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Abstract: As the life expectancy of individuals increases with recent advancements in medicine
and quality of living, it is important to monitor the health of patients and healthy individuals on
a daily basis. This is not possible with the current health care system in North America, and thus
there is a need for wireless devices that can be used from home. These devices are called biomedical
wearables, and they have become popular in the last decade. There are several reasons for that, but the
main ones are: expensive health care, longer wait times, and an increase in public awareness about
improving quality of life. With this, it is vital for anyone working on wearables to have an overall
understanding of how they function, how they were designed, their significance, and what factors
were considered when the hardware was designed. Therefore, this study attempts to investigate the
hardware components that are required to design wearable devices that are used in the emerging
context of the Internet of Medical Things (IoMT). This means that they can be used, to an extent,
for disease monitoring through biosignal capture. In particular, this review study covers the basic
components that are required for the front-end of any biomedical wearable, and the limitations that
these wearable devices have. Furthermore, there is a discussion of the opportunities that they create,
and the direction that the wearable industry is heading in.

Keywords: wearables; hardware; internet of medical things (IoMT); electronic textiles; signal
acquisition; edge computing

1. Introduction

Technology advancements in recent years have caused an explosion of smart and highly connected
computing devices that are in a small form factor. Nearly all of us have encountered some sort of
communication device, whether it be in entertainment, health, or lifestyle [1]. The miniaturization
of hardware played a significant role in this advancement; however, a lesser-known factor was the
Internet [1,2]. The internet played one of the most important roles in this technology advancement,
and it is mainly due to the transformation it has gone through since the 1990s. During that time,
the Internet was used primarily for communication purposes (emails); however, all that changed
in the 2000s with the introduction of wireless technologies, such as the mobile phone [2]. Billions
of users were now connected to the Internet, and this eventually lead to the ongoing phenomenon
called the Internet of Things (IoT). The IoT connects items, such as robots, sensors, and actuators,
to the internet [2]. When these items are worn by a person they are called wearables, and usually
allow the individual to manage their health and safety. Getting into the proper definitions, the IoT
is simply defined as a network of physical objects that are supported by sensors and embedded
technology for data communication that allow for interaction with the environment [3]. Furthermore,
wearable devices are defined as devices that can be worn by an individual and can continuously
monitor an individual’s activity without interruption [3,4]. These wearables use sensors, such as

Sensors 2018, 18, 3812; doi:10.3390/s18113812 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/18/11/3812?type=check_update&version=1
http://dx.doi.org/10.3390/s18113812
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3812 2 of 21

tri-axial accelerometers, magnetometers, altimeters, and gyroscopes, to create an intuitive virtual
environment [3,5].

Due to the fast-paced ongoing development that is occurring in the IoT domain, it is important
to understand some of the key terminologies and their variations that are used by engineers and the
Industry. We start with the Internet of Wearable things (IoWT); simply put, this is the combined use
of the IoT and wearable devices. As development continues on wearables, they start to incorporate
advanced features and we start to transition into the Internet of Wearable Things [2]. It is evident
that wearables significantly benefit from the IoT, and, hence, we see that they have already made it
into many aspects of our lives, such as in fashion, health, and entertainment [1,2]. Some well-known
examples of IoWT devices in the market are computerized watches, such as the Samsung Gear and the
Apple watch. They can gather information, such as a user’s step count, pulse rate, kilometers travelled,
and calories burnt [5]. One distinction to consider is that these devices are lifestyle devices; however,
the Health Industry is one of the most promising industries for IoT applications. In the same way as
the IoWT, when wearables are used in medical applications, it creates another term and an industry
called the Internet of Medical Things (IoMT). Biomedical wearables are then the devices used in the
IoMT and, thus, function through the cloud to perform complex tasks. An architectural diagram is
shown in Figure 1 below. This industry is pushing towards minimizing the size of the wearable while
capturing more vital signs, and finally sending reliable and secure data [3].
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Biomedical wearables are especially important when considering the fast-paced lifestyle of most
working-class people nowadays. A significant portion of the day is spent commuting between tasks,
and often health and fitness are overlooked. In addition to that, the time-consuming task of going to the
doctor for a diagnosis, a prescription, and then the treatment results in many people avoiding the doctor
or going to a clinic until it is absolutely necessary [3]. This is why a significant amount of research
is being done on ways to monitor a patient’s health and send the physician real-time data of their
health parameters [3]. As a matter of fact, the implementation of these wearables creates a preventative
approach to medicine where individuals can monitor their own biosignals longitudinally. This can also
be referred to as telehealth, and, with the aid of the IoT, telehealth has become a prominent market.
Telehealth, or telemedicine, is simply defined as the integration of communication technologies and
healthcare, where technology is used as a medium to deliver the healthcare services [8]. Physicians or
health staff can then remotely monitor the patient’s condition and provide medical suggestions and
aid. Finally, data can also be stored on the cloud or secure servers for later use.
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To understand the significance of the IoT, wearables, and telemedicine, we will be looking at
some crucial facts and numbers. The IoT is said to be the next trillion-dollar industry, and The
Global Wearable Technology market has grown significantly since 2012. In 2012, it was 750 million
and now, in 2018, it is worth 5.8 billion [4]. Furthermore, U.K.-based research projects estimated
a 10-fold increase in the number of wearable devices being shipped in the last 5 years. They found
that the number increased from 13 million in 2013 to 130 million in 2018 [4]. In North America alone,
the wearable device market is said to reach out to 385 million users [5]. Currently, in the market,
there are 429 wearable devices and they have an average price of $326 USD. Within this, there are only
87 medical devices, since the majority of wearable devices are targeted towards lifestyle and fitness [9].
Moving on to The Global Telehealth and Telemedicine Market, it was worth 34 billion in 2015, and is
projected to increase to 79 billion by 2020 [10,11]. This is why, in the last decade, wearable devices,
the IoT, and telemedicine have attracted major attention from the academic community, governments,
as well as the industry, which has led to their current popularity. For example, in 2009, GE and Intel
Corporation worked together to create the Intel Health Guide. It is a home-based telehealth technology
that focusses on aiding seniors that live independently and patients with chronic care to manage their
care and symptoms from their homes [11]. As can be seen, there is a significant interest that will
continue to develop for research units in providing new and innovative products as well as improving
the currently available products.

