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Summary

We investigated the hypothesis that gene expression

profiles in cultured cell lines from adults, aged 57–

97 years, contain information about the biological age

and potential longevity of the donors. We studied 104

unrelated grandparents from 31 Utah CEU (Centre

d’Etude du Polymorphisme Humain – Utah) families, for

whom lymphoblastoid cell lines were established in the

1980s. Combining publicly available gene expression

data from these cell lines, and survival data from the

Utah Population Database, we tested the relationship

between expression of 2151 always-expressed genes,

age, and survival of the donors. Approximately 16% of

2151 expression levels were associated with donor age:

10% decreased in expression with age, and 6%

increased with age. Cell division cycle 42 (CDC42) and

CORO1A exhibited strong associations both with age at

draw and survival after draw (multiple comparisons-

adjusted Monte Carlo P-value < 0.05). In general, gene

expressions that increased with age were associated

with increased mortality. Gene expressions that

decreased with age were generally associated with

reduced mortality. A multivariate estimate of biological

age modeled from expression data was dominated by

CDC42 expression, and was a significant predictor of

survival after blood draw. A multivariate model of sur-

vival as a function of gene expression was dominated

by CORO1A expression. This model accounted for

approximately 23% of the variation in survival among

the CEU grandparents. Some expression levels were

negligibly associated with age in this cross-sectional

dataset, but strongly associated with inter-individual

differences in survival. These observations may lead to

new insights regarding the genetic contribution to

exceptional longevity.
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Introduction

Systematic genome-wide screens for engineered gene expres-

sion changes that increase lifespan have identified scores of

‘longevity genes’, by deletion in yeast (Powers et al., 2006),

RNA interference in Caenorhabditis elegans (Hamilton et al.,

2005), and activation of expression in Drosophila (Seong

et al., 2001). Therefore, we hypothesized that natural inter-

individual variation in gene expression in human populations

may be associated with significant differences in survival. We

investigated the possibility that shifts in expression levels of

single genes (or combinations of genes) may have broad

health benefits in late middle and old age, by lowering the

risk of mortality. Such effects would be expected for genes

that regulate the rate of progression of fundamental

processes of senescence.

The CEPH ⁄ Utah (CEU) family resource, maintained at the

Coriell Cell Repositories in Camden, NJ, USA (http://ccr.coriell.

org/Sections/Collections/NIGMS/CEPHFamilies.aspx?PgId=49&

Coll=GM), consists of Epstein–Barr virus-immortalized lympho-

blastoid cell lines and DNA extracted there from, for 46 three-

generation CEU families, each consisting of 5–15 siblings,

their two parents, and two to four grandparents who were

still alive at the time of the family blood draws in the early

1980s (White et al., 1985; Dausset et al., 1990). Cell lines

from 153 CEU grandparents are available from Coriell. In

addition, approximately 20 years of follow-up data (survival

and mortality) are available for 145 of the 153 Utah grandpar-

ents from the Utah Population Database (UPDB) and the Utah

Genetic Reference Project at the University of Utah.

Several recent papers examining the genetics of gene

expression levels in the CEU cell lines (Cheung & Spielman,

2002; Cheung et al., 2003, 2005; Schadt et al., 2003; Monks

et al., 2004; Morley et al., 2004; Stranger et al., 2005) have

confirmed, by familial correlation, linkage, and ⁄ or genetic

association, that a substantial portion of the variability in gene

expression levels is under genetic control. Thus, prior evidence

has established that a major source of variation in expression

levels in the CEU cell lines is genetic differences among indivi-

duals, rather than variation in the conditions of tissue culture,

cell transformation, or storage and handling of the samples.

In this context, it is reasonable to test for associations
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between gene expression profiles in these cell lines and genet-

ically influenced complex traits in their donors.

To date, two genome-wide studies of longevity in humans

have been published (Puca et al., 2001; Lunetta et al., 2007),

and several additional studies are currently in progress. Puca

and colleagues performed a sib-pair linkage study of cente-

narians and near centenarians, and identified a region of

interest on chromosome 4q25. Subsequent work by this

group led to the conclusion that one or more variants of

microsomal triglyceride transfer protein (Geesaman et al.,

2003) were responsible for this effect, although other groups

have failed to confirm this association (Nebel et al., 2005;

Beekman et al., 2006). More recently, the first genome-wide

association study of longevity and correlates of longevity

found numerous associations with nominal P-values of 0.001

or less, including some candidate genes such as FOX1a, but

none that clearly exceeded a threshold allowing for multiple

hypothesis testing (Lunetta et al., 2007).

In this paper, we report on the association between age at

blood draw and expression levels for 2151 always-expressed

genes in the CEU cell lines. We use these data to construct an

estimate of biological age based on gene expression levels,

then use our biological age estimate in a proportional hazards

model of survival after blood draw to assess the degree to

which gene expression profiles can serve as biomarkers of

aging and ⁄ or longevity. We further test how well a multivari-

ate survival model based on age-adjusted gene expression

predicts mortality among the CEU grandparents. Our

approach is not specifically designed to identify heritable vari-

ants that affect longevity. Rather, we are searching for stable

variation in gene expressions that affect or mark longevity.

We anticipate that inherited genetic variants, including copy

number variants, account for much of the variation in gene

expression, although it is likely that epigenetic factors may

also play a large role (Mathers, 2006).

