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Summary 
5-Methylcytosine (5mC) and DNA methyltransferases (DNMTs) are broadly conserved 
in eukaryotes but are also frequently lost during evolution. The mammalian SNF2 family 
ATPase HELLS and its plant ortholog DDM1 are critical for the maintenance of 5mC. 
Mutations in HELLS, its activator subunit CDCA7, and the de novo DNA 
methyltransferase DNMT3B, cause immunodeficiency-centromeric instability-facial 
anomalies (ICF) syndrome, a genetic disorder associated with the loss of DNA 
methylation. We here examine the coevolution of CDCA7, HELLS and DNMTs. While 
DNMT3, the maintenance DNA methyltransferase (DNMT1), HELLS, and CDCA7 are 
all highly conserved in vertebrates and green plants, they are frequently lost in other 
evolutionary clades. The presence-absence patterns of these genes are not random; almost 
all CDCA7 harboring eukaryote species also have HELLS and DNMT1 (or another 
maintenance methyltransferase, DNMT5), whereas species that maintain DNMT1 or 
HELLS without CDCA7 are identified in several clades, such as Fungi and Ecdysozoa. 
Coevolution of presence-absence patterns (CoPAP) analysis in Ecdysozoa further 
indicates coevolutionary linkages among CDCA7, HELLS, DNMT1 and its activator 
UHRF1. Our study suggests that a unique specialized role of CDCA7 in HELLS-
dependent DNA methylation maintenance is broadly inherited from the last eukaryotic 
common ancestor. 
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Introduction 
DNA methylation, particularly 5-methylcytosine (5mC) at CpG sequences, is widely 
conserved in eukaryotes. Along with its role in silencing transposable elements and 
suppressing aberrant intragenic transcription (Choi et al., 2020; Deniz et al., 2019; Neri et 
al., 2017), DNA methylation plays critical roles in developmental control, genome 
stability and the development of diseases such as cancers and immunodeficiencies 
(Greenberg and Bourc'his, 2019; Lyko, 2018; Nishiyama and Nakanishi, 2021). Despite 
its versatility as an epigenetic control mechanism, DNA methyltransferases (DNMTs) are 
lost in multiple evolutionary lineages (Bewick et al., 2017; Huff and Zilberman, 2014; 
Kyger et al., 2021; Zemach et al., 2010). DNMTs are largely subdivided into 
maintenance DNMTs and de novo DNMTs (Lyko, 2018). Maintenance DNMTs 
recognize hemimethylated CpGs and restore symmetric methylation at these sites to 
prevent the passive loss of 5mC upon DNA replication. Conversely, methylation by de 
novo DNMTs does not require methylated DNA templates. In animals, 5mC is 
maintained during DNA replication by DNMT1 together with UHRF1, which directly 
recognizes hemimethylated cytosine via the SRA domain and stimulates activity of 
DNMT1 in a manner dependent on its ubiquitin-ligase activity (Nishiyama and 
Nakanishi, 2021). De novo DNA methylation is carried out by DNMT3 in animals. Some 
species, such as the fungus Cryptococcus neoformans, lack de novo DNA methylation 
activity (Catania et al., 2020; Dumesic et al., 2020; Huff and Zilberman, 2014). In C. 
neoformans, DNA methylation is maintained by DNMT5, which has a SNF2-family 
ATPase domain that is critical for its methyltransferase activity (Dumesic et al., 2020; 
Huff and Zilberman, 2014). Although DNMT5 orthologs cannot be found in land plants 
and animals, their broad existence in Stramenopiles, Chlorophyta and Fungi suggests that 
DNMT5, perhaps together with DNMT1, coexisted in the last eukaryotic common 
ancestor (LECA) (Huff and Zilberman, 2014). While the evolutionary preservation and 
loss of DNMTs and other proteins involved in 5mC metabolism has been studied 
(Bewick et al., 2017; de Mendoza et al., 2018; Dumesic et al., 2020; Engelhardt et al., 
2022; Huff and Zilberman, 2014; Iyer et al., 2011; Lewis et al., 2020; Mondo et al., 2017; 
Mulholland et al., 2020; Nai et al., 2020; Tirot et al., 2021; Zemach et al., 2010), it 
remains unclear if there is any common process or event that leads to the loss of DNA 
methylation systems from certain evolutionary lineages. 
 
