ −62.92, −68.60. HRMS (ESI) calcd. for C18H19F6N2O2 [M + H]+: 
409.1345, found: 409.1344. 

Methyl 
1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-ca
rboxylate (3j) 

Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.87 (t, J = 8.7 Hz, 2H),
6.54–6.46 (m, 2H), 5.77 (s, 1H), 5.22 (s, 1H), 5.11 (s, 1H), 4.07–3.92 (m, 2H), 3.74 (s, 3H),
3.64–3.48 (m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 157.3, 155.0, 143.9, 137.2,
136.9, 124.9 (q, J = 290.6 Hz), 119.0, 115.8, 115.6, 113.9, 113.8, 111.0, 70.4 (q, J = 25.1, 24.6 Hz),
55.1, 52.8, 45.8, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.35, −127.72. HRMS (ESI) calcd. for
C17H19F4N2O2 [M + H]+: 359.1377, found: 359.1377.
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Methyl 1-methyl-4-methylene-2-(trifluoromethyl)-6-(3-(trifluoromethyl)phenylamino)-2,3,4,5
-tetrahydro-1H-azepine-2-carboxylate (3i)

Molecules 2022, 27, x FOR PEER REVIEW 9 of 15 
 

 

 
Yield: 50% as a thick light brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97–6.83 (m, 1H), 6.39 
(d, J = 7.9 Hz, 1H), 5.79 (s, 1H), 5.27 (s, 1H), 5.12 (s, 1H), 4.13–3.97 (m, 1H), 3.75 (s, 2H), 3.64 
(d, J = 13.7 Hz, 1H), 3.55 (d, J = 13.3 Hz, 1H), 2.57 (s, 2H), 2.23 (s, 2H), 2.15 (s, 2H). 13C NMR 
(101 MHz, CDCl3) δ 167.4, 143.4, 137.4, 137.2, 131.0, 127.4, 126.6, 124.9 (q, J = 290.7 Hz), 
122.1, 118.9, 111.0, 110.5, 70.4 (q, J = 25.8 Hz), 55.1, 52.7, 45.7, 40.2, 20.4, 17.5. 19F NMR (376 
MHz, CDCl3) δ −68.32. HRMS (ESI) calcd. for C19H24F3N2O2 [M + H]+: 369.1784, found: 
369.1789. 

Methyl 
6-(4-fluorophenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,5-tetrahydro-1H-azepi
ne-2-carboxylate (3h) 

N
Me

F3C
MeO2C

N
H

F  
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.87 (t, J = 8.7 Hz, 2H), 6.54–
6.46 (m, 2H), 5.77 (s, 1H), 5.22 (s, 1H), 5.11 (s, 1H), 4.07–3.92 (m, 2H), 3.74 (s, 3H), 3.64–3.48 
(m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 157.3, 155.0, 143.9, 137.2, 136.9, 
124.9 (q, J = 290.6 Hz), 119.0, 115.8, 115.6, 113.9, 113.8, 111.0, 70.4 (q, J = 25.1, 24.6 Hz), 55.1, 
52.8, 45.8, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.35, −127.72. HRMS (ESI) calcd. for 
C17H19F4N2O2 [M + H]+: 359.1377, found: 359.1377. 

Methyl 
1-methyl-4-methylene-2-(trifluoromethyl)-6-(3-(trifluoromethyl)phenylamino)-2,3,4,5-tetrahydro
-1H-azepine-2-carboxylate (3i) 

 
Yield: 48% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.25–7.22 (m, 1H), 6.95 (d, J = 
7.8 Hz, 1H), 6.77–6.68 (m, 2H), 5.76 (s, 1H), 5.23 (s, 1H), 5.13 (s, 1H), 4.14–3.98 (m, 2H), 3.73 
(s, 3H), 3.65–3.49 (m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 147.8, 137.0, 
136.4, 129.7, 127.1 (d, J = 272.8 Hz), 124.8 (q, J = 290.7 Hz), 119.0, 116.2, 114.4 (d, J = 3.9 Hz), 
111.2, 109.0 (d, J = 3.9 Hz), 70.4 (q, J = 25.4, 25.0 Hz), 55.1, 52.8, 45.0, 40.3, 29.8. 19F NMR 
(376 MHz, CDCl3) δ −62.92, −68.60. HRMS (ESI) calcd. for C18H19F6N2O2 [M + H]+: 
409.1345, found: 409.1344. 