With that in mind, our review study is focused on investigating the possible biomedical wearable
designs for non-invasive applications. Specifically, we are investigating the front-end hardware
components that are required for the design of these wearables and a short discussion on how they
can be used for analyzing clinical conditions. Some typical bio-signals that can be obtained from
these wearables include: photoplethysmogram (PPG), electromyogram (EMG), electroencephalogram
(EEG), movement data (such as gait) and body sounds. This review study is organized as follows:
Section 2 will provide a brief background on the signals, important distinctions, and factors to consider
before designing a wearable. Section 3 will introduce the necessary components for designing working
biomedical wearables. We will investigate their specifications as well as look at a possible modality that
can be used for data transfer. Section 4 will discuss some of the limitations that these wearables have
as well as some of the advantages. Section 5 will conclude this review with a review on opportunities
for textile wearables, and the direction the wearables industry is heading in.

2. Background and Factors to Consider

2.1. Sample Biomedical Signals

The body generates many waveforms, and they can be captured from various parts of the body
using different sensors. The four commonly used signals for biomedical wearable purposes are
outlined in this section. Table 1 includes their frequency ranges.

Table 1. The frequency range of common biomedical signals.

Signal Frequency Range (Hz)

PPG 0.5–5 1

EMG 50–150 1

Cardiac Auscultation 20–420 1

Gait Analysis 0–15 1

1 Ref. [5,8,12,13] respectively.

2.1.1. Photoplethysmogram (PPG)

Photoplethysmography (PPG) technology has been at the center of the recent development of
biomedical wearables, whether it be in medical or lifestyle applications. This is primarily due to
the need to measure heart rate variability effectively. Traditionally, to obtain accurate Heart Rate
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Variability (HRV) data, an electrocardiogram (ECG) signal is used, and HRV is measured as the
variations in the peak-to-peak time interval for successive cardiac cycles. This is also known as the
R-R interval. In diagnostics, HRV analysis provides significant information on the sympathetic and
parasympathetic function of the Autonomic Nervous System (ANS) [14,15]. Hence, it is important
to measure HRV; however, there are some limitations to acquiring the ECG signal. Firstly, it requires
at least three electrodes positioned at specific anatomical positions. Secondly, ECG instruments are
not suitable for daily use at home and also require trained technicians and nurses for use. Finally,
the electrodes may cause irritation to the patient’s skin [12]. This is why significant effort has been
made to measure HRV by using PPG. Moving on, another important parameter than can be captured
by PPG is the atrial blood oxygen saturation level of the patient, also known as SpO2 [16]. Oxygen
saturation (SpO2) is the percent of oxygen-saturated hemoglobin when compared to the rest of the
blood. Blood in the body is either oxygenated or deoxygenated, and they both have different light
absorption characteristics [12,16]. This is an important physiological parameter for monitoring blood
circulation and respiration.

Having understood the significance and importance of PPG, the simple definition of
photoplethysmogram or PPG is that it is a non-invasive optical technique to measure blood
volume changes in the microvascular bed of tissue [14]. The basics of how an PPG sensor works
is a light-emitting diode (LED) light penetrates the skin, light travels through the tissue, and then the
signal is received by the photo detector. The most common locations to detect PPG signals are the
finger-tip and at the wrist. Depending on which location is chosen, different techniques need to be
used to detect the signal from the finger-tip or wrist. There are two types of techniques: Transmittance
and Reflectance. Transmittance detects the light transmitted through the tissues by a photodiode
that is kept opposite of the light source, and is commonly used in fingertip-type sensors. Reflectance
detects the intensity of reflected light using a photodiode that is kept on the same side as the light
source, and is commonly used in wrist band applications [17]. Some common examples of this are
the iHeart device that clamps on to your finger and the Fitbit device that detects the signal from the
wrist shown in Figure 2 below. [18,19]. Moving on to light sources, there are three different types:
Green, red, and infrared. Green LEDs have been shown to be more accurate for sensing heartrates,
while red and infrared LED light sources are mainly used to calculate oxygen concentrations because
of their different penetration intensities [15]. The reflections that are measured by the PPG sensor are
highly associated with the variations in the blood perfusion of the tissue, and are used for obtaining
heart-related information of the cardiovascular system [14]. Another advantage to using PPG is that
it can be applied to any blood-bearing tissue, and it is entirely non-invasive. The importance of this
signal is in fact due to the low cost, user flexibility, and the portability of the sensors that are used
to capture the PPG [14]. Estimating heart rate from PPG is challenging due to motion artifacts in
PPG signals. These motion artifacts can be caused by respiration, blood pressure oscillation, circadian
biorhythm, and thermoregulation. Some popular techniques used to measure HRV are: performing
a power spectral analysis of the peak-to-peak interval and the finite harmonic sum model using
an accelerometer to capture motion artifacts [15,17].
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2.1.2. Electromyography (EMG)

For the past few decades, surface EMG, or just EMG, has been successfully used in medical and
research applications that allow for the diagnosis of a wide range of motor and neural conditions [20].
EMG is a technique that measures the response of a muscle when an electrical stimulation is applied by
the nerves [5]. This electrical stimulation is known as the action potential (AP), and the signal (EMG) at
the skin’s surface is the summation of the electrical activity of the motor unit action potential (MUAPS).
There are two ways to measure EMG: one is by an invasive approach that uses a needle, and the other
is a non-invasive approach that uses dry or wet electrodes on the surface of the skin [5]. Acquisition of
these surface EMG signals is usually done by surface sensors that lead to the inputs of a differential
amplifier. In clinical applications, an EMG is captured using dedicated medical instruments that are
composed of silver-chloride (Ag/Cl) electrodes in combination with a conductive gel. The gel reduces
the contact impedance with the skin, and this system is able to capture extremely high-quality signals
that allow for the diagnosis of muscular and neural human systems [20].