The loss of DNA methylation is a hallmark of immunodeficiency–centromeric 
instability–facial anomalies (ICF) syndrome, a rare genetic disorder which causes severe 
immune defects (Ehrlich, 2003; Ehrlich et al., 2006; Vukic and Daxinger, 2019). 
Activated lymphocytes of ICF patients display a characteristic cytogenetic abnormality at 
the juxtacentromeric heterochromatin of chromosome 1 and 16, where the satellite 2 
repetitive element is highly enriched. In about 50 % of ICF patients, classified as ICF1, 
the disease is caused by mutations in the “de novo” DNA methyltransferase DNMT3B 
(Hansen et al., 1999; Okano et al., 1999). The rarer genotypes known as ICF2, ICF3 and 
ICF4, are caused by mutations in ZBTB24, HELLS (Helicase, Lymphoid Specific, also 
known as LSH, Lymphoid-Specific Helicase) and CDCA7, respectively (de Greef et al., 
2011; Thijssen et al., 2015; Unoki, 2021). While the loss of DNA methylation at satellite 
2 repeats is common to all ICF genotypes, ICF2-4 patient-derived lymphocytes, but not 
ICF1 patient cells, additionally exhibit hypomethylation at centromeric alpha-satellite 
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repeats (Jiang et al., 2005; Velasco et al., 2018). Knock out of ICF genes in human 
HEK293 cells reproduces the DNA methylation profile observed in patient cells (Unoki 
et al., 2019). In mice, ZBTB24, HELLS and CDCA7, but not DNMT3B, are required for 
methylation at centromeric minor satellite repeats (Dennis et al., 2001; Hardikar et al., 
2020; Ren et al., 2015; Thijssen et al., 2015). Therefore, although all ICF proteins 
promote DNA methylation, the ZBTB24-CDCA7-HELLS axis may target additional loci 
such as alpha satellites for DNA methylation in a DNMT3-independent manner. Indeed, 
the importance of HELLS/CDCA7 in DNA methylation maintenance by DNMT1 has 
been reported (Han et al., 2020; Ming et al., 2021; Unoki, 2021; Unoki et al., 2020). 
 
HELLS belongs to one of ~25 subclasses of the SNF2-like ATPase family (Flaus et al., 
2006).  Among these diverse SNF2 family proteins, HELLS appears to have a specialized 
role in DNA methylation. Reduced genomic DNA methylation was observed in HELLS 
(LSH) knockout mice (Dennis et al., 2001) and mouse embryonic fibroblasts (Myant et 
al., 2011; Yu et al., 2014). In fact, this function of HELLS in DNA methylation was 
originally inferred from studies in Arabidopsis, where mutations in the HELLS ortholog 
DDM1 (decrease in DNA methylation) cause drastic reduction of 5mC in transposable 
and repetitive elements (Vongs et al., 1993). Like HELLS, DDM1 is a SNF2 ATPase 
with demonstrable in vitro nucleosome remodeling activity (Brzeski et al., 2003; Jenness 
et al., 2018).  Since DNA methylation defects in ddm1 mutants can be rescued by the loss 
of histone H1, it has been proposed that DDM1-mediated remodeling of H1-bound 
nucleosomes is important for DNA methylation (Zemach et al., 2013).  
 