Results

Changes in gene expression with age: CEU

grandparents

If the expression of a gene responds to the progress of senes-

cence by rising or falling over the adult lifespan, then expres-

sion differences among chronologically age-matched adults

may reflect variation in rates of biological aging. To establish

age-related changes in gene expression levels, we first identi-

fied expressions most strongly associated with age at blood

draw. Of the 8793 total measured expressions (probesets on

Affymetrix HG-Focus arrays), we used only the 2151 always-

expressed genes (in all 362 cell lines and three generations of

Utah CEU families), to examine the relationship between indi-

vidual expression levels and age at draw in the CEU grandpar-

ent cell lines. We modeled expression as a simple linear

function of age at draw. Expression levels are reported on a

log2 scale, so that a linear increase or decrease in measured

expression level corresponds to a multiplicative increase in

gene expression. Because the grandparents were effectively

unrelated to one another, no adjustment for kinship was nec-

essary, and conventional linear regression models were used.

A more complex analysis of changes in gene expression

with age over all three generations of CEU families revealed a

large number of highly significant associations. However,

interpretation of age-related changes in expression across

three generations, ages 5–97, is difficult because senescence

can be confounded with sexual or physiological maturation,

as well as secular trends occurring over such a long span of

donor birth years in these families. Methods and results of this

analysis are described in the Supporting Information.

Of the 2151 always-expressed genes, 345 (16%) expres-

sions were associated with age at draw in the CEU grandpar-

ents at a nominal P < 0.05. Of these, 125 increased with age

and 220 decreased with age. Table 1 shows the magnitude,

direction, and significance of the linear regression of expres-

sion as a function of age at draw for the top ten age-associ-

ated expression levels for the 104 CEU grandparents, after

adjusting for sex. None of the always-expressed genes was

linearly associated with age at draw at a nominal P-value

below the Bonferroni 5% threshold of 2.3 · 10)5. The stron-

gest association of expression level with age was CDC42 (cell

division cycle 42), which exhibited strongly increased expres-

sion with age, with a sex-adjusted P-value of 3.1 · 10)5, and

an unadjusted P-value of 1.3 · 10)5. Among the ten most

strongly age-associated expression levels (Table 1), equal

numbers (five) increase and decrease with age. Table S3 (Sup-

porting Information) shows complete results for the 2151

always-expressed genes.

Also shown in Table 1 is the estimated heritability of expres-

sion (H2) for each gene listed, and the correlation of expres-

sion between spouses. Most of the genes listed in Table 1

have heritabilities between 0.2 and 0.5. CORO1A has the

Table 1 Top ten age-associated expression levels in CEU grandparents

HG-focus

probeset

Gene

symbol Z P-value H2

Spouse

correlation

HF6524 CDC42 4.36 3.14E)05 0.26 0.062

HF2432 MKNK2 4.09 8.65E)05 0.35 0.12

HF8737 SH3BGRL 4.07 9.51E)05 0.45 )0.057

HF4113 RNH1 )4.03 1.09E)04 0.00 )0.010

HF6098 TMEM142C 3.75 2.97E)04 0.09 )0.13

HF7682 CDC6 )3.73 3.13E)04 0.33 0.28

HF1646 USP1 )3.65 4.23E)04 0.23 0.055

HF1405 EDF1 3.60 4.88E)04 0.27 )0.028

HF982 QDPR )3.60 5.01E)04 0.28 0.029

HF7873 CORO1A )3.49 7.19E)04 0.66 0.23

Probeset, probeset name from HG-focus refseq transcript library [see

reference (Liu et al., 2007)]; gene symbol(s), HUGO symbol name or names

corresponding to current mapping of probeset sequence; Z, Z-score of

linear model of expression vs. age, adjusted for sex; P-value, probability of

observing a Z greater than that observed under the null hypothesis; H2,

heritability.
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highest estimated heritability (0.66), while expression levels

for RNH1 and TMEM142C do not appear to be heritable.

Spouse correlations are generally very low, with moderate

positive correlations observed for CDC6 (0.28) and CORO1A

(0.23).

Proportional hazards models of survival vs. gene

expression

We also tested for gene expressions most strongly associated

with survival, independently of their associations with age at

blood draw. Table 2 shows the ten strongest associations

between age-adjusted expression and survival after blood

draw among the 104 CEU grandparents. Corresponding data

for all genes are given in Table S3 (Supporting Information).

None of the observed effects exceeds the Bonferroni thresh-

old of 2.3 · 10)5, although CORO1A (coronin) comes quite

close. Nine of the ten strongest associations of age-adjusted

expression with mortality are negative, meaning that relative

overexpression of the gene is associated with reduced mortal-

ity. Interestingly, the one exception is TERF2IP (telomeric

repeat binding factor 2, interacting protein), which is thought

to protect telomeric DNA from nonhomologous end-joining.

Note that only one gene (CORO1A) appears in both Tables 1

and 2, supporting the notion that gene expressions strongly

associated with age at blood draw are not necessarily strongly

associated with survival, too. As in Table 1, most of the esti-

mated heritabilities in Table 2 are 0.25 or greater, while

CORO1A is again highest (0.66). No evidence for heritability

of expression was seen for TERF2IP, KIF2C, or EMP3. We

observed moderately strong positive spouse correlations for

IQGAP1 (0.22) and CORO1A (0.23).

A total of 167 (7.8%) expression levels were associated

with survival in the CEU grandparents at a nominal P < 0.05.

Of these, 48 were associated with age at blood draw at a

nominal P < 0.05. Table S2 (Supporting Information) shows

complete results for the 2151 always-expressed genes.

Combining information on age at draw and survival

after draw

The results shown in Tables 1 and 2 have limited power rela-

tive to the large number of comparisons because expression

data were available for only 104 grandparent samples. How-

ever, both the association of age with expression level, and

the association of expression level with survival after blood

draw, contains distinct and important information about the

relationship of gene expression to aging in humans. We used

two strategies to combine these pieces of information (see

Methods, below): (i) a test of the joint null hypothesis that

expression is related to neither age nor survival; and (ii) a

two-stage model that constructs a multivariate estimator of

biological age, then uses it to predict survival. We describe

these results below.