On the other hand, wearables cannot use Ag/Cl electrodes as they are limited in terms of their
form factor and power consumption. Accordingly, they usually employ dry electrodes. Besides that,
dry electrodes also have an advantage over the Ag/Cl electrodes in long-term use while still providing
comparable signals to the Ag/Cl wet electrodes [5,20]. A few factors that affect the ability to detect surface
EMG signals are: skin perspiration, the distance between the active muscle fiber and the sensing site,
crosstalk between adjacent muscle fibers, and signal variability that is caused by sensor impedance [20].
These factors need to be considered in clinical applications as well as wearables. On the other hand,
an important factor to consider when detecting EMG signals is that it varies greatly with sensor placement,
and locating the ideal place to position the sensor is necessary [5]. To add to this, an EMG signal that is
acquired from the same muscle but with an electrode that is placed at a different location will result in
different results that affect the analysis [5]. This is because a standard mapping protocol has not yet been
developed for EMG sensors in addition to the fact that the ideal location changes from patient to patient,
so it has to be adjusted for each patient individually [5,21]. In common EMG wearable applications,
active sensors are used for signal capture. These sensors use three electrodes: two metal electrodes are
used for differential acquisition of the signal, and one is used as a reference electrode [20]. Then, the signal
is passed through an on-board miniaturized circuit with amplification and signal conditioning. It is
then integrated and passed to a micro-controller unit (MCU) for analog-to-digital (A/D) conversion.
These sensors can be used for applications that range from clinical diagnostics all the way to prosthetic
control [20]. Looking now at some wearable designs using EMG, we see examples, such as the Myo band,
that use eight EMG channels. The Myo band detects the signal by placing the sensor securely above the
muscles that generate the signals in the forearm, allowing it to detect five gestures (finger spread, fist,
wave in, wave out, and double tap) [21]. However, a recent study, done in 2018, proves that only two
EMG channels—one placed on the wrist flexor and other placed on the wrist extensor—are sufficient to
classify four of the same five hand gestures as the Myo band [21]. What this demonstrates is that the EMG
sensors need to be placed right above the muscle being investigated. That is, it is subjective; however,
a way to determine the correct location is by verifying the signal beforehand using an oscilloscope. This is
a normal process done by rehabilitation experts in the industry [21]. Figure 3 shows the Myo band and
the 2 channel EMG sensor below.
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2.1.3. Auscultation of Body Sounds

The first act that a medical professional performs in a diagnosis is auscultation, and that alone
demonstrates its importance. Auscultation refers to the act of listening to the human body, and is
usually done by using a Littmann stethoscope [8]. Therefore, cardiac auscultation refers to listening
and interpreting heart sounds. It is a very cost-effective approach as well as being non-invasive and
easy to use. Moreover, it is the most used technique by doctors for the primary screening of early
cardiac illnesses [8]. Cardiovascular diseases are one of the major causes of death in the world; hence,
it is important to evaluate cardiac functions using a fast, non-invasive technique [23]. The main heart
sounds include S1 and S2. S1 occurs at the onset of ventricular contraction and corresponds to a QRS
complex in an ECG. Electrocardiogram (ECG) represents the electrical activity of the heart and the QRS
complex are the most visual peak and troughs of that ECG signal. The complex consists of 3 deflections
labeled Q, R and S respectively. The second heart sound, S2, corresponds to the closure of semilunar
valves and finally S3 and S4 can sometimes be heard as well as other clicks and snaps. Normal heart
sounds range from 20 to 420 Hz [8]. Auscultation serves as the first point of diagnosis and vital sign
monitoring. This is because listening to these sounds can reveal information regarding the status
of the underlying functions. For example, heart sounds often reveal abnormalities if a murmur is
present and allow for the detection of disorders of the body. Furthermore, there is a strong connection
between the heart and the lungs, when compared to the rest of the body’s systems, which is known
as the cardiopulmonary system. Therefore, when analyzing the cardiac system, it is common to
consequentially analyze the lungs and breathing of the patient. This is referred to as lung auscultation,
which is used to detect respiratory disorders. Lung sounds can be classified into three categories:
normal, abnormal, and adventitious. Normal sounds are quiet and hardly audible; abnormal sounds
refer to the lack of these normal sounds; and adventitious sounds refer to wheezing and crackles that
are strong indicators of disease [8].

Moving on, understanding how to detect these sounds is another important consideration. It is
vital to understand not only the anatomy of the heart and lungs themselves, but also the surface
anatomy. Surface anatomy refers to understanding the landmarks on the surface of the body that can
be used to locate organs inside the body. Using surface anatomy, one can palpate the ribs and start to
determine the auscultation regions for the heart [24]. The best sound will not necessarily appear right
above the heart; rather, the ideal location for cardiac auscultation is based on the direction of the blood
flow and the orientation of the valves [24]. With this understanding, the aortic valve is best heard
at the 2nd right intercostal space, the tricuspid vales is best heard at the left lower sternal boarder
in the 5th intercostal space, the pulmonary valve is heard best at the 2nd left intercostal space, and,
finally, the mitral valve is best heard in the 5th intercostal space at the midclavicular line seen in the
figure below [24]. Finally, normal lung sounds are heard in the chest and are primarily limited by the
distance between the primary sound generation site and the stethoscope [25]. The detection region
varies, and can include from the collar bone to the bottom of the rib cage as shown in Figure 4.
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2.1.4. Gait Analysis

The importance of a gait analysis is evident in the fact that, each year, there are around 3.2 million
deaths worldwide because of physical inactivity. As a matter of fact, physical inactivity leads to
chronic disease and disability [28]. On the other hand, regular physical activity is associated with
health improvements in many populations. Therefore, the importance of measuring and encouraging
individuals to be active is evident. Moreover, a clinical mobility assessment fails to mimic the real world
requirements; for example, the 10 m walk test underestimates gait velocities [28]. As a result of this,
it is important to quantitatively assess mobility in real-world environments. Step counting is the most
common measure of physical activity. Sensors that provide this need to be highly accurate, lightweight,
and allow for use in homes and the community. The crucial part is to mimic real-world daily activities,
as it is unrealistic and an oversimplification to assume that individuals walk consistently at high speeds.
One disadvantage of the current step detection algorithms and sensors is the decreased accuracy at
slower speeds, and these slower walking speeds are the main indicators of movement disorders [28].

Detecting the physical activity of humans is possible with the placement of sensors, usually
accelerometers and gyroscopes, on different parts of the body. There are different approaches to this,
and the most common ones that are seen nowadays are pedometers, which are watches or sensors that
are placed on the wrist for activity tracking. However, one limiting factor for these devices is accuracy.
Therefore, sensor location needs to be updated, and a study done in 2014 proved that step counts
can accurately be obtained from three-axis accelerometers placed on the thigh, waist, and ankles [28].
These systems performed well in low-gait-speed scenarios and outperform commercial pedometers.
With this, there are several examples of activity trackers in the market and an example is shown in
Figure 5.
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2.2. Important Distinction: Medical versus Non-Medical Wearables