CDCA7 (also known as JPO1) was originally identified as one of eight CDCA genes that 
exhibited cell division cycle-associated gene expression profiles (Walker, 2001). A 
putative 4CXXC zinc finger binding domain (zf-4CXXC_R1) is conserved among 
CDCA7 homologs, including its paralog CDCA7L (also known as JPO2) (Chen et al., 
2005); (Ou et al., 2006). Multiple lines of evidence support the idea that CDCA7 
functions as a direct activator of the nucleosome remodeling enzyme HELLS. First, in 
Xenopus egg extracts, HELLS and CDCA7e (the sole CDCA7 paralog present in 
Xenopus eggs) both preferentially interact with nucleosomes rather than nucleosome-free 
DNA, and binding of HELLS to chromatin depends on CDCA7e (Jenness et al., 2018). 
Second, HELLS alone exhibits little nucleosome sliding activity, but CDCA7e greatly 
stimulates it (Jenness et al., 2018). Third, HELLS directly binds to CDCA7e (as well as 
CDCA7 and CDCA7L), even in the absence of DNA (Jenness et al., 2018). Fourth, 
HELLS and CDCA7 interact in human cells (Unoki et al., 2019), where chromatin 
binding of HELLS also depends on CDCA7 (Jenness et al., 2018). ICF disease mutations 
located in the conserved zf-4CXXC_R1 domain (R274C, R274H and R304H in human 
CDCA7) inhibited chromatin binding of CDCA7 and HELLS without interfering with 
CDCA7-HELLS interaction (Jenness et al., 2018), such that the zf-4CXXC_R1 domain 
likely serves as a chromatin binding module. Therefore, we proposed that CDCA7 and 
HELLS form a bipartite nucleosome remodeling complex, termed CHIRRC (CDCA7-
HELLS ICF-related nucleosome remodeling complex) (Jenness et al., 2018).  
 
We previously suggested that ZBTB24, CDCA7, and HELLS form a linear pathway to 
support DNA methylation (Jenness et al., 2018). ZBTB24 is a transcription factor which 
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binds the promoter region of CDCA7 and is required for its expression (Wu et al., 2016). 
As CDCA7 binds HELLS to form the CHIRRC, we proposed that its ATP-dependent 
nucleosome sliding activity exposes DNA that was previously wrapped around the 
histone octamer and makes it accessible for DNA methylation (Jenness et al., 2018). 
Indeed, it has been shown that DNMT3A and DNMTB cannot methylate DNA within a 
nucleosome (Felle et al., 2011), and the importance of HELLS and DDM1 for DNA 
methylation at nucleosomal DNA has been reported in mouse embryonic fibroblasts and 
Arabidopsis, respectively (Lyons and Zilberman, 2017). Given the frequent loss of 5mC 
as an epigenetic mark in multiple evolutionary lineages, it is striking that the role for 
HELLS/DDM1 in DNA methylation appears to be conserved in evolutionarily distant 
mammals and plants. Importantly, this would suggest that the promotion of DNA 
methylation through nucleosome sliding is specific to HELLS and cannot be substituted 
by other SNF2 family nucleosome remodelers, such as SNF2 (SMARCA2/4), INO80, 
and ISWI (SMARCA1/5). If the specific function of HELLS and CDCA7 in DNA 
methylation is indeed derived from the last eukaryotic common ancestor (LECA), we 
hypothesized that HELLS and CDCA7 coevolved with other DNA methylation 
machineries. We here test this hypothesis and discuss the potential sequence of events 
that led to the loss of DNA methylation in some species. 
 
Results 
 
CDCA7 is absent from the classic model organisms that lack genomic 5mC 
CDCA7 is characterized by the unique zf-4CXXC_R1 motif (Pfam PF10497) (Mistry et 
al., 2021). Conducting a BLAST search using human CDCA7 as a query sequence 
against the Genbank protein database, we realized that no zf-4CXXC_R1-containing 
proteins are identified in the classic model organisms Drosophila melanogaster, 
Caenorhabditis elegans, Schizosaccharomyces pombe and Saccharomyces cerevisiae, 
which are all also known to lack any DNMTs and genomic 5mC (Zemach et al., 2010). 
However, we identified a protein with a zf-4CXXC_R1 motif in the bumblebee Bombus 
terrestris and the thale cress A. thaliana, which have both maintenance and de novo 
DNMTs (Bewick et al., 2017; Li et al., 2018) (Figure 1). Based on the reciprocal best hits 
(RBH) criterion using human HELLS as a query sequence (see Methods) (Ward and 
Moreno-Hagelsieb, 2014), HELLS orthologs were identified in A. thaliana (DMM1) and 
S. cerevisiae (Irc5), which is in line with previous reports (Litwin et al., 2017), as well as 
a putative HELLS ortholog in B. terrestris. No clear HELLS orthologs were identified in 
D. melanogaster, C. elegans, or S. pombe. This pilot scale analysis led us to hypothesize 
that the evolutionary maintenance of CDCA7 is linked to that of HELLS and DNMTs. In 
order to statistically validate this hypothesis, we set out to systematically define orthologs 
of CDCA7, HELLS and DNMTs in a broad range of evolutionary lineages.  
 