Tests of the joint hypotheses that expression is

related to neither age nor survival

Figure 1 shows the relationship between Z-scores for age

effects and survival effects on (age-adjusted) expression levels,

for the CEU grandparents. Using Fisher’s likelihood ratio

approach (Fisher, 1932), we compare the observed Z-scores

Table 2 Top 10 survival-associated expression levels in CEU grandparents

HG-focus

probeset

Gene

symbol Z P-value H2

Spouse

correlation

HF7873 CORO1A )4.20 2.64E)05 0.66 0.23

HF8664 IQGAP1 )3.60 3.19E)04 0.59 0.22

HF6054 AURKB )3.58 3.41E)04 0.34 )0.04

HF7038 TERF2IP 3.37 7.45E)04 0.064 0.0089

HF6482 CBX5 )3.37 7.46E)04 0.41 )0.058

HF8349 KIF2C )3.35 8.02E)04 0.046 0.035

HF657 ACTR2 )3.27 1.07E)03 0.45 0.068

HF2735 SPAG5 )3.21 1.31E)03 0.39 )0.012

HF2854 MTF2 )3.17 1.54E)03 0.25 0.040

HF7574 EMP3 )3.13 1.74E)03 0.068 )0.0026

Probeset, probeset name from HG-focus refseq transcript library [see

reference (Liu et al., 2007)]; gene symbol(s), HUGO symbol name or names

corresponding to current mapping of probeset sequence; Z, Z-score from

proportional hazards model of survival vs. age-adjusted expression; P-value,

probability of observing a Z greater than that observed; H2, heritability.
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Fig. 1 The standardized linear effect of age on each of 2151 expression

levels among 104 CEU grandparents is plotted on the x-axis against the

standardized effect of each expression level on mortality (log hazard rate

ratio). Larger red dots indicate the observed values; smaller black dots

represent values generated over 100 of the 1000 random permutations of

the phenotypic (age, sex, and survival) data associated with each

expression vector. Positive values on the x-axis indicate increased expression

with increasing age; negative values indicate decreased expression with

increasing age. Positive values on the y-axis indicate increased mortality risk

with increased expression; negative values indicate decreased risk. The

dashed line is drawn at the 50th largest v2 value observed in 1000

permutations of 2151 genes.
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(large red dots) to those generated by a 10% sample of 1000

random permutations of the phenotypic (age, sex, and sur-

vival) data, while keeping the expression vectors constant

(small black dots). The dashed ellipse is drawn at the 50th

largest chi-squared value observed for the 2151 always-

expressed genes and 1000 permutations. The results are

shown this way to approximate the fifth percentile of the null

distribution, adjusted for 2151 comparisons. Three genes fall

outside the threshold: CORO1A (0%), CDC42 (0.2%), and

AURKB (aurora kinase B; 1.5%). Expression of CDC42

increases with age among the CEU grandparents, and higher

age-adjusted expression is associated with higher mortality.

CORO1A and AURKB represent the opposite extreme of this

same pattern: expression decreases with age, and higher age-

adjusted expression is associated with lower mortality.

Overall there is a fairly strong positive correlation (r = 0.51;

P < 2.2 · 10)16) between Z-scores for age-related expression

change and age-adjusted survival in Fig. 1. The orientation of

this general pattern is described by the contrast between

CORO1A in the lower left quadrant, and CDC42 in the upper

right quadrant. Points located in the lower left quadrant (e.g.

CORO1A) represent expression levels that decrease with age,

and where relative underexpression is associated with higher

mortality. Points located in the upper right quadrant (e.g.

CDC42) represent expression levels that increase with age, and

where relative overexpression is also associated with higher

mortality. In contrast, the randomly permuted data are

distributed roughly equally around the origin, including many

points in the upper left and lower right quadrants. The

observed distribution includes relatively few points in these

quadrants, and none near the extremes of the null distribution.

It is likely that the results shown in Fig. 1 do not fully illumi-

nate all the patterns of age-related changes in gene expres-

sion and survival. Given that cross-sectional data were used to

estimate longitudinal patterns of gene expression, we might

worry that particular age-related trends in expression are con-

founded by differential survival, which could cause expressions

that do not change with age to appear to do so, or mask true

patterns of change. Associations of this type should occur in

the upper left or lower right quadrants of Fig. 1, because a

positive relationship between expression and mortality should

be associated with apparently declining expression, while a

negative relationship should be associated with apparently

increasing expression.

It is also possible to imagine examples of upper left and lower

right quadrant effects with a biological basis. For example,

expressions that reflect damage repair or detoxification pro-

cesses might rise with age and overexpression of these genes

might be beneficial to longevity. However, our results offer no

persuasive evidence that such associations are very common.

Multivariate models of biological age vs. survival

It is perhaps intuitively less appealing to examine the associa-

tion of variation in gene expression for complex traits one

gene at a time, than to allow all measured genes to compete

with one another simultaneously for inclusion in a model that

adjusts for correlations among expression levels. If the number

of samples were larger than the number of genes considered,

standard multiple linear regression methods might be a suit-

able approach to this problem. However, like most studies

involving microarray data, we have many more potential

predictor variables than independent samples. Numerous

approaches to the problem of more dimensions than data

points have been proposed, but many of them sacrifice inter-

pretability because they collapse correlated expression pat-

terns into composite variables without regard to biological

plausibility. Penalized regression approaches can be

interpreted much the same as multiple linear regression

because they preserve the original data; overfitting is avoided

by incorporating a ‘regularization parameter’ that penalizes

the likelihood function according to the number of terms in

the model. Several different penalized regression schemes

have been proposed, including ridge regression (Hoerl & Ken-

nard, 2000), bridge regression (Frank & Friedman, 1993), and

the LARS ⁄ LASSO (for least angle regression ⁄ least absolute

shrinkage and selection operator) family of approaches devel-

oped by Efron et al. (2004).