Methyl 
1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-ca
rboxylate (3j) 

Yield: 48% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 7.25–7.22 (m, 1H), 6.95 (d,
J = 7.8 Hz, 1H), 6.77–6.68 (m, 2H), 5.76 (s, 1H), 5.23 (s, 1H), 5.13 (s, 1H), 4.14–3.98 (m, 2H),
3.73 (s, 3H), 3.65–3.49 (m, 2H), 2.55 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.4, 147.8,
137.0, 136.4, 129.7, 127.1 (d, J = 272.8 Hz), 124.8 (q, J = 290.7 Hz), 119.0, 116.2, 114.4 (d,
J = 3.9 Hz), 111.2, 109.0 (d, J = 3.9 Hz), 70.4 (q, J = 25.4, 25.0 Hz), 55.1, 52.8, 45.0, 40.3,
29.8. 19F NMR (376 MHz, CDCl3) δ −62.92, −68.60. HRMS (ESI) calcd. for C18H19F6N2O2
[M + H]+: 409.1345, found: 409.1344.

Methyl 1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-
2-carboxylate (3j)
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Yield: 55% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H), 5.42 (s, 1H), 5.04 
(s, 1H), 3.81 (s, 3H), 3.57 (d, J = 14.1 Hz, 1H), 3.47 (d, J = 13.9 Hz, 1H), 3.11 (q, J = 9.2 Hz, 
2H), 2.54 (s, 3H), 2.33 (s, 4H), 1.57–1.51 (m, 4H), 1.41 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 
167.7, 137.7, 137.4, 125.0 (q, J = 290.4 Hz), 119.7, 111.8, 60.3, 55.3, 54.8, 52.7, 40.3, 26.1, 24.5. 
19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C16H24F3N2O2 [M + H]+: 
333.1784, found: 333.1786. 

Methyl 
1-methyl-4-methylene-6-morpholino-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-carbox
ylate (3k) 

 
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H), 5.44 (s, 1H), 5.06 
(s, 1H), 3.80 (s, 3H), 3.69–3.65 (m, 4H), 3.56 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 13.5 Hz, 1H), 
3.13 (q, 2H), 2.52 (s, 3H), 2.42–2.36 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 167.5, 137.4, 
136.7, 129.7–120.5 (m), 120.3, 112.1, 70.4 (q, J = 25.2 Hz), 67.1, 60.2, 55.2, 53.7, 52.8, 40.3. 19F 
NMR (376 MHz, CDCl3) δ −68.76. HRMS (ESI) calcd. for C15H22F3N2O3 [M + H]+: 335.1577, 
found: 335.1583. 

Methyl 
6-(dibenzylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-ca
rboxylate (3l) 

 
Yield: 30% as thick yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.35–7.28 (m, 8H), 7.26–7.21 
(m, 2H), 6.05 (s, 1H), 5.28 (s, 1H), 5.03 (s, 1H), 3.76 (s, 3H), 3.56–3.49 (m, 5H), 3.45 (d, J = 
13.5 Hz, 1H), 3.24 (s, 2H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 139.2, 138.2, 
137.4, 129.0, 128.4, 127.1, 123.5 (t, J = 290.0 Hz), 120.1, 112.1, 70.5 (d, J = 25.2 Hz), 58.4, 55.4, 
55.2, 52.7, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C25H28F3N2O2 
[M + H]+: 445.2097, found: 445.2092. 

Diethyl 
1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylph
osphonate (4a) 

 

Yield: 55% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H), 5.42 (s, 1H), 5.04
(s, 1H), 3.81 (s, 3H), 3.57 (d, J = 14.1 Hz, 1H), 3.47 (d, J = 13.9 Hz, 1H), 3.11 (q, J = 9.2 Hz,
2H), 2.54 (s, 3H), 2.33 (s, 4H), 1.57–1.51 (m, 4H), 1.41 (s, 2H). 13C NMR (101 MHz, CDCl3) δ
167.7, 137.7, 137.4, 125.0 (q, J = 290.4 Hz), 119.7, 111.8, 60.3, 55.3, 54.8, 52.7, 40.3, 26.1, 24.5.
19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C16H24F3N2O2 [M + H]+:
333.1784, found: 333.1786.