CDCA7 family proteins in vertebrates 
We first characterized evolutionary conservation of CDCA7 family proteins in 
vertebrates, where 5mC, DNMT1 and DNMT3 are highly conserved. A BLAST search 
against the Genbank protein database identified two zf-4CXXC_R1 motif-containing 
proteins, CDCA7/JPO1 and CDCA7L/R1/JPO2, throughout Gnathostomata (jawed 
vertebrates) (Fig. 2A, B). In frogs (such as Xenopus, but not all amphibians), and some 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 2, 2023. ; https://doi.org/10.1101/2023.01.30.526367doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.30.526367
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

fishes (such as Astyanax mexicanus and Takifugu rubripes), a third paralog CDCA7e 
exists (Fig. 2A, B, Fig. S1). CDCA7e is the only CDCA7-like protein that can be 
detected in Xenopus eggs (Jenness et al., 2018), and thus likely represents a form specific 
to oocytes and early embryos in these species. Among twelve conserved cysteine residues 
originally reported in the zf-4CXXC_R1 domain (Ou et al., 2006), the 12th cysteine 
residue is not conserved in Rhincodon typus (whale shark) CDCA7 and in Xenopus laevis 
CDCA7e. In general, the 12th cysteine residue of the zf-4CXXC_R1 domain is the least 
well-conserved among CDCA7 homologs within and outside of vertebrates, such that we 
do not consider it a key component of the zf-4CXXC_R1 motif (see below). Considering 
that the jawless fish Petromyzon marinus and other invertebrates commonly possess only 
one CDCA7 gene (Fig. 2, and see below), it appears that CDCA7L and CDCA7e 
emerged in jawed vertebrates. Overall, the zf-4CXXC_R1 sequence is highly conserved 
among vertebrate CDCA7 homologs, including three residues that are mutated in ICF 
patients (R274, G294 and R304 in human CDCA7) (Fig. 2B) (Thijssen et al., 2015).  
 
While the presence of four CXXC motifs in the zf-4CXXC_R1 domain is reminiscent of 
a classic zinc finger-CXXC domain (zf-CXXC, Pfam PF02008), their cysteine 
arrangement is distinctly different (Long et al., 2013). In vertebrate CDCA7 paralogs, 
eleven conserved cysteines are arranged as 
CXXCX10CX4CX7CXXCX19CXXCX3CXCXXC. In contrast, in the classic zf-CXXC 
motif eight cysteines are arranged as CXXCXXCX4-5CXXCXXCX8-14CX4C (Long et al., 
2013). Apart from the zf-4CXXC_R1 domain, vertebrate CDCA7-like proteins often also 
contain a Myc-binding leucine zipper and Lens epithelium-derived growth factor 
(LEDGF)-binding motif, which are unique to the vertebrate CDCA7 family proteins (Gill 
et al., 2013). In contrast to zf-CXXC motif-containing proteins such as KDM2A/B, 
DNMT1, MLL1/2, and TET1/3, the vertebrate CDCA7 proteins do not contain any 
predicted enzymatic domains (Huang et al., 2005; Maertens et al., 2006; Tesina et al., 
2015). 
 