In the Methods section, below, we describe estimation and

cross-validation procedures for the LASSO model of biological

age. Figure 2a shows the leave-one-out cross-validation (LOO-

CV) curve observed over the first 40 steps (black line), com-

pared to LOOCV curves generated under 100 random

permutations of the phenotypic data. In Fig. 2b the blue line

plots the probability, at each step, that a model generated

from random data has a mean-squared error (MSE) as low as

the observed model; the red line plots P-values generated by

proportional hazards regression using the biological age esti-

mate as a predictor of mortality. It is clear from Fig. 2a,b that

the observed LOOCV curve is below the fifth percentile of the

distribution of random curves by step 14, and the observed

curve remains lower than any randomly generated curve for

all steps after step 28. Meanwhile, the predicted biological

age generated from the observed model is strongly signifi-

cantly related to survival after blood draw from steps 2 to 30.

The estimated MSE at step 14 is 57, corresponding to a pre-

diction error of ± 7.6 years (7.4 years at step 28). Figure 2c

shows the slope coefficients at steps 14 and 28.

The most parsimonious model with an MSE lower than

95% of simulations occurs at step 14. Coefficients of the

model, in decreasing order of absolute value, are: CDC42

(5.5), SEPT2 (1.6), PBX3 (1.1), CIB1 ()0.91), SH3BGRL (0.77),

UBE2A ()0.71), RNH1 ()0.60), PPP1R11 (0.55), QDPR ()0.48),

DDX24 (0.36), GINS2 ()0.30), LPXN (0.24), and ACAA1

(0.16). Clearly, the positive association of CDC42 with age at

draw dominates this model. This remains true at steps 20, 40,

60, and 80 (data not shown). Expression levels of CDC42,

SH3BGRL, QDPR, and RNH1 were also among the ten most

strongly associated with age at draw for CEU grandparents in

the univariate analysis reported in Table 1. In the LOOCV
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models, all the selected terms were included over 85% of the

time at step 14, with the exception of LPXN (39%), DDX24

(4%), and ACAA1 (0%).

We used the step 14 model from Fig. 2c to generate esti-

mated biological ages for the CEU grandparents, then include

them together with chronological age at draw and sex, in a

proportional hazards model of survival. As expected, predicted

biological age was positively associated with mortality. The

hazard rate ratio (an estimate of relative risk) for a single year

increase in estimated biological age was 1.33 (95% CI: 1.10–

1.62).

An alternative approach to modeling survival as a function

of estimated biological age would be to model it as a function

of the difference between biological and chronological age.

This is equivalent to forcing both biological age and chrono-

logical age to have the same slope (with opposite signs), and

is efficient only if both variables are scaled identically. We

evaluated this approach by rescaling biological age to have 0

mean and unit variance, then multiplying by the standard

deviation of chronological age (7.9) and adding the mean

chronological age (71.5); that technique produced results (not

shown here) essentially identical to our original method,

reported above.

Multivariate models of survival vs. expression level

The above analysis demonstrates that biological age, esti-

mated from gene expression levels that change with age, is a

significant predictor of remaining life span. An important

potential weakness of this analysis is that it places too much

emphasis on gene expressions that vary systematically with

age in cross-sectional data. As noted above, the confounding

of differential survival effects with age-related changes in

expression could mask the effects of genes that regulate or

contribute to survival.

In an effort to circumvent this limitation, we also applied the

LASSO approach to model survival as a direct multivariate func-

tion of expression levels. We computed deviance residuals from

a baseline survival model adjusted for age at draw and sex, and

used LASSO to identify expression levels associated with
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Fig. 2 Least absolute shrinkage and selection

operator model of biological age. At each step,

an additional gene may be added to or

subtracted from the model. (a) Mean square

classification error (MSE) estimated by cross

validation, for the observed data (black line), and

100 random permutations of phenotype data

(blue lines); (b) probability of observing MSE less

than or equal to the observed MSE (blue), and

P-value of biological age estimate as a predictor

of mortality (red); dashed line is 0.05; (c) slope

estimates for gene expressions included in the

14-step model (solid bars), and the 28-step model

(hashed bars), showing how the estimated effect

of a gene changes as more genes are added to

the model. All models between steps 14 and 28

are both significantly better at estimating

biological age than models based on random data

and significantly better at predicting future

mortality than models based on age and sex

alone.
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variation in the deviance residual [see Methods and reference

(Segal, 2006)]. We used the same permuted LOOCV approach

for cross validation and permutation tests of significance

(described above and in Methods). Results are shown in Fig. 3.

Figure 3a shows the cross-validation results compared to

results of 100 random permutations of the phenotype data; a

minimum is reached at step 7. In Fig. 3b, the observed cross-

validation MSE was smaller than 94% of those observed in

permuted data at step 7. Model coefficients are in order of

decreasing absolute value: CORO1A ()0.27), FXR2 (0.21),

CBX5 ()0.074), PIK3CA ()0.0094), AKAP2 ()0.0086), and

CUL3 ()0.0081). The model is dominated by the positive asso-

ciation between FXR2 expression and mortality, and the nega-

tive association between CORO1A expression and mortality.