Methyl 1-methyl-4-methylene-6-morpholino-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-
carboxylate (3k)

Molecules 2022, 27, x FOR PEER REVIEW 10 of 15 
 

 

 
Yield: 55% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H), 5.42 (s, 1H), 5.04 
(s, 1H), 3.81 (s, 3H), 3.57 (d, J = 14.1 Hz, 1H), 3.47 (d, J = 13.9 Hz, 1H), 3.11 (q, J = 9.2 Hz, 
2H), 2.54 (s, 3H), 2.33 (s, 4H), 1.57–1.51 (m, 4H), 1.41 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 
167.7, 137.7, 137.4, 125.0 (q, J = 290.4 Hz), 119.7, 111.8, 60.3, 55.3, 54.8, 52.7, 40.3, 26.1, 24.5. 
19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C16H24F3N2O2 [M + H]+: 
333.1784, found: 333.1786. 

Methyl 
1-methyl-4-methylene-6-morpholino-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-carbox
ylate (3k) 

 
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H), 5.44 (s, 1H), 5.06 
(s, 1H), 3.80 (s, 3H), 3.69–3.65 (m, 4H), 3.56 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 13.5 Hz, 1H), 
3.13 (q, 2H), 2.52 (s, 3H), 2.42–2.36 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 167.5, 137.4, 
136.7, 129.7–120.5 (m), 120.3, 112.1, 70.4 (q, J = 25.2 Hz), 67.1, 60.2, 55.2, 53.7, 52.8, 40.3. 19F 
NMR (376 MHz, CDCl3) δ −68.76. HRMS (ESI) calcd. for C15H22F3N2O3 [M + H]+: 335.1577, 
found: 335.1583. 

Methyl 
6-(dibenzylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-ca
rboxylate (3l) 

 
Yield: 30% as thick yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.35–7.28 (m, 8H), 7.26–7.21 
(m, 2H), 6.05 (s, 1H), 5.28 (s, 1H), 5.03 (s, 1H), 3.76 (s, 3H), 3.56–3.49 (m, 5H), 3.45 (d, J = 
13.5 Hz, 1H), 3.24 (s, 2H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 139.2, 138.2, 
137.4, 129.0, 128.4, 127.1, 123.5 (t, J = 290.0 Hz), 120.1, 112.1, 70.5 (d, J = 25.2 Hz), 58.4, 55.4, 
55.2, 52.7, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C25H28F3N2O2 
[M + H]+: 445.2097, found: 445.2092. 

Diethyl 
1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylph
osphonate (4a) 

 

Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H), 5.44 (s, 1H), 5.06
(s, 1H), 3.80 (s, 3H), 3.69–3.65 (m, 4H), 3.56 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 13.5 Hz, 1H), 3.13
(q, 2H), 2.52 (s, 3H), 2.42–2.36 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 167.5, 137.4, 136.7,
129.7–120.5 (m), 120.3, 112.1, 70.4 (q, J = 25.2 Hz), 67.1, 60.2, 55.2, 53.7, 52.8, 40.3. 19F NMR
(376 MHz, CDCl3) δ −68.76. HRMS (ESI) calcd. for C15H22F3N2O3 [M + H]+: 335.1577,
found: 335.1583.
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Methyl 6-(dibenzylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-
2-carboxylate (3l)
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Yield: 55% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H), 5.42 (s, 1H), 5.04 
(s, 1H), 3.81 (s, 3H), 3.57 (d, J = 14.1 Hz, 1H), 3.47 (d, J = 13.9 Hz, 1H), 3.11 (q, J = 9.2 Hz, 
2H), 2.54 (s, 3H), 2.33 (s, 4H), 1.57–1.51 (m, 4H), 1.41 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 
167.7, 137.7, 137.4, 125.0 (q, J = 290.4 Hz), 119.7, 111.8, 60.3, 55.3, 54.8, 52.7, 40.3, 26.1, 24.5. 
19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C16H24F3N2O2 [M + H]+: 
333.1784, found: 333.1786. 