One of the most important distinctions that will determine the hardware and software
requirements of biomedical wearables is the difference between medical and non-medical biomedical
wearables. The term “medical devices” is loosely defined in Canada by the Food and Drugs Act
as “a wide range of health or medical instruments used in the treatment, mitigation, diagnosis,
or prevention of a disease or abnormal physical condition” [9]. Some common examples are artificial
heart valves, pacemakers, synthetic skin, and medical laboratory diagnostic instruments. These devices
are evaluated and monitored in Canada by the Therapeutic Products Directorate (TPD) and in the
United States by the Food and Drug Administration (FDA). The TPD is a national authority that
determines the effectiveness and quality of diagnostic and therapeutic medical devices in Canada.
There are four classes that any device for sale is classified and grouped into. The first class is the lowest
potential risk class (Class 1), and an example of a device that belongs to this class is a thermometer.
The last class (Class 4) is highest potential risk class, and an example of a device that belongs to this
class is a pacemaker. Class 1 products do not require a license, while the rest of the classes do, and the
review process becomes more onerous as you move into higher classes [9]. Two items can be issued:
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either a Medical Device or an Establishment License. The process is similar to that of the FDA in
the U.S., and many of the rules are adopted by the FDA. Further information can be found in the
Medical Devices Regulations of the Food and Drugs Act of Canada [9]. On the other hand, fitness,
lifestyle, or non-medical wearables are those that do not intend to provide any diagnosis, mitigation,
or treatment of a disease. This is further supported by the FDA, who states that the concept for
determining if a device is medical or non-medical is based on the intended use [30]. The technologies
of both medical and non-medical devices can be the same, so both devices can measure the exact same
signals with the same quality; however, if a device is analyzing the data to provide treatment, it will
be considered a medical device and will have to go through an extensive process for approval [30].
To put it in another way, non-medical devices are not useful in diagnosing most medical conditions
but can be used to track fitness and allow for patient-centered disease prevention.

2.3. Factors to Consider

The design of any biomedical wearable starts with a firm understanding of the biosignal being
measured. For example, for an ECG signal, it can be easy for experts to identify the QRS due to its
distinguishable characteristics that can be used in an analysis. However, that is not the case for all
biomedical signals, and a considerable number of transformations is required to extract information
from the signal [5].

2.3.1. Four Design Factors

When the design of a wearable commences, whether it is for medical purposes or non-medical
purposes, there are some factors to consider. Those factors are: (1) the characteristics of the measured
signal; (2) the human factors; (3) the economic costs, and, finally; (4) the environment that the device
will be in [5].

Starting with the first factor, it requires an understanding of the signal generation source and the
properties of the signal. For biomedical applications, signals that are captured by sensors are commonly
retrieved from the skin and are responses to the electrical stimulation of the nerves and muscles.
Alternatively, the properties of the signal include several aspects, such as: determining whether the
signal being recorded is reliable, whether there are usable signal-processing techniques for the signal,
whether the signal is stationary to allow for analysis, and whether the signal needs compressive
sensing algorithms at the acquisition stage [5]. This is important, because, based on these factors,
a decision on which sensor to select will be made during the design phase to allow for signal capture
without any information loss. The second factor, medical risks, requires an understanding of the user
of the device and the interactions they have with the device. This means considering the environment
the device will be used in, what materials the device should be made of, safety requirements, and how
the device will affect the patient’s daily life [5]. For example, in a hot environment, the patient will
be subject to more sweating than usual: will that change the obtained signal? Moreover, does the
material the wearable is composed of cause any allergic reactions, pain, or discomfort? Finally, do the
patients deem the device to be obstructive or overly complicated, and prefer not to use it? These factors
are important, since a convenient device that is both hardware and software friendly will be used
more often by the patient than one that is not. This is also referred to as the technology adoption rate,
and is a considerable downfall for many devices. The third factor, economic costs, refers to designing
an instrument that is affordable, is compatible with existing technologies, and is readily available.
The designed device should be affordable and should not require extensive changes to their existing
technologies. Furthermore, it should be available to purchase on many platforms, so patients do not
have to go to specific locations to buy them. The importance of this factor arises because lifestyle or
non-medical wearables can be relatively cheaper than medical wearables, since they do not go through
an extensive process for approval. The last factor, the environment, refers to the environmental noise
the device will face when in the real world. For example, the signal-to-noise ratio is a crucial measure
of how effectively the device can capture the signal and reduce the noise.
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Considering and meeting these factors does not guarantee a successful product, and they are only
for lifestyle or nonmedical wearable devices and not medical devices. The FDA in the United States
and the TPD in Canada regulate all medical devices extensively, and these devices must go through
a long process that comes at a significant cost and requires time to ensure that the devices are safe
for consumers.

2.3.2. On-Chip and Edge Computing

While the majority of IoT devices in the market use some sort of Cloud Computing, it is not the
only option. Rather than using the current popular way for transferring data to a separate personal
computer (PC) to be sent to the cloud for data analysis, lightweight tasks can be performed on the
micro-control unit itself. This is limited by the processor on the board, how much memory is available,
and if the micro-control unit has storage capabilities. Some Arduinos contain enough memory to
perform lightweight tasks and computations on the chip.

An extension of this is called Edge Computing, which performs computations at the edge of the
internet [31]. As the shift towards IoT and IoMT continues, large quantities of data of exceptional
quality will be generated by all of the devices surrounding us. It is estimated that around 50 billion
things will be connected to the internet by 2020, and by 2019 people and machines will be producing
500 zettabytes of data while the global data center’s (Internet Protocol) IP traffic will only reach 10.4
zettabytes [31]. This means that all of these things and devices will be producing data at a much higher
rate than can be processed by the cloud. As a matter of fact, growth in the bandwidth of networks
has come to a standstill, and the speed of data transportation has become the main bottleneck for
cloud-based computing [31]. This means that most of the data produced by IoT and IoMT devices will
never reach the cloud. Therefore, the simple definition of edge computing is any computation that
occurs between the data-generating devices and the cloud data centers [31]. This includes processes
such as data offloading, data storage, data processing, and IoT management, as shown in Figure 6.
This also improves user privacy, since the data that are sent for edge computation are normally private
when compared to the cloud.
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3. Biomedical Wearables and Their Components