Negative associations of AKAP2, CUL3, CBX5, and PIK3CA

with mortality also contribute to the model. Table 3 shows

that the linear predictors generated by this model are strongly

associated with survival: P-value = 4.0 · 10)8; inter-quartile

relative risk (IQRR) = 2.35; median estimated survival differ-

ence = 5.5 years. Predicted mortality from the model

accounts for 23% of the variation (R2 = 0.23) in survival

among the CEU grandparents. Model coefficients for individ-

ual genes are converted into IQRR in Fig. 3c and plotted on a

log scale.

The nominal P-value given in Table 3 for the overall data is

very low, but unsurprising, given that the same survival data

were used for estimation and testing. Evaluating the ability to

predict survival in selected subgroups (e.g. males vs. females,

for various causes of death, or varying numbers of years after

blood draw) may be more informative than showing how well

the model fits the overall data. Table 3 shows that the model

predicts similar mortality risks for males and females. As age

is the single largest risk factor for multiple life-threatening dis-

eases, a biomarker that truly reflects biological age (or rate of

aging) should be associated with risks of dying from not one,

but several common causes of death due to age-related dis-

eases. Therefore, we tested the panel of gene expressions

from the survival model (LASSO) for associations with mortality
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Fig. 3 Least absolute shrinkage and selection

operator model of survival. At each step, an

additional gene is added to or subtracted from

the model. (a) Mean square classification error

(MSE) estimated by cross validation, for the

observed data (black line), and 100 random

permutations of phenotype data (blue lines);

(b) probability of observing MSE less than or equal

to the observed MSE (blue), and P-value of overall

model as a predictor of mortality (red); dashed

line is 0.05; (c) estimated interquartile relative

risks for terms included at step 7, showing the

estimated effect of a typical variation in gene

expression on the relative risk of dying. Models

with between four and eight genes included are

better at predicting future mortality than 90% of

models generated from random data, with a

minimum P-value of 0.06 at step 7.
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risks for the common causes of death. Table 3 shows that the

LASSO model predicts risk from multiple causes of death, in

spite of very small sample sizes, with a particularly strong (but

imprecisely estimated) effect for deaths attributed to diabetes.

It is worth noting that the number of causes of death listed in

Table 3 (6) is larger than the number of genes contributing

importantly to the model (3), so the possibility that these

associations are caused by overfitting seems slight.

Table 3 also shows that the LASSO model remains strongly

predictive of mortality for at least 10 years following blood

draw. Thus, these associations are not likely due to the pres-

ence of terminal diseases in some research subjects at the

time of enrollment in the study.

Although Table 3 demonstrates that the predicted model is

not strongly affected by subgroup influences on gene expres-

sion, a more robust assessment of whether the fit of the

model was produced by chance is given by the permutation

distribution of cross-validation curves shown in Fig. 3b. The

minimum cross-validation MSE of the model is smaller than

94% of those generated by random permutation of the phe-

notype data (step 7). Therefore, there is approximately a 6%

probability that the LASSO model of survival, based on 2151

measures of gene expression, fits our data this well by

chance.

Environmental exposures

Inter-individual differences in gene expression profiles in the

Utah CEU lymphoblastoid cell lines may reflect not only heri-

table genetic influences, but also environmental exposures

experienced at any time prior to blood draw. Therefore, we

considered the possibility that gene expressions associated

with survival may simply reflect exposures (or nonexposure) to

a common toxic agent, such as cigarette smoke. The data

available to us do not contain information on environmental

exposures; however, affiliation with the Church of Jesus Christ

of Latter-day Saints (or LDS church), available from the UPDB,

indirectly provides information about exposures that affect

mortality risks. Merrill et al. (2003) using data from the 1996

statewide Utah Health Status Survey, report that 9.2% of LDS

men (vs. 24.5% of non-LDS Utah men) reported being current

smokers, while only 4.1% of LDS women reported smoking

(vs. 23.1% of non-LDS women). Of the 104 grandparents

with expression data who linked to the UPDB, 77 (74%) were

strongly affiliated with the LDS church, and this is probably an

underestimate because UPDB data are very incomplete in this

regard. We thus would expect only a small number (probably

less than ten) of the grandparents to have been smokers.

In previous work with the UPDB, we have shown that reduced

smoking and alcohol consumption among active church mem-

bers probably accounts for 1.3 additional years of life expec-

tancy compared to Utahans unaffiliated or inactive in the

church (Kerber et al., 2001). Inclusion of church affiliation as

a covariate in the survival models slightly strengthens the rela-

tionship of the model predictions to survival (data not shown),

indicating that the results reported in Table 3 are not con-

founded by smoking. Furthermore, none of the genes listed in

Table 2, or included in the LASSO survival model, have been

reported to be significantly affected by cigarette smoking

(Ryder et al., 2004; van Leeuwen et al., 2005).

It is apparent in Tables 1 and 2 that spouse correlations for

some individual gene expressions are moderately high. Across

the entire set of 2151 always-expressed genes, the highest

observed spouse correlation is 0.50 (PRSS3). CORO1A and

IQGAP1 exhibit spouse correlations > 0.2, although the

estimated heritability for each is quite high. The mean spouse

r2 across the entire dataset is 0.962 while the maximum r2 for

100 random pairs of grandparents was slightly smaller (0.958;

minimum = 0.952, mean = 0.955). Overall, then, spouse

expression profiles are slightly more strongly correlated than

Table 3 Performance of LASSO mortality model by sex, cause of death, and time since blood draw