Methyl 
1-methyl-4-methylene-6-morpholino-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-carbox
ylate (3k) 

 
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H), 5.44 (s, 1H), 5.06 
(s, 1H), 3.80 (s, 3H), 3.69–3.65 (m, 4H), 3.56 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 13.5 Hz, 1H), 
3.13 (q, 2H), 2.52 (s, 3H), 2.42–2.36 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 167.5, 137.4, 
136.7, 129.7–120.5 (m), 120.3, 112.1, 70.4 (q, J = 25.2 Hz), 67.1, 60.2, 55.2, 53.7, 52.8, 40.3. 19F 
NMR (376 MHz, CDCl3) δ −68.76. HRMS (ESI) calcd. for C15H22F3N2O3 [M + H]+: 335.1577, 
found: 335.1583. 

Methyl 
6-(dibenzylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine-2-ca
rboxylate (3l) 

 
Yield: 30% as thick yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.35–7.28 (m, 8H), 7.26–7.21 
(m, 2H), 6.05 (s, 1H), 5.28 (s, 1H), 5.03 (s, 1H), 3.76 (s, 3H), 3.56–3.49 (m, 5H), 3.45 (d, J = 
13.5 Hz, 1H), 3.24 (s, 2H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 139.2, 138.2, 
137.4, 129.0, 128.4, 127.1, 123.5 (t, J = 290.0 Hz), 120.1, 112.1, 70.5 (d, J = 25.2 Hz), 58.4, 55.4, 
55.2, 52.7, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C25H28F3N2O2 
[M + H]+: 445.2097, found: 445.2092. 

Diethyl 
1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylph
osphonate (4a) 

 

Yield: 30% as thick yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.35–7.28 (m, 8H), 7.26–7.21 (m,
2H), 6.05 (s, 1H), 5.28 (s, 1H), 5.03 (s, 1H), 3.76 (s, 3H), 3.56–3.49 (m, 5H), 3.45 (d, J = 13.5 Hz,
1H), 3.24 (s, 2H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 139.2, 138.2, 137.4, 129.0,
128.4, 127.1, 123.5 (t, J = 290.0 Hz), 120.1, 112.1, 70.5 (d, J = 25.2 Hz), 58.4, 55.4, 55.2, 52.7, 40.3.
19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C25H28F3N2O2 [M + H]+:
445.2097, found: 445.2092.

Diethyl 1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-
2-ylphosphonate (4a)
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Yield: 55% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.78 (s, 1H), 5.42 (s, 1H), 5.04 

(s, 1H), 3.81 (s, 3H), 3.57 (d, J = 14.1 Hz, 1H), 3.47 (d, J = 13.9 Hz, 1H), 3.11 (q, J = 9.2 Hz, 

2H), 2.54 (s, 3H), 2.33 (s, 4H), 1.57–1.51 (m, 4H), 1.41 (s, 2H). 13C NMR (101 MHz, CDCl3) δ 

167.7, 137.7, 137.4, 125.0 (q, J = 290.4 Hz), 119.7, 111.8, 60.3, 55.3, 54.8, 52.7, 40.3, 26.1, 24.5. 
19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C16H24F3N2O2 [M + H]+: 

333.1784, found: 333.1786. 

Methyl 

1-methyl-4-methylene-6-morpholino-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepine

-2-carboxylate (3k) 

 

Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.77 (s, 1H), 5.44 (s, 1H), 5.06 

(s, 1H), 3.80 (s, 3H), 3.69–3.65 (m, 4H), 3.56 (d, J = 13.6 Hz, 1H), 3.45 (d, J = 13.5 Hz, 1H), 

3.13 (q, 2H), 2.52 (s, 3H), 2.42–2.36 (m, 4H). 13C NMR (101 MHz, CDCl3) δ 167.5, 137.4, 

136.7, 129.7–120.5 (m), 120.3, 112.1, 70.4 (q, J = 25.2 Hz), 67.1, 60.2, 55.2, 53.7, 52.8, 40.3. 19F 

NMR (376 MHz, CDCl3) δ −68.76. HRMS (ESI) calcd. for C15H22F3N2O3 [M + H]+: 335.1577, 

found: 335.1583. 

Methyl 

6-(dibenzylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze

pine-2-carboxylate (3l) 

 

Yield: 30% as thick yellow oil. 1H NMR (400 MHz, CDCl3) δ 7.35–7.28 (m, 8H), 7.26–7.21 

(m, 2H), 6.05 (s, 1H), 5.28 (s, 1H), 5.03 (s, 1H), 3.76 (s, 3H), 3.56–3.49 (m, 5H), 3.45 (d, J = 

13.5 Hz, 1H), 3.24 (s, 2H), 2.53 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 167.7, 139.2, 138.2, 

137.4, 129.0, 128.4, 127.1, 123.5 (t, J = 290.0 Hz), 120.1, 112.1, 70.5 (d, J = 25.2 Hz), 58.4, 55.4, 

55.2, 52.7, 40.3. 19F NMR (376 MHz, CDCl3) δ −68.73. HRMS (ESI) calcd. for C25H28F3N2O2 

[M + H]+: 445.2097, found: 445.2092. 