Plant homologs of CDCA7 
A BLAST sequence homology search identified three classes of zf-4CXXC_R1 motif-
containing proteins in Arabidopsis (Figure 3). Class I proteins conserve all three ICF-
associated residues (R274, G294 and R304 in human CDCA7) as well as all eleven 
characteristic cysteines, with the exception that the position of the fourth cysteine is 
shifted two residues toward the N terminus. The protein size of class I proteins is 
comparable to vertebrate CDCA7 (400 – 550 aa), and no other Pfam motifs can be 
identified. Based on the striking conservation of the eleven cysteine and three ICF-
associated residues, we predict that the class I proteins are prototypical CDCA7 
orthologs.  
 
Class II proteins contain a zf-4CXXC_R1 domain, a DDT domain and a WHIM1 
domain. These proteins were previously identified as DDR1-3 (Dong et al., 2013). DDT 
and WHIM1 domains are commonly found in proteins that interact with SNF2h/ISWI 
(Aravind and Iyer, 2012; Li et al., 2017; Yamada et al., 2011). Indeed, it was reported 
that Arabidopsis DDR1 and DDR3 interact with the ISWI orthologs CHR11 and CHR17 
(Tan et al., 2020). Among the eleven cysteine residues in the zf-4CXXC_R1 motif of 
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these proteins, the position of the fourth residue is shifted towards the C-terminus. The 
ICF-associated glycine residue (G294 in human CDCA7, mutated to valine in ICF4 
patients) is replaced by isoleucine.  
 
Class III proteins are longer (~1000 amino acid) and contain an N-terminal zf-
4CXXC_R1 domain and a C-terminal JmjC domain (Pfam, PF02373), which is predicted 
to possess demethylase activity against histone H3K9me2/3 (Saze et al., 2008). While all 
eleven cysteine residues can be identified, there are deletions between the 4th and 5th 
cysteine and 6th and 7th cysteine residues. None of the ICF-associated residues are 
conserved in the class III. One of these class III proteins is IBM1 (increase in bonsai 
mutation 1), whose mutation causes the dwarf “bonsai” phenotype (Saze et al., 2008), 
which is accompanied with increased H3K9me2 and DNA methylation levels at the 
BONSAI (APC13) locus. Double mutants of ddm1 and ibm1 exacerbate the bonsai 
phenotype, indicating that DDM1 and IBM1 act independently to regulate DNA 
methylation (Saze et al., 2008). Another class III protein is JMJ24, which harbors a RING 
finger domain in addition to the 4CXXC and JmjC domains. This RING finger domain 
promotes ubiquitin-mediated degradation of the DNA methyltransferase CMT3, and thus 
opposes DNA methylation (Deng et al., 2016). 
 
Orthologs of these three classes of CDCA7 proteins found in Arabidopsis are widely 
identified in green plants (Viridiplantae), including Streptophyta (e.g., rice, maize, moss, 
fern) and Chlorophyta (green algae). Other variants of zf-4CXXC_R1 are also found in 
Viridiplantae. In contrast to green plants, in which the combined presence of 
HELLS/DDM1-, CDCA7- and DNMT- orthologs is broadly conserved, no zf-
4CXXC_R1-containing proteins can be identified in red algae (Rhodophyta) (Table S1, 
see Fig.5, Fig. S2).  
 
Zn-4CXXC_R1-containig proteins in Fungi 
Although S. pombe and S. cerevisiae genomes do not encode any CDCA7-like proteins, a 
BLAST search identified various fungal protein(s) with a zf-4CXXC_R1 motif. Among 
the zf-4CXXC_R1-containing proteins in fungi, 10 species (Kwoniella mangroviensis, 
Coprinopsis cinere, Agaricus bisporus, Taphrina deformans, Gonapodya prolifera, 
Basidiobolus meristosporus, Coemansia reversa, Linderina pennispora, Rhizophagus 
irregularis, Podila verticillate) harbor a zf-4CXXC-R1 motif highly similar to the 
prototypical (Class I) CDCA7 albeit with three notable deviations (Fig. 4A). First, the 
space between the third and fourth cysteine residues is variable. Second, the fifth cysteine 
is replaced by aspartate in Zoopagomycota. Third, the second ICF-associated residue 
(G294 in human CDCA7) is not conserved. As this zf-4CXXC_R1 signature is similar to 
the plant class II zf-4CXXC_R1 motif, we define this fungal protein family as class IIf 
CDCA7, which forms a distinct clade in our phylogenetic analysis of zf-4CXXC_R1 
sequence alignment (Fig. S1).  
 