Subset At risk Deaths IQRR Z P-value

Median survival

1st quartile

Median survival

4th quartile

All 104 72 2.35 5.49 4.0E)08 89.3 83.8

Males 52 40 2.73 3.76 0.00017 90.5 81.7

Females 52 32 2.31 3.99 6.6E)05 88.8 84.7

Cause of death

Heart 104 19 2.17 2.65 0.0080

Cancer 104 14 2.37 2.14 0.032

Stroke 104 11 3.73 3.54 0.00040

Diabetes 104 5 7.72 3.21 0.0013

Inf ⁄ Pneu 104 5 3.48 2.49 0.013

Cognitive 104 10 2.57 2.12 0.034

Years after blood draw

1 103 71 2.35 5.46 4.8E)08 89.1 82.6

3 95 64 2.27 4.75 2.0E)06 89.4 84.6

5 88 57 2.53 4.27 2.0E)05 90.4 85.2

10 72 41 2.41 3.30 0.00097 91.5 88.1

IQRR, relative risk comparing the 75th percentile of estimated risk (0.21) to the 25th percentile ()0.03), adjusted for actual age and sex; median survival 1st

quartile, estimated median survival for subjects at the 25th percentile of estimated risk (adjusted for age and sex); median survival 4th quartile, estimated

median survival for subjects at the 75th percentile of estimated risk (adjusted for age and sex).
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expected by chance, although the level of correlation among

all expression profiles is very high. Interestingly, however, the

correlation of mortality risk between spouses (using the

deviance residuals from the baseline proportional hazards

model – see Methods) is only 0.075 (P-value 0.45), so

correlations in expression are not likely to confound the sur-

vival analysis.

Discussion

It is not surprising to find that gene expression patterns vary

with age, nor that variation in gene expression correlates with

variation in longevity; many studies in model organisms have

clearly demonstrated these associations. However, the obser-

vation that patterns of gene expression in lymphoblastoid cell

lines contain information about both the age and subsequent

survival of human donors is both biologically interesting and

potentially of great clinical utility.

While Fig. 1 shows clearly that, in general, the intensity and

direction of age-related change in expression of a gene among

the CEU grandparents is related to the strength of association

of that gene’s expression with survival, identifying individual

genes that are most strongly related to aging is less simple. We

have taken a variety of approaches to this task, and several

genes appear to be important in more than one context. In par-

ticular, CDC42 and CORO1A appear to be associated with both

age at draw and survival after blood draw, whether univariate

or multivariate approaches are applied. CDC42 expression

increases with increasing age among the CEU grandparents,

and, after adjusting for age, higher expression of CDC42 is

associated with higher mortality. CDC42 is also the dominant

factor in our multivariate model of biological age, which is a sig-

nificant predictor of mortality. Recently, Wang and colleagues

reported that mice deficient in a negative regulator of Cdc42

(Cdc42GAP) exhibited constitutively elevated Cdc42 expression

and phenotypes consistent with premature aging, including:

osteoporosis, muscle atrophy, and impaired wound-healing.

According to Wang et al.:

‘‘Our findings that Cdc42 activation is associated with natu-

ral aging and that Cdc42GAP deficiency causes a DNA dam-

age repair defect to allow cells to accumulate genomic

abnormalities that leads to early senescence further suggest a

functional link between Cdc42 activity and mammalian aging

(Wang et al., 2007).’’

The results of this study support this conclusion.

Coronin (CORO1A) is an actin-binding protein with poten-

tially important functions in both T-cell mediated immunity

and mitochondrial apoptosis (Dustin, 2006; Foger et al., 2006;

Mueller et al., 2008). Shiow et al. (2008) report that coronin

defects in mice cause peripheral T-cell deficiency, and describe

a human patient with severe combined immunodeficiency

who had mutations in both coronin alleles. A nonsense muta-

tion in CORO1A has recently been shown to suppress

autoimmune response in a mouse model of systemic lupus

erythematosus (Haraldsson et al., 2008), further suggesting

that coronin is critical to immune functioning. Moreover, the

inadvertent coronin knockout mice of Haraldsson et al. show

substantially decreased mitochondrial membrane potential

and increased apoptosis in T cells, but not in B cells.

Several other genes exhibiting associations with either aging

or survival are worthy of note. AURKB is a key member of the

chromosomal passenger complex which is critical in the regu-

lation and conduct of mitosis (Ruchaud et al., 2007). Inhibi-

tion of AURKB in tumor cells leads to growth inhibition and

apoptosis (Yang et al., 2007). CBX5 encodes the human HP1a

heterochromatin protein, importantly involved in the construc-

tion and maintenance of chromatin and hence an important

regulator of gene expression. CBX5 expression decreases with

age in the CEU grandparents, and reduced expression is asso-

ciated with greater mortality. Likewise, reduced expression of

IQGAP1 is associated with increased mortality, although

expression of IQGAP1 is not strongly related to age. Interest-

ingly, IQGAP1 is an effector of CDC42, and is involved in mul-

tiple signaling pathways (Brown & Sacks, 2006). Goring et al.

(2007) report a LOD score for cis-regulation of IQGAP1

expression of 5.8 (chromosome 15, 99 cM). Similarly, we find

that, in the 60 CEU grandparents genotyped by the

International HapMap Projects (http://www.hapmap.org), sev-

eral single nucleotide polymorphisms near the IQGAP1 gene

are strongly associated with IQGAP1 expression (rs1702161,

rs3862432, rs3862435, and rs3862436).Thus, the region

immediately surrounding IQGAP1 may harbor genetic variants

associated with variation in human lifespan.

It is puzzling that relative overexpression of TERF2 interact-

ing protein (TERF2IP, aka hRAP1) in lymphoblastoid cell lines is

associated with increased mortality, because increased expres-

sion of TERF2IP should lead to increased telomere length (Li &

de Lange, 2003), which has been associated with decreased

mortality in the CEU grandparents (Cawthon et al., 2003).