Diethyl 

1-methyl-4-methylene-6-(phenylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepi

n-2-ylphosphonate (4a) 

 

Yield: 45% as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.15 (t, J = 7.8 Hz, 2H), 6.70 (t,
J = 7.3 Hz, 1H), 6.58 (d, J = 7.8 Hz, 2H), 5.89 (d, J = 5.3 Hz, 1H), 5.19 (s, 1H), 5.04 (s, 1H),
4.13 – 3.99 (m, 6H), 3.48 (s, 2H), 2.85 (s, 3H), 1.24–1.16 (m, 6H). 13C NMR (101 MHz, CDCl3)
δ 147.8, 137.7 (d, J = 3.4 Hz), 136.9 (d, J = 9.9 Hz), 129.2, 129.7–120.6 (m), 119.1–118.8 (m),
117.8, 113.0, 110.2 (d, J = 2.2 Hz), 64.6 (d, J = 7.3 Hz), 62.9 (d, J = 8.0 Hz), 55.3 (d, J = 7.4 Hz),
45.4 (d, J = 1.9 Hz), 41.0, 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 6.0 Hz). 19F NMR (376 MHz, CDCl3)
δ −64.56 (d, J = 6.5 Hz). 31P NMR (121 MHz, CDCl3) δ 14.5 (q, J = 6.8 Hz). HRMS (ESI)
calcd. for C19H27F3N2O3P [M + H]+: 419.1706, found: 419.1709.

Diethyl 1-methyl-4-methylene-6-(p-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-
2-ylphosphonate (4b)
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Yield: 45% as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.15 (t, J = 7.8 Hz, 2H), 6.70 (t, J 
= 7.3 Hz, 1H), 6.58 (d, J = 7.8 Hz, 2H), 5.89 (d, J = 5.3 Hz, 1H), 5.19 (s, 1H), 5.04 (s, 1H), 4.13 
– 3.99 (m, 6H), 3.48 (s, 2H), 2.85 (s, 3H), 1.24–1.16 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 
147.8, 137.7 (d, J = 3.4 Hz), 136.9 (d, J = 9.9 Hz), 129.2, 129.7–120.6 (m), 119.1–118.8 (m), 
117.8, 113.0, 110.2 (d, J = 2.2 Hz), 64.6 (d, J = 7.3 Hz), 62.9 (d, J = 8.0 Hz), 55.3 (d, J = 7.4 Hz), 
45.4 (d, J = 1.9 Hz), 41.0, 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 6.0 Hz). 19F NMR (376 MHz, CDCl3) 
δ −64.56 (d, J = 6.5 Hz). 31P NMR (121 MHz, CDCl3) δ 14.5 (q, J = 6.8 Hz). HRMS (ESI) 
calcd. for C19H27F3N2O3P [M + H]+: 419.1706, found: 419.1709. 

Diethyl 
1-methyl-4-methylene-6-(p-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylph
osphonate (4b) 

 
Yield: 61% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97 (d, J = 7.9 Hz, 2H), 6.52 
(d, J = 7.6 Hz, 2H), 5.94–5.84 (m, 1H), 5.20 (s, 1H), 5.04 (s, 1H), 4.14–3.97 (m, 6H), 3.48 (s, 
2H), 2.85 (s, 3H), 2.22 (s, 3H), 1.25–1.16 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 145.5, 137.7 
(d, J = 3.3 Hz), 137.2 (d, J = 9.7 Hz), 129.7, 127.0, 125.2 (dd, J = 292.9, 12.6 Hz). 119.0 (d, J = 
7.7 Hz), 113.2, 110.2, 64.6 (d, J = 7.3 Hz), 63.0 (d, J = 8.0 Hz), 55.3 (d, J = 7.3 Hz), 45.8, 41.0, 
20.5, 16.8–15.6 (m). 19F NMR (376 MHz, CDCl3) δ −64.57 (d, J = 6.3 Hz). 31P NMR (121 
MHz, CDCl3) δ 14.5 (q, J = 7.2 Hz). HRMS (ESI) calcd. for C20H29F3N2O3P [M + H]+: 
433.1862, found: 433.1862. 