Beside the class IIf CDCA7-like proteins, several fungal species encode a protein with a 
diverged zf-4CXXC_R1 motif, including those with a JmjC domain at the N-terminus 
(Figure 4B, Table S1), unlike the plant class III proteins for which the JmjC domain is 
located at the C-terminus. Among these proteins, it was suggest that Neurospora crassa 
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DMM-1 does not directly regulate DNA methylation or demethylation but rather 
controlling deposition of histone H2A.Z and/or H3K56 acetylation, which inhibit 
spreading of heterochromatin segments with methylated DNA and H3K9me3 (Honda et 
al., 2010; Zhang et al., 2022). 

 
Systematic identification of CDCA7, HELLS and DNMT homologs in eukaryotes 
To systematically identify CDCA7 and HELLS orthologs in the major eukaryotic 
supergroups, we conducted a BLAST search against the NCBI protein database using 
human CDCA7 and HELLS protein sequences. To omit species with a high risk of false 
negative identification, we selected species containing at least 6 distinct proteins with 
compelling homology to the SNF2 ATPase domain of HELLS, based on the assumption 
that each eukaryotic species is expected to have 6-20 SNF2 family ATPases (Flaus et al., 
2006). Indeed, even the microsporidial pathogen Encephalitozoon cuniculi, whose 
genome size is a mere 2.9 Mb, contains six SNF2 family ATPases (Flaus et al., 2006). As 
such, we generated a panel of 180 species encompassing all major eukaryote supergroups 
(5 Excavata, 18 SAR [2 Rhizaria, 6 Alveolata, 10 Stramenopiles]), 1 Haptista, 1 
Cryptista, 15 Archaeplastida [3 Rhodophyta and 12 Viridiplantae], 4 Amoebozoa, 136 
Opisthokonts [34 Fungi, 3 Holozoa, and 99 Metazoa])(Fig. S2, Table S1). 
 
HELLS orthologs were initially identified if they satisfied the RBH criterion. To further 
validate the annotation of HELLS orthologs, a phylogenetic tree was constructed from a 
multiple sequence alignment of the putative HELLS orthologs alongside other SNF2-
family proteins of H. sapiens, D. melanogaster, S. cerevisiae, and A. thaliana. If HELLS 
orthologs are correctly identified (i.e. without erroneously including orthologs of another 
SNF2-subfamily) they should cluster together in a single clade. However, the sequence 
alignment using the full-length protein sequence failed to cluster HELLS and DDM1 in 
the same clade (Fig. S3). Since HELLS and other SNF2-family proteins have variable 
insertions within the SNF2 ATPase domain, multiple sequence alignment of the SNF2 
domains was then conducted after removing the insertion regions, as previously reported 
(Flaus et al., 2006). By this SNF2 domain-only alignment method, all HELLS orthologs 
formed a clade, separated from CHD1, ISWI, SMARCA2/4, SRCAP, and INO80 (Fig. 
S4). 
 
A BLAST search with the human CDCA7 sequence across the panel of 180 species 
identified a variety of proteins containing the zf-4CXXC_R1 motif, which are prevalent 
in all major supergroups (Fig. 5, Fig. S1, Table S1). Each of these identified proteins 
contains only one zf-4CXXC_R1 motif. The resulting list of CDCA7 BLAST hits were 
further classified as prototypical (Class I) CDCA7-like proteins (i.e. CDCA7 orthologs) if 
the first eleven cysteine residues and the three ICF-associated residues are conserved.  A 
phylogenetic tree analysis of zf-4CXXC_R1 domains from diverse species confirmed that 
Class I CDCA7 proteins are clustered under the same clade (Fig. S1). These CDCA7 
orthologs are broadly found in the three supergroup lineages (Archaeplastida, 
Amoebozoa, Opisthokonta) (Fig.5, Fig. S1, S2, S5, Table S1). In Excavata, the 
amoeboflagellate Naegleria gruberi encodes a protein which is a likely ortholog of 
CDCA7 with an apparent C-terminal truncation (XP_002678720), possibly due to a 
sequencing error (Fig. S5). In SAR, Class I CDCA7 proteins are absent from all available 
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genomes, except stramenopile Tribonema minus, which encodes a distantly related likely 
ortholog of CDCA7 (KAG5177154). These conservations suggest that the Class I zf-
4CXXC_R1 domain in CDCA7 was inherited from the LECA.  
 