3.1. Allocation of Hardware Design

The design of any electrical device in the industry usually utilizes a team-oriented process.
This means that teams are assigned a certain task that they must complete in order to create a final
product. Hence, just like any other electrical device, the design and prototyping of a biomedical
wearable starts by a similar team-oriented process. This creates effective teams that are focused on
a common goal and use characteristics such as positive team interdependence, group accountability,
and teamwork skills. In academia, analogous approaches are employed on a smaller scale where each
block in the figure below represents a team and a task. Normally, a couple of students are assigned
to each block (and consequently a task). The breakdown of each project varies and is very diverse;
however, for biomedical and electrical engineering purposes generally, there are three important
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blocks or teams to be considered: Signal Acquisition, Data Processing, and Visualization of the data.
The teams work together on a common goal while each individual team is focused on their own goals.
This area shown in Figure 7 and the first block, Block 1, is the Acquisition phase, where raw data are
captured from the human body. This is done by the sensor that is placed on the integument (skin) of
the body. Block 2 is the data processing block, where digital filters and further data conditioning, such
as segmentation, de-trending, and feature extraction can be applied. Block 3 is the visualization of the
data using a user-friendly technique. Blocks 2 and 3 are commonly performed on a personal computer
with the aid of software (MATLAB) in basic prototyping applications. In IoT applications, Blocks 2 and
3 can be done on the cloud or on a server, and this is subject to change depending on the application.
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Figure 7. This figure shows the three phases to any wearable. LED, light-emitting diode; ADC,
analog-to-digital, PD, photo detector. PPG image source: [32].

The following figure, Figure 8, focuses on the element to be covered in detail here: Acquisition.
As mentioned above, acquisition refers to the front-end of the project and includes all of the hardware
and software that is required for signal capture. Figure 8 below demonstrates the three main
components that are necessary to acquire raw data from the human body. Block 1 of Figure 8 deals
with the raw data that are captured from the sensor. Since most signals are analog, there needs to
be an analog-to-digital (ADC) conversion and a way to communicate with the sensor to allow for
data transfer, and that is Block 2. For this, it is vital to have open-source and low-cost tools and
platforms. The most common platforms for this are Arduino and Raspberry Pi, and they have played
a transformational role at the outset of biomedical wearables. The last part, Block 3, is sending the data
to a server to be sent to the cloud or for analysis. Commonly, Bluetooth modules are used or Arduinos
with inbuilt Bluetooth or Wi-Fi capabilities. The next section will focus entirely on the hardware used
to construct the Acquisition Phase.
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3.2. Hardware Requirements and Methods

Based on the current market in 2018, there are four sensors that stand out from the rest and
those will be the focus of this review. Supporting those sensors for conditioning and transfer will be
a micro-control unit (MCU, e.g., an Arduino Uno), a HC-05 Bluetooth module, and a Raspberry Pi
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Zero W. The four sensors include: an electret microphone, a PPG Pulse Sensor, an analog EMG sensor,
and the MPU9250. The specifications for each sensor can be found in Table 2. It is important to note
the motivation behind choosing these sensors. Firstly, they are commercially available at a low cost,
and have significant support that ranges from online troubleshooting tutorials to full demo codes.
As a matter of fact, the chosen sensors are specifically popular for prototyping. This means that they
are specifically designed to reduce complex front-end circuitry by integrating them into the sensor.
This makes most of these sensors “plug-and-play”-type sensors that allow for easy prototyping and
development at any skill level. As a bonus point, they have software support for Arduino specifically
so that full demo codes are available that can be modified easily using the available datasheets for
different projects. Secondly, any one of these sensors can be individually used to monitor a certain
medical condition or can be combined to allow for monitoring and diagnosing a variety of medical
conditions. An example is using an EMG sensor to detect muscle diseases or using it with the inertial
measuring unit (IMU) as a two-step validation system.

Table 2. The required Materials and Specifications.

Device Operating
Voltage Inbuilt ADC Supply Current Output Voltage

Range
Cost 2

(CAD)

Pulse Sensor (SEN-11574) 3–5.5 V N/A 1 3–4 mA 0.3–5 V 24.95

EMG Sensor (SEN-0240 3.3–5.5 V N/A 20 mA 0–3 V 50.03

Electret microphone
(CEM-C9745JAD462P2.54R) 1–10 V N/A 0.5 mA ≤10 V 0.95

MPU9250 2.4–3.6 V 16 bit 450 µA–3.2 mA 2.4–3.6 V 14.95

Arduino Uno 6–20 V 10 bit 20–50 mA N/A 35.95

HC-05 Bluetooth Module 3.3–5 V 8 bit transfer ≈35 mA N/A 11.99

Raspberry PI Zero W 5 V 11–17 bit 1.2 A N/A 28.95

Batteries N/A N/A 400–600 mAH 9 V 1.47

References [6,7,18,33–36], 1 N/A: Not available, 2 Cost as of 30 September 2018.

Moving on, once the raw data has been captured by the sensors, it can then easily be manipulated
for analysis in IoT applications using the Raspberry Pi Zero W as a webserver or an edge computing
device. A battery source is required for powering the wearable, and Arduino boards allow for several
possibilities. However, the power source used for these wearables will be a 9 V Alkaline battery that is
readily available in every supermarket. It will provide the Arduino with enough voltage and current
to run the Bluetooth module and the sensors. The following subsection goes over the details and the
advantages that each sensor possesses over its competitor sensors.

3.2.1. PPG Sensor Description and Bioinstrumentation

Starting off with the Pulse Sensor, it is used to capture PPG signals and these signals can be
captured from the fingertip or the wrist. This sensor is made by World Famous Electronics IIc, and is
called the ‘Pulse Sensor’. It uses a bright green LED, and is a plug-and-play sensor that captures,
amplifies, and cancels noise by circuitry on the sensor. It does not have inbuilt ADC; therefore, it is
important to convert this analog input signal to digital using the Arduino Uno. Further, the operating
voltage allows for easy interoperability with other components and can function from 3.3 to 5 V using
only 4 mA at 5 V [37]. Finally, their website (pulsesensor.com) contains several “Getting Started”
projects with the full Arduino code. One example of a project is the blinking of an LED with a heartbeat.
The project also provides access to the raw data by the Serial Plotter on Arduino IDE.

As mentioned above, the sensor is designed to be a “plug-and-play”-type sensor. What this means
is that only three wires are needed to connect the sensor to the Arduino, and no external circuitry
is required to operate the sensor and retrieve the PPG signals. Furthermore, the sensor itself is an
open-source hardware project, and, hence, a schematic of the internals is available and is shown in
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Figure 9a. To connect the sensor, the three wired connections are: ground, power, and the analog signal,
and these are visible in Figure 9b as well as in Table 3(a). The sensor itself was secured to the index
finger using the supplied Velcro straps. Moving on, the software side of the front end required us to take
advantage of the online support available on the Pulsesensor website [29]. First, the Arduino Library
was downloaded from the Arduino IDE. Next, a provided example in this library, the GettingStarted
Project, was used to blink the Arduino’s built in LED with a baud rate of 9600. Finally, to visualize the
signal, the Serial Plotter on the Arduino IDE was used, and further changes can be made to this code
based on the application.
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Table 3. (a) Shows the connections for the first two sensors. (b) Shows the connections for the last
two sensors.