Diethyl 
6-(4-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pin-2-ylphosphonate (4c) 

 
Yield: 43% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.8 Hz, 2H), 6.55 
(d, J = 8.7 Hz, 2H), 5.90 (d, J = 5.3 Hz, 1H), 5.19 (s, 1H), 5.03 (s, 1H), 4.15–4.01 (m, 4H), 3.98 
(s, 2H), 3.73 (s, 3H), 3.47 (s, 2H), 2.85 (s, 3H), 1.24–1.19 (m, 6H). 13C NMR (101 MHz, 
CDCl3) δ 152.4, 142.1, 137.8 (d, J = 3.3 Hz), 137.3 (d, J = 9.8 Hz), 125.2 (dd, J = 293.1, 12.8 
Hz), 118.9 (d, J = 10.3 Hz), 114.9, 114.3, 110.2, 64.6 (d, J = 7.2 Hz), 63.0 (d, J = 7.8 Hz), 55.4 
(d, J = 7.3 Hz), 46.3, 41.0, 29.8, 16.4 (dd, J = 21.8, 5.8 Hz). 19F NMR (376 MHz, CDCl3) δ 
−64.57 (d, J = 6.7 Hz). 31P NMR (121 MHz, CDCl3) δ 14.6 (q, J = 7.1 Hz). HRMS (ESI) calcd. 
for C20H29F3N2O4P [M + H]+: 449.1812, found: 449.1813. 

Diethyl 
1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylp
hosphonate (4d) 

Yield: 61% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97 (d, J = 7.9 Hz, 2H), 6.52
(d, J = 7.6 Hz, 2H), 5.94–5.84 (m, 1H), 5.20 (s, 1H), 5.04 (s, 1H), 4.14–3.97 (m, 6H), 3.48 (s,
2H), 2.85 (s, 3H), 2.22 (s, 3H), 1.25–1.16 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 145.5, 137.7
(d, J = 3.3 Hz), 137.2 (d, J = 9.7 Hz), 129.7, 127.0, 125.2 (dd, J = 292.9, 12.6 Hz). 119.0 (d,
J = 7.7 Hz), 113.2, 110.2, 64.6 (d, J = 7.3 Hz), 63.0 (d, J = 8.0 Hz), 55.3 (d, J = 7.3 Hz), 45.8,
41.0, 20.5, 16.8–15.6 (m). 19F NMR (376 MHz, CDCl3) δ −64.57 (d, J = 6.3 Hz). 31P NMR
(121 MHz, CDCl3) δ 14.5 (q, J = 7.2 Hz). HRMS (ESI) calcd. for C20H29F3N2O3P [M + H]+:
433.1862, found: 433.1862.
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Diethyl 6-(4-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-
1H-azepin-2-ylphosphonate (4c)
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Yield: 45% as a yellow solid. 1H NMR (400 MHz, CDCl3) δ 7.15 (t, J = 7.8 Hz, 2H), 6.70 (t, J 
= 7.3 Hz, 1H), 6.58 (d, J = 7.8 Hz, 2H), 5.89 (d, J = 5.3 Hz, 1H), 5.19 (s, 1H), 5.04 (s, 1H), 4.13 
– 3.99 (m, 6H), 3.48 (s, 2H), 2.85 (s, 3H), 1.24–1.16 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 
147.8, 137.7 (d, J = 3.4 Hz), 136.9 (d, J = 9.9 Hz), 129.2, 129.7–120.6 (m), 119.1–118.8 (m), 
117.8, 113.0, 110.2 (d, J = 2.2 Hz), 64.6 (d, J = 7.3 Hz), 62.9 (d, J = 8.0 Hz), 55.3 (d, J = 7.4 Hz), 
45.4 (d, J = 1.9 Hz), 41.0, 16.5 (d, J = 5.9 Hz), 16.3 (d, J = 6.0 Hz). 19F NMR (376 MHz, CDCl3) 
δ −64.56 (d, J = 6.5 Hz). 31P NMR (121 MHz, CDCl3) δ 14.5 (q, J = 6.8 Hz). HRMS (ESI) 
calcd. for C19H27F3N2O3P [M + H]+: 419.1706, found: 419.1709. 