 
Classification of DNMTs in eukaryotes 
A simple RBH approach is not practical to classify eukaryotic DNMT proteins due to the 
presence of diverse lineage-specific DNMTs (Huff and Zilberman, 2014). Therefore, we 
collected proteins with a DNMT domain within the panel of 180 eukaryote species, and 
then the DNMT domains were extracted from each sequence (based on an NCBI 
conserved domains search). Generating a phylogenetic tree based on the multisequence 
alignment of the DNMT domains, we were able to classify the majority of all identified 
DNMTs as previously characterized DNMT subtypes according to their sequence 
similarity. These DNMT subtypes include the functionally well-characterized DNMT1 
and DNMT3, the fungi-specific maintenance methyltransferase Dim-2 and de novo 
methyltransferase DNMT4  (Nai et al., 2020), the SNF2 domain-containing maintenance 
methyltransferase DNMT5 (Dumesic et al., 2020; Huff and Zilberman, 2014), the plant-
specific DNMTs (such as DRM and CMT) (Yaari et al., 2019), DNMT6 (a poorly 
characterized DNMT identified in Stramenopiles, Haptista and Chlorophyta) (Huff and 
Zilberman, 2014), and the tRNA methyltransferase TRDMT1 (also known as DNMT2) 
(Fig. S6). We also identified other DNMTs, which did not cluster into these classes. For 
example, although it has been reported that DNMT6 is identified in Micromonas but not 
in other Chlorophyta species, such as Bathycoccus and Ostreococcus (Huff and 
Zilberman, 2014), we identified Chlorophyta-specific DNMTs that form a distinct clade, 
which seems to be diverged from DNMT6 and DNMT3. We temporarily called this class 
Chlorophyta DNMT6-like (Fig. S6). Other orphan DNMTs include the de novo DNA 
methyltransferase DNMTX in fungus Kwoniella mangroviensis (Catania et al., 2020), 
which may be most related to CMT, and an uncharacterized DNMT in N. gruberi 
(XP_002682263), which seems to diverge from DNMT1 (Fig. S6). 
 
Coevolution of CDCA7, HELLS and DNMTs 
The identification of protein orthologs across the panel of 180 eukaryotic species reveals 
that homologs of CDCA7, HELLS and DNMTs are conserved across the major eukaryote 
supergroups, but they are also dynamically lost (Fig. 5, Fig. S2). We found 40 species 
encompassing Excavata, SAR, Amoebozoa, and Opisthokonta that lack CDCA7, HELLS 
and DNMT1. The concurrent presence of DNMT1, UHRF1 and CDCA7 outside of 
Viridiplantae and Opisthokonta is rare (Fig. 5, Fig. S2, Table S1). Interestingly, 
Acanthamoeba castellanii, whose genome is reported to have methylated cytosines 
(Moon et al., 2017),  encodes homologs of DNMT1, DNMT3, UHRF1, CDCA7 and 
HELLS, while none of these genes are present in other Amoebozoa species (Entamoeba 
histolytica, Dictyostelium purpureum, Heterostelium album) (Fig. 5, Table S1, Fig. S2). 
N. gruberi is an exceptional example among Excavata species, encoding a suspected 
CDCA7 ortholog (XP_002678720) as well as HELLS, an orphan DNMT1-like protein 
(XP_002682263), and a UHRF1-like protein (Table S1). DNMT1, DNMT3, HELLS and 
CDCA7 seem to be absent in other Excavata lineages, although Euglenozoa variants of 
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DNMT6 and cytosine methylation are identified in Trypanosoma brucei and Leishmania 
major (Huff and Zilberman, 2014; Militello et al., 2008).  
 