(a)

Pulse Sensor EMG Sensor

Sensor Black (ground) Red (power) Purple (Signal) −(ground) +(power) A (Signal)

Arduino GND 5 V A0 (Analog in) GND 5 V A0 (Analog in)

(b)

Electret Microphone IMU

Sensor Black (ground) Red (power) Red (power) VDD GND SCL SDA

Arduino GND 5 V A0 (Analog in) 5 V GND A5 (Analog in) A4 (Analog in)

GND, ground; VDD, power supply; SDA, serial data; SCL, serial clock.

3.2.2. EMG Sensor Requirements and Description

Following that, the EMG Sensor is produced by OYMoiton and it also does not contain inbuilt
ADC. The sensor captures the surface electromyograph (sEMG) signals that reflect muscle and neural
activity in humans [35]. This too is designed to be a “Plug-and-Play” sensor, and, thus, it includes
on-board circuitry that amplifies the signal within the range of ±1.5 mV and attenuates noise, such as
power interference. The sensor was secured to the forearm flexor muscles by using the supplied straps.
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The current design will use only one EMG channel; however, two EMG channels can be used. Similarly,
this sensor requires three connections to function properly with the Arduino, and they are the ground,
power, and analog signals shown in Figure 10 and Table 3(a). It is important to note that there are
two separate boards that comprise this sensor. Figure 10 shows the second board, which is called the
Signal Transmitter Board, and from this board the supplied probe wiring connector is used to connect
to the dry electrode, which is then secured to the forearm flexor muscles. Furthermore, just like the
pulse sensor, OYMoiton’s website contains tutorials and sample code for the Arduino IDE. Taking
advantage of this, the EMGFilters library was first installed, and then the code was run at a 115,200
baud rate. The sEMG signal is then visible on the Serial Plotter, and further changes can be made to
this code based on the application.
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3.2.3. Microphone Requirement and Description

Next is the electret microphone, which is used for capturing heart and lung auscultation based on
the locations mentioned in the Background section. The chosen electret microphone has a frequency
range from 100 to 10,000 Hz [33]. It is produced by Challenge Electronics, and has a minimum
sensitivity-to-noise ratio of 58 dB. This device results in an analog input and, hence, it also requires the
use of an MCU, such as the Arduino Uno board. The microphone is connected directly to the Arduino’s
analog pins, and the ADC is done on the Arduino. No further circuitry is used in the detection of the
signal. As for the sensor placement for proper signal capture, the anatomical positions that are used
by medical professionals for conventional stethoscopes were used as mentioned in the Background
section. Finally, a simple code for retrieving an analog signal from the Uno was used at a 115,200 baud
rate. Figure 11 below shows the hardware connections that are required for this sensor, and Table 3(b)
demonstrates the front-end connections.
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3.2.4. IMU Requirements and Description

Last is the inertial measuring unit (IMU), which is called the MPU9250. This device is
manufactured by IvenSense, and is a multichip module that consists of a three-axis gyroscope,
a three-axis accelerometer, and a three-axis magnetometer [34]. Communication with all of its registers
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can be done using I2C or SPI, and it has its own Digital Motion Processor. The Digital Motion Processor
(DMP) allows for motion processing and low-power gesture recognition through the purchase of
IvenSense Apps to program the device. Unlike the pulse sensor and EMG sensor, there are no
tutorial codes or “getting started” projects offered by the manufacturer. However, it is a widely used
sensor, and Sparkfun offers a great “Hookup Guide” that includes libraries and example code [38].
Taking advantage of that, first the library was installed using the Arduino IDE for the MPU9250.
Next, the MPU9250BasicAHRS_I2C code was used and run at a 38,400 baud rate, and further changes
can be made to this code based on the application. As for the placement of the sensor, the IMU will
be placed on the ankle for motion detection using the nine-axis motion detection capabilities it offers.
Figure 12a below shows the internal components of the IMU, and Figure 12b shows the hardware
connections that are required for this sensor. Finally, Table 3(b) shows the hardware connections that
are required for proper function.
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3.2.5. Arduino and Raspberry Pi Description

In a sense, the most important device is the Arduino, as it constitutes the connection between the
sensor and the IoT aspects of this review. The Arduino will be used to communicate with the sensors
and the Hc-05 module, and will supply power to these sensors and boards. It will require coding,
and much of it is available through the online support that was mentioned above for the individual
sensors and for using the Bluetooth module [6]. The only other important aspect to consider for the
Arduino is that it can function by various power sources, such as a 9 V battery with a snap connector,
an A-B universal serial bus (USB), or an alternating current (AC) to direct current (DC) adapter. Finally,
the IoT aspect of the design will require the use of a Raspberry Pi Zero W. This can be used not only for
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sending data to the cloud, but also for edge computing as mentioned in the Background section. This is
one of the cheaper computers that the Raspberry Pi Foundation produces. An additional module,
called ADC Pi, can be bought and added to the Raspberry Pi for additional conversion if needed,
and it comes with Bluetooth Low Energy, Bluetooth 4.1, and 802.11 b/g/n wireless LAN. Further,
it comes with a 1 GHz single core CPU, 512 MB RAM, a CSI (Camera Serial Interface) camera connector,
and micro USB and mini HDMI (High-definition Multimedia Interface) ports [7].

4. Analysis/Discussion

4.1. Hardware Analysis

Current healthcare systems still rely on visits to the doctor, monitoring that uses cumbersome
equipment, and doctors’ experience-based prognosis [5]. Using the “Connected Human” idea,
this review aims to demonstrate the possibility of developing low-cost and clinically relevant hardware
designs to be used for integrated healthcare. Moreover, these devices have the potential to be used as
a medical wearable for the tele-monitoring of patients that are either in hospitals, clinics, or assisted
living. The goal is not to replace the doctor or their disease prognosis, but to share the data by
cloud services between doctors, patients, and relevant staff. With these goals in mind, we have
managed to design wearables that can accomplish that to an extent. These devices are currently not
medically approved by the FDA or regulated. However, these devices have the potential to capture
clinically comparable signals that can be analyzed, stored, and transferred over the cloud. Moreover,
there is great potential to use these designs as stepping stones into designing medical wearables
and re-designing these devices into commercially ready products. One interesting observation is
the importance of understanding and following the Factors to Consider section. What is meant by
this, for example, is that the Pulse Sensor provides a plug-and-play experience that is capable of
executing the complex task of calculating heart rate variability from PPG signals. This is an added
benefit of this product over other comparable sensors, and it uses the Ponicare Plot of the Inter-Beat
Interval values to calculate HRV. Furthermore, these medical wearables have complete Arduino code
in their repository, which allows for adjustments and changes to be made to the code by the user.
Hence, the availability, support, and documentation for this sensor is immense, which could only
have been found with research beforehand while utilizing the “Factors to Consider” section. Moving
on, the electret microphone does not contain any circuitry for signal amplification and conditioning.
Therefore, the manual use of op-amps, resistors, and capacitors will allow for adaptive filters to
be used.