Unlike IQGAP1, variation in TERF2IP expression is not highly

heritable, either in transformed (H2 = 0.09; P = 0.10 in our

data) or untransformed (H2 = 0.15; P = 0.054 in Goring

et al., 2007) lymphocytes. In fact, TERF2IP expression was

uncorrelated with subjects’ telomere lengths as measured in

whole blood (r = 0.04). This may be a consequence of the cell

transformation process, which activates telomerase so that cell

lines may grow indefinitely in culture; possibly variable TER-

F2IP expression is marking some variation in telomerase activ-

ity in transformed lymphocytes that is indirectly related to

longevity. A recent report links longer telomeres to increased

risk of breast cancer (Svenson et al., 2008). Among the CEU

grandparents, however, TERF2IP expression was not signifi-

cantly associated with cancer mortality risk.

Because of the large number of comparisons we have gener-

ated for a relatively small number of samples, and because the

potential for measurement error is inherent in microarray data,

the associations we have observed require confirmation in

other settings. Associations between gene expressions and

survival may be due to causal roles in regulating aging; alter-

natively, the expression of a gene may not reflect a regulatory
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role in aging, but nevertheless may serve as a reliable indicator

of overall health and remaining life expectancy. Strong evi-

dence for a regulatory role in aging would be provided by

experiments in model systems showing that modulating

expression extended lifespan. Within the CEU family data, we

are pursuing linkage and genetic association studies to identify

loci responsible for regulating expression of the heritable

expression phenotypes associated with longevity. The identifi-

cation of germ line variants that affect the expression of lon-

gevity-associated genes will facilitate further high-throughput

genetic epidemiologic studies of human aging. However, even

the nonheritable gene expression patterns we have reported

may have considerable relevance to mechanisms of aging and

age-related disease processes. Finally, we note that expression

data are available for approximately 6000 genes not included

in the ‘always-expressed’ list to which we restricted this analy-

sis. Approximately half of these genes are expressed in many,

but not all samples. The other half are rarely, if ever, expressed

above background. We plan to investigate the association

between longevity and expression of these genes as well.

We have described some striking patterns of association of

gene expression with age and mortality, based on lymphoblas-

toid cell lines derived from ordinary blood samples, and stored

for years as a replenishable source of DNA for genetic studies.

If these results can be confirmed by others, frozen cell lines

may also have considerable value as sources of phenotypic

information on transcription, translation, and other cellular

processes helpful in predicting the future health of the donors.

Materials and methods

The CEPH ⁄ Utah family resource originated from bloods drawn

from 46 three-generation families, each consisting of 5–15

siblings, their two parents, and two to four grandparents who

were still alive at the time of the family blood draws in the

early 1980s (White et al., 1985; Dausset et al., 1990). All sub-

jects signed written forms giving informed consent for sam-

ples to be used in health research on the condition that

names were not to be released in reports or published. The

University of Utah IRB has approved this research project.

Cheung and co-workers (Cheung et al., 2003, 2005; Morley

et al., 2004) extracted RNA from transformed B lymphocytes

obtained from the Coriell Cell Repository (http://locus.

umdnj.edu/nigms/ceph/ceph.html) for a total of 247 CEU

family members (124 male; 123 female), including 104 of the

grandparents for whom we had survival data. Expression

levels for 8793 probesets were measured using Affymetrix

HG-Focus arrays. The resulting expression data were deposited

in the NCBI Gene Expression Omnibus database, accession

numbers GSE1485 and GSE2552. We combined both datasets

to maximize the number of individuals available for study.

Each probeset on the HG-Focus array consists of a set 11–

20 pairs of probes, each consisting of a 25-mer oligonucleo-

tide representing a ‘perfect match’ to the target sequence

and a ‘mismatch’ probe made by substituting an alternative

nucleotide at the 13th position. Several recent studies

(Mecham et al., 2004; Dai et al., 2005; Liu et al., 2007) have

shown that the original mapping of probes and probesets to

genes, based on the human UniGene Build 133 database,

contains many errors. To improve the fit of probesets to

genes, we used the ‘HG-Focus RefSeq Transcript’ mapping

supplied by Liu et al., available from http://gauss.dbb.george-

town.edu/liblab/affyprobeminer/transcript.html. After re-map-

ping, 8174 probesets were available for analysis.

We tested whether each gene was expressed beyond base-

line in each sample using the Wilcoxon signed rank test as

described in the Affymetrix Microarray Suite version 5 (Liu

et al., 2002). This is a test for absolute ‘presence’ vs.

‘absence’, testing if the observed signals for each probeset

were significantly greater than background. For purposes of

the present analysis, we eliminated from consideration all

probesets that were not called ‘present’ (P < 0.04) or ‘mar-

ginal’ (P < 0.06) in each of the grandparents’ samples. This

step left us with 2151 always-expressed genes.

We used Wu and Irizarry’s GeneChip robust multiarray aver-

aging (GCRMA) method to normalize all expression levels(Wu &

Irizarry, 2005). The GCRMA and MAS 5.0 algorithms we

employed were implemented in the ‘affy’ and ‘gcrma’ pack-

ages available from the Bioconductor website (http://

www.bioconductor.org).

We evaluated all samples for outlying observations in rela-

tion to average background, scale factor, number of genes

called ‘present’, and 3¢ to 5¢ ratios for GAPDH, following the

procedures described by Wilson et al. (2004). We excluded 12

samples from analysis because they were out-of-range for at

least one test. In addition, five samples exhibited inappropri-

ately high or low levels of expression of both RPS4Y1,

encoded on the Y chromosome, and the X-inactivating

sequence transcript (XIST), expressed only in women. Without

exception, in women high expression of RPS4Y1 was coupled

with low expression of XIST, and in men low expression of

RPS4Y1 was coupled with high expression of XIST. As all

grandparents are by definition fertile, we could rule out sex

chromosome abnormalities as an explanation. We excluded

these samples on the grounds that they had been mistakenly

attributed to the wrong person. After these exclusions, at

least one sample from 238 individuals (including all 104

grandparents) remained.