Diethyl 
1-methyl-4-methylene-6-(p-tolylamino)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylph
osphonate (4b) 

 
Yield: 61% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.97 (d, J = 7.9 Hz, 2H), 6.52 
(d, J = 7.6 Hz, 2H), 5.94–5.84 (m, 1H), 5.20 (s, 1H), 5.04 (s, 1H), 4.14–3.97 (m, 6H), 3.48 (s, 
2H), 2.85 (s, 3H), 2.22 (s, 3H), 1.25–1.16 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 145.5, 137.7 
(d, J = 3.3 Hz), 137.2 (d, J = 9.7 Hz), 129.7, 127.0, 125.2 (dd, J = 292.9, 12.6 Hz). 119.0 (d, J = 
7.7 Hz), 113.2, 110.2, 64.6 (d, J = 7.3 Hz), 63.0 (d, J = 8.0 Hz), 55.3 (d, J = 7.3 Hz), 45.8, 41.0, 
20.5, 16.8–15.6 (m). 19F NMR (376 MHz, CDCl3) δ −64.57 (d, J = 6.3 Hz). 31P NMR (121 
MHz, CDCl3) δ 14.5 (q, J = 7.2 Hz). HRMS (ESI) calcd. for C20H29F3N2O3P [M + H]+: 
433.1862, found: 433.1862. 

Diethyl 
6-(4-methoxyphenylamino)-1-methyl-4-methylene-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-aze
pin-2-ylphosphonate (4c) 

 
Yield: 43% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.8 Hz, 2H), 6.55 
(d, J = 8.7 Hz, 2H), 5.90 (d, J = 5.3 Hz, 1H), 5.19 (s, 1H), 5.03 (s, 1H), 4.15–4.01 (m, 4H), 3.98 
(s, 2H), 3.73 (s, 3H), 3.47 (s, 2H), 2.85 (s, 3H), 1.24–1.19 (m, 6H). 13C NMR (101 MHz, 
CDCl3) δ 152.4, 142.1, 137.8 (d, J = 3.3 Hz), 137.3 (d, J = 9.8 Hz), 125.2 (dd, J = 293.1, 12.8 
Hz), 118.9 (d, J = 10.3 Hz), 114.9, 114.3, 110.2, 64.6 (d, J = 7.2 Hz), 63.0 (d, J = 7.8 Hz), 55.4 
(d, J = 7.3 Hz), 46.3, 41.0, 29.8, 16.4 (dd, J = 21.8, 5.8 Hz). 19F NMR (376 MHz, CDCl3) δ 
−64.57 (d, J = 6.7 Hz). 31P NMR (121 MHz, CDCl3) δ 14.6 (q, J = 7.1 Hz). HRMS (ESI) calcd. 
for C20H29F3N2O4P [M + H]+: 449.1812, found: 449.1813. 

Diethyl 
1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylp
hosphonate (4d) 

Yield: 43% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.75 (d, J = 8.8 Hz, 2H),
6.55 (d, J = 8.7 Hz, 2H), 5.90 (d, J = 5.3 Hz, 1H), 5.19 (s, 1H), 5.03 (s, 1H), 4.15–4.01 (m, 4H),
3.98 (s, 2H), 3.73 (s, 3H), 3.47 (s, 2H), 2.85 (s, 3H), 1.24–1.19 (m, 6H). 13C NMR (101 MHz,
CDCl3) δ 152.4, 142.1, 137.8 (d, J = 3.3 Hz), 137.3 (d, J = 9.8 Hz), 125.2 (dd, J = 293.1, 12.8 Hz),
118.9 (d, J = 10.3 Hz), 114.9, 114.3, 110.2, 64.6 (d, J = 7.2 Hz), 63.0 (d, J = 7.8 Hz), 55.4 (d,
J = 7.3 Hz), 46.3, 41.0, 29.8, 16.4 (dd, J = 21.8, 5.8 Hz). 19F NMR (376 MHz, CDCl3) δ −64.57
(d, J = 6.7 Hz). 31P NMR (121 MHz, CDCl3) δ 14.6 (q, J = 7.1 Hz). HRMS (ESI) calcd. for
C20H29F3N2O4P [M + H]+: 449.1812, found: 449.1813.