Focusing now on the IoT and telemedicine portion, the choice of sensors was based on simplifying
the acquisition phase with the least number of steps. Hence, sensors that have on-board signal
conditioning, are available for purchase, and that are easy to use were preferred. Furthermore, in IoT
applications, the Raspberry PI plays an important role. It can be connected to all or some of these
sensors through Bluetooth. This wireless connectivity by Bluetooth to the sensors and by Wi-Fi to
the cloud provides the flexibility of connecting anywhere there is a wireless connection. The cloud,
as mentioned above, has become a vital part of telemedicine and the IoT. Data are usually stored either
in disparate clouds or in siloed systems that limit data analysis [4,31]. Firstly, some of these IoMT
devices have the potential to produce large quantities of data; for example, capturing an 8-h stream of
EEG and EMG signals for sleep monitoring. This cannot efficiently be done, since these files will be
several gigabytes in size each night, and that could be a heavy load for networks. Secondly, some of
these IoMT applications require very short response times, since it might be a life and death situation,
which is again limited on the cloud. Finally, these sensors will measure data that might be private
and not suitable to be sent to the cloud, and, hence, cloud computing might not be an efficient choice
for these applications. Consequently, a tool such as Raspberry Pi is necessary for these applications.
Such a tool can be used to transport the data to the cloud or for performing edge computing before the
data are sent to the cloud, which will significantly reduce the number of computations that will need to
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be done on the cloud. It is a small, inexpensive, yet powerful computer board that can perform many
tasks that desktop personal computers are capable of. They have been used in many telemedicine
applications where a compatible webcam module that is capable of 1080p videos is used to stream
microscopic images to remote locations [39].

A relevant example of these biomedical devices currently being used successfully in a country
is Finland. They, much like many other countries, have a passionate start-up community that is
dedicated to personalized healthcare solutions [40]. However, where they differ is that their official
health technologies range from X-ray and imaging equipment to wearable technology that can analyze
an individual’s heartbeat or alter an athlete’s training [41]. This led to the creation of a national patient
data repository that covers the public and private healthcare sectors. They were indeed one of the first
countries in the world to create this, and it allows every Finnish person to access their health records
and prescription history [41]. This demonstrates the potential of wearables, and their probable future
in the medical domain once they are approved for use in other countries.

4.2. Discussion

The success of these wearables, whether it be for medical purposes or non-medical purposes,
relies heavily on human factors. As discussed in the Factors to Consider section, these factors need
to be considered; however, even if all of these factors are met, the wearables are still restrained by
independent problems that can arise. The creation of highly connected devices that can transmit
information between themselves and to the online world leads to crucial questions and problems.
The two most prominent problems that arise are: technological issues and security issues [4,11].
These points can single-handedly determine the fate of a wearable, and this demonstrates their
importance. Hence, the Institute of Electrical and Electronics Engineers (IEEE) has been working,
and continues to work, towards several antidotes to these problems.

Starting off with technological issues, these mainly deal with the interoperability between devices
and whether the data that the devices obtain are accurate and dependable. Since all of the sensors
that were mentioned above are manufactured by different manufacturers, they do not have a default
standard interface and protocol. This is evident in our project, as it leads to the use of an Arduino with
a Bluetooth module for each sensor individually, and not the integrated Digital Motion Processor in
the MPU9250. Usually, different sensors from different manufacturers have different characteristics,
and, therefore, the captured signals vary. The IEEE has some projects underway for this concern,
the first being a Conformity Assessment Program and the second is the 2510 Standard Project [42].
The first project works with independent test labs and manufacturers to determine if the device will
meet IEEE standards, while the second is more focused on the sensors that are used in Internet of
Things applications and works on creating quality metrics for data that are retrieved from sensors that
are used in the IoT.

In terms of security issues, wireless security breaches will definitely be an ongoing concern,
specifically with regard to patient privacy and how it will be protected. Starting with some basic
protection that everyone has access to, Bluetooth technology does support Advanced Encryption
Standard-128 built-in encryption. There is active improvement currently underway on this technology,
as more wearable devices are entering the market that require up-to-date security [4]. Furthermore,
since Raspberry Pi is a Linux system, most of the common security measures that are available for Linux
are available. However, further improvements need to be considered to limit attacks and the potential
loss of data that the Raspberry Pi collects. Some known and tested security issues with Raspberry Pi
are: (1) the Raspbian operating system has a secure shell protocol on port 22. This protocol is used
when there is a need for a remote log on, and if it is left on it could lead to breaches; (2) The Raspbian
operating system has a default user that allows access to the device. This should be deleted rather
than ignored or a new user made as anyone who knows this could access the device [43]. Moving on
to some higher-level security, in 2017 the IEEE Standards Association announced an initiative that
is designed to protect digital identity for the global online community [42]. It is called “Industry
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Connections Programs: Digital Inclusion through Trust and Agency”, and will support their other
programs, such as the IEEE Blockchain Special Interest group and the IEEE Internet Initiative on
internet governance. The Industry Connection Program aims to build a consensus for standards,
codes of conduct, and certifications to protect consumer and patient data [42]. It will be a universal
digital identification system that does not rely on any legal documents and will, therefore, protect
the user’s personal data. Efforts such as these by the IEEE are fundamental to the success of medical
wearables and non-medical wearables. Without proper regulatory approvals, devices will not be
trusted by individuals and that can lead to their downfall.