Many CEU family members, including most of the grand-

parents, had expression data available from multiple arrays

(usually two, although two of the grandparents had four

arrays available). For these individuals, we averaged gcrma-

corrected expression levels for each probeset prior to analysis.

Univariate analyses

We performed two separate analyses of expression as a

function of age at draw. First, we considered only the grand-

parents, who were effectively unrelated to one another,

although careful analysis of the records of the UPDB (Wylie
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& Mineau, 2003) has revealed that a few of the CEU grand-

parents are distantly related. The grandparents’ expression

data represented were treated as independent observations,

and we used ordinary least squares methods to regress

expression level for each of the always-expressed probesets

against age, adjusting for sex. Zhang et al. (2007) have

already reported on patterns of sex-specific expression in

these data.

Strong genetic correlations in expression level should be

present within each three-generation CEU family. For this rea-

son, standard linear regression approaches are not appropri-

ate for the study of age-related variation in expression

patterns. Instead, we used linear mixed-effects models to

adjust for the kinship among family members (Therneau,

2007). The substantially larger sample size (238 vs. 104) and

wider range of ages at draw (5–97 vs. 57–97) led us to con-

sider both linear and quadratic effects for age at draw in the

three-generation families. Otherwise, the model fit was the

same as for the grandparents: expression level was modeled

as a function of age at draw, age squared, and sex. Heritabil-

ity estimates were computed for three-generation pedigrees

using SOLAR (Almasy & Blangero, 1998). These results are

given in Tables S1 and S2 (Supporting Information).

Survival models

Grandparents ranged in age from 57 to 97 years of age at

the time of the blood draw. Median follow-up age was

84.7 years (range 65.7–100.8). Survival was measured from

age at draw to age at death or follow-up. We used a propor-

tional hazards model adjusting for sex, year of birth, and age

at draw to test the association of each expression level with

survival. Each proportional hazards model was tested for non-

proportionality using the cox.zph function in the R software

package (http://www.r-project.org). Although some nonpro-

portionality was detected with P-values below 0.0001, none

of the genes strongly associated with survival had a P-value

for nonproportionality lower than 0.28 (EMP3).

Bivariate age-at-draw vs. survival models

We computed Fisher’s (1932) likelihood ratio test of the com-

posite null hypothesis that expression was unrelated to either

aging or longevity. We generated 1000 random permutations

of the survival data because of concerns that age at blood

draw was not completely independent of survival after blood

draw, even under the null hypothesis. Random permutations

were generated by shuffling the rows of a matrix that

included age at draw, age at follow-up, sex, and vital status

as columns. For each iteration, the randomly ordered pheno-

types were assigned to the unpermuted gene expression vec-

tors, and computed the linear regressions on age at draw,

the proportional hazards models and the Fisher test. This pro-

cedure allowed the correlation structure of the expression

data, and the correlation structure of the survival data to

remain intact, while testing the relationship between the two

datasets.

Adjustment for multiple comparisons

Adjustments for multiple testing are clearly appropriate in this

context, but many methods mask hidden assumptions about

the dependency structure of the data or the true proportion

of false null hypotheses (Reiner et al., 2003). Even permuta-

tion-based methods may retain some vulnerability to hidden

dependencies within microarray data (Efron & Tibshirani,

2007). We therefore employ a simple Bonferroni correction in

presenting the results of the univariate analyses, and a Monte

Carlo permutation test in presenting the results of the

bivariate analyses.

Multivariate analyses

LASSO models of biological age

To assess the relationship between age at draw and multiple

expression levels, we employed the LASSO algorithm of Tibsh-

irani (Tibshirani, 1996; Efron et al., 2004) to build a linear

model of age at draw as a function of multiple expression lev-

els. We used only the grandparents’ data to avoid complex

dependency structures. Briefly, the LASSO approach minimizes

the residual sum of squares in a multiple regression model

subject to the constraint that the sum of the absolute values

of the standardized coefficients is less than a specified con-

stant. Efron et al. (2004) showed that computing all possible

LASSO models is feasible and provides a basis for rationally

choosing among them, by minimizing Cp or by cross

validation.

Cross-validation procedures divide the data at random into

K equal subsets, and, for i = 1 to K, use all the data not in

the ith subset to estimate the model, and the data in i th sub-

set to test the model predictions. The goal is to find the value

of the tuning parameter that minimizes the mean square pre-

diction error across the K subsets. With relatively small data-

sets, however, K-fold cross-validation procedures are often

unstable (Segal, 2006) – this proved to be the case with the

present data set.

We set K = 104, which leads to the LOOCV procedure

(LOOCV) in our sample of 104 grandparents. We compared

the resulting LOOCV curve to curves generated from 100 ran-

dom permutations of the data, performed as described above.

Comparing the cross-validation curve to a null distribution of

cross-validation curves not only gives information on the opti-

mal setting of the tuning parameter, but also on the probabil-

ity that the result is due to chance.

For each value of the tuning parameter, corresponding to a

step in which a predictor variable can be added or dropped,

the model selected was used to predict each subject’s age at

draw. These ‘biological age’ estimates, together with the sub-

jects’ actual age and sex, were used to predict age at death

in a proportional hazards model.
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LASSO models of survival after blood draw

We followed the approach of Segal (2006), using the LASSO

approach described above to regress the deviance residuals of

a baseline proportional hazards regression (adjusted for sex

and age at draw) against the set of expression levels. These

permuted LOOCV approach described above to identify opti-

mal settings for the tuning parameter and to assess the prob-

ability that the observed pattern was the result of chance.
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