Diethyl 1-methyl-4-methylene-6-(piperidin-1-yl)-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-
2-ylphosphonate (4d)
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Yield: 46% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 6.00–5.96 (m, 1H), 5.40 (s, 
1H), 5.06 (s, 1H), 4.21–4.15 (m, 4H), 3.50–3.36 (m, 4H), 2.83 (s, 3H), 2.67–2.55 (m, 4H), 1.66 
(p, J = 5.7 Hz, 4H), 1.52–1.44 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H), 1.28–1.22 (m, 3H). 13C NMR 
(101 MHz, CDCl3) δ 137.7 (d, J = 3.7 Hz), 135.1–134.8 (m), 125.2 (d, J = 280.8 Hz), 122.7–
122.3 (m), 112.0, 64.8 (d, J = 7.7 Hz), 63.4 (d, J = 7.7 Hz), 59.5, 55.2 (d, J = 7.7 Hz), 54.5, 40.9, 
25.1, 23.6, 16.5 (dd, J = 5.7, 3.5 Hz). 19F NMR (282 MHz, C6D6) δ −63.08 (d, J = 7.7 Hz). 31P 
NMR (121 MHz, CDCl3) δ 14.84 (q, J = 7.3 Hz). HRMS (ESI) calcd. for C18H31F3N2O3P [M + 
H]+: 411.2019, found: 411.2024. 

Diethyl 
1-methyl-4-methylene-6-morpholino-2-(trifluoromethyl)-2,3,4,7-tetrahydro-1H-azepin-2-ylphosp
honate (4e) 

 
Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.91–5.81 (m, 1H), 5.39 (s, 
1H), 4.99 (s, 1H), 4.20–4.10 (m, 4H), 3.69–3.65 (m, 4H), 3.45 (d, J = 13.6 Hz, 1H), 3.37 (d, J = 
13.2 Hz, 1H), 3.15 (d, J = 2.7 Hz, 2H), 2.82 (s, 3H), 2.41 (s, 4H), 1.31 (t, J = 7.1 Hz, 3H), 1.21 
(t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 137.9 (d, J = 3.4 Hz), 136.2 (d, J = 9.9 Hz), 
125.3 (qd, J = 293.4, 13.2 Hz), 120.7–120.3 (m), 111.2 (d, J = 2.1 Hz), 67.1, 64.7 (d, J = 7.2 Hz), 
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Yield: 62% as a thick brown oil. 1H NMR (400 MHz, CDCl3) δ 5.91–5.81 (m, 1H), 5.39 (s,
1H), 4.99 (s, 1H), 4.20–4.10 (m, 4H), 3.69–3.65 (m, 4H), 3.45 (d, J = 13.6 Hz, 1H), 3.37 (d,
J = 13.2 Hz, 1H), 3.15 (d, J = 2.7 Hz, 2H), 2.82 (s, 3H), 2.41 (s, 4H), 1.31 (t, J = 7.1 Hz, 3H), 1.21
(t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 137.9 (d, J = 3.4 Hz), 136.2 (d, J = 9.9 Hz),
125.3 (qd, J = 293.4, 13.2 Hz), 120.7–120.3 (m), 111.2 (d, J = 2.1 Hz), 67.1, 64.7 (d, J = 7.2 Hz),
63.0 (d, J = 7.7 Hz), 60.6–60.5 (m), 55.3 (d, J = 8.0 Hz), 53.7, 40.9, 16.5 (dd, J = 5.7, 2.0 Hz).
19F NMR (376 MHz, CDCl3) δ −64.24 (d, J = 7.4 Hz). 31P NMR (121 MHz, CDCl3) δ 14.6.
HRMS (ESI) calcd. for C17H29F3N2O4P [M + H]+: 413.1812, found: 413.1819.

4. Conclusions

In conclusion, we have elaborated an effective protocol for the preparation of novel
CF3-containing azepin-2-carboxylate and azepin-2-phosphonate derivatives. The method is
based on a new type of tandem transformation of functionalized allenynes under copper(I)
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catalysis, which includes a combination of intermolecular addition of an amine to a copper-
activated triple bond followed by intramolecular cyclization along the allenyl group. The
reactions can be readily accomplished in dioxane within a few hours at 70 ◦C in the presence
of complex Cu(MeCN)4PF6 (10 mol%) providing access to a new family of functionally
substituted seven-membered azacycles.
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