Perhaps the most interesting aspect brought up by this review is the wide array of diseases that
can be diagnosed with the combinational use of these sensors. For example, PPG signals contain
information relating to heart rate, SpO2, blood pressure, and respiratory rate, and sensors can measure
these with medical grade quality as mentioned in the Background section. Therefore, the PPG signal
can be used to diagnose anxiety, atrial fibrillation, hypertension, sleep apnea, pregnancy, stress,
and stroke [44]. Moving on to activity tracking, it allows for the diagnosis of diseases such as Arthritis,
Bipolar disorder, Parkinson’s, Restless Leg Syndrome, Seizures, and Insomnia [44]. Following that,
auscultation can allow for diagnosis of diseases such as the common cold and heat stroke that causes
changes in breathing. Lastly, EMG can be used in combination with auscultation to diagnose diseases
relating to the cardiac system and neuro-muscular disorders [5]. If these four sensors are combined
into one wearable, it will allow for the diagnosis of up to 46 of the most common conditions that affect
humans [44]. There is a significantly high chance of any individual acquiring at least one of these
diseases in their lifetime, so a wearable with a combination of sensors has a high value. Further, on top
of clinical diagnostics, these devices can be used for other purposes. For example, an EMG allows
for the control of prosthetics and can even act as a control to interact with Application and Human
Computer Interfaces. A prime example of this is the MYO controller that is currently in the market and
being used in lifestyle applications and as an HCI (Human computer Interaction) device. Moreover,
the MYO controller has been proven to provide clinically comparable data [5]. Another major scenario
for EMG that requires the use of the IoT is motor rehabilitation programs. The combination of these
devices in an IoT framework will cover at least 70% of the disease diagnosis without the need for the
physical presence of the patient with the doctor.

As stated above, we have managed to investigate possible hardware designs for biomedical
wearables, the components they require, and some of their limitations. The future of wearables
seems promising and there is significant potential in designing and developing wearables for various
applications. At the speed the industry is growing, there will only be further improvements in the
security and technological aspects. One of the major contributing factors to that is the collective
interest of governments, industry, and the academic community. As a matter of fact, the results and
designs outlined in this paper will facilitate and speed up the research being done on machine learning
and Artificial Intelligence (AI) systems for informed decision-making in healthcare technology and
delivery [45].

5. Textile Wearables

5.1. Electronic Textiles

Ever since humans have become civilized, we have used natural materials, such as cotton and
silk, in the form of woven textiles to stay warm and comfortable. As demand has increased for
certain qualities in textiles, manmade materials, such as Kevlar and nylon, have appeared in the
market over the last century [28]. Since the advancement of technology and primarily the internet,
as mentioned in the Introduction, textiles have also faced new challenges. They are now expected to
possess additional features and functionalities besides those already bestowed on them [46]. Features,
such as charging your phone by storing electric energy in clothes, and, hence, different functionalities
have been incorporated into these materials. Some common examples are photoactive materials being
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integrated into textiles to create solar cells that create electricity and sensing materials being integrated
into fibers to detect shape changes [46]. Electronic textiles (E-textiles, smart textiles, functional fabrics)
are fabrics that allow for digital components and electronics to be embedded in them [47]. They are
soft and flexible, allowing them to be in close contact with the curved surfaces of the body [46].
This is a fundamental property for all wearable devices. Contact with the body is necessary for signal
acquisition, and e-textiles increase the surface that is in contact with the body. Furthermore, electronic
textiles are lighter and more breathable when compared to their traditional sensor counterparts.
As a matter of fact, the human factors with fabrics are also increased significantly. Fabrics are soft,
while traditional biomedical wearables are solid and bulky even if they are reduced down to a flexible
printed circuit board (PCB). Further, if they are reduced down to one plane, they can deform by
bending or twisting motions. Probably one of the most important advantages that fabric wearables
have is the human factors that go along with them. Traditional wearables are “add-ons” or accessories
that must be worn on the person as an additional step after clothes are worn. This decreases the
chances of a successful wearable, as human factors are reduced and the adoption rate is also reduced,
as was mentioned in the Factors to Consider section. This is where electronic textiles or functional
fabrics play an important role.

As with the design of any wearable, these wearable textiles require conducting pathways for
the signals. This is done using conducting and semi-conducting materials. There are several ways
to produce these fabrics, such as using metallic fibers or strands that are mixed in with the fabric to
create electroconductive textiles or semi-conductive textiles. They utilize conducting polymers, such as
carbon nanotubes, metal-based powders, and carbon black [47]. The fabrics that are produced by these
methods have some disadvantages, such as requiring complex processes, lacking a uniform coating,
not having durable wear resistance, and not being entirely flexible [47]. This led to the use of graphene
in these fabrics. Graphene is a honeycomb lattice of carbon atoms that exhibits outstanding electronic,
thermal, mechanical, and optical properties [47]. For this reason, it has attracted significant attention
for use in e-textiles. Furthermore, large quantities of graphene can be prepared from the chemical
conversion of graphite using reduction methods. For example, to create electroconductive materials,
graphene oxide is deposited on the surface of fabrics using the ‘dip-and-dry’ method. However,
this leads to an electrically insulating material, and reduction methods are employed to restore its
electrical conductivity [34]. Figure 13 below demonstrates the dip-and-dry method.
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5.2. Current Electronic Textiles in the Market

With these developments in textiles, several companies have started commercializing these
e-textiles. One such example is Myant, a Canadian company that is a leader in functional fibers.
They currently have a brand by the name of Skiin that has high performance smart underwear.
The underwear is capable of measuring heart rate, breathing patterns, and temperature, and can track
sleep, all day activity, and exercise [48]. It comes with a Skiin Companion App that connects to the
device for bio-tracking. The current generation device costs 279 CAD, and all of the electronics are
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attached on the waist band in a removable compartment that is shown in Figure 14. That being said,
they are releasing their next generation with functional fabrics. They have incorporated physiological
sensors into their garments using advanced knitting techniques, and are now moving towards the
introduction of Radio-Frequency Identification technology (RFID) [49]. It has been proven recently
that the use of RFID technology for traditional metal-based tags allows for the capture of material
deformations. The theory behind this is that, as the antenna inside the tag deforms as forces are applied,
there is a change in the resonant frequency. This change is then received and correlated to a mechanical
deformation on the object the tag is on [35]. This allows for a wearable with an incorporated strain
sensor that is wireless and battery-less and, most importantly, comfortable to wear. This technology is
not cheap, as it is currently in the developmental stages. The previous version that has physical sensors
on the underwear costs around $280, and this new wearable could be more expensive. This technology
does have vast amounts of potential; however, research and comparative studies will need to be
performed to validate the signals that are retrieved from electronic textiles when compared to medical
grade signals.
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