To quantitatively assess evolutionary coselection of DNMTs, CDCA7 and HELLS, we 
performed CoPAP analysis on the panel of 180 eukaryote species (Fig. S7)(Cohen et al., 
2013). The analysis was complicated due to the presence of clade specific DNMTs (e.g., 
Dim2, DNMT5, DNMT6 and other plant specific DNMT variants) and diverse variants 
of zf-4CXXC_R1 containing proteins (class II, class III). Considering this caveat, we 
conducted CoPAP analysis of four DNMTs (DNMT1, Dim-2, DNMT3, DNMT5), 
UHRF1, CDCA7 (class I and class II), and HELLS. We included Dim-2 and DNMT5 
since they play a critical role in DNA methylation in fungi lacking the prototypical 
DNMT1 (Catania et al., 2020; Selker et al., 2002) (Fig. 5, S2, Table S1). As a positive 
and negative controls for the CoPAP analysis, we also included subunits of the PRC2 
complex (EZH1/2, EED and Suz12), and other SNF2 family proteins 
SMARCA2/SMARCA4, INO80 and RAD54L, which have no clear direct role related to 
DNA methylation, respectively. As expected for proteins that act in concert within the 
same biological pathway, the CoPAP analysis showed significant coevolution between 
DNMT1 and UHRF1, as well as between the PRC2 subunits EZH1 and EED. Suz12 did 
not show a significant linkage to other PRC2 subunits by this analysis, most likely due to 
a failure in identifying diverged Suz12 orthologs, such as those in Neurospora and 
Paramecium (Jamieson et al., 2013; Miro-Pina et al., 2022). The class I CDCA7 exhibits 
significant linkage to DNMT1, UHRF1, HELLS and DNMT3. Notably, none of these 
proteins show an evolutionary association with the PRC2 proteins or other SNF2 family 
proteins, supporting the specific coevolution of CDCA7-HELLS and the DNA 
methylation proteins.  
 
We next conducted the CoPAP analysis against a panel of 50 Ecdysozoa species, where 
DNA methylation system is dynamically lost in multiple lineages (Bewick et al., 2017; 
Engelhardt et al., 2022), yet the annotation of DNMTs, UHRF1, CDCA7 and HELLS is 
unambiguous. As a negative control, we included INO80, which is dynamically lost in 
several Ecdysozoa lineages, such as C. elegans (Fig. 5, Fig. S2, Table S1). As expected, 
CoPAP analysis showed a highly significant coevolutionary interaction between DNMT1 
and UHRF1 (Fig.6). In addition, HELLS interacts with DNMT1, UHRF1 and CDCA7. In 
contrast, no linkage from INO80 or DNMT3 was seen. 
 
Among the panel of 180 eukaryote species, we found 82 species encompassing Excavata, 
Viridiplantae, Amoebozoa and Opisthokonts that have CDCA7-like proteins (including 
the prototypical CDCA7 and fungal type IIf CDCA7) (Fig. S2 and Table S1). Strikingly, 
all 82 species containing CDCA7 (or type IIf CDCA7) also harbor HELLS. Almost all 
CDCA7 encoding species have DNMT1 with the exception of the Mamiellophyceae 
lineage, which lost DNMT1 but possesses DNMT5; and the fungus T. deformans, which 
encodes DNMT4 but not DNMT1 or DNMT5. In contrast, 20 species (e.g., S. cerevisiae) 
possess only HELLS, while 12 species (e.g. Bombyx mori) retains only DNMT1 among 
these proteins. These observations indicate that the function of CDCA7-like proteins is 
strongly linked to HELLS and DNMT1, such that their co-selection is maintained during 
eukaryote evolution, while CDCA7 is easier to lose than DNMT1 and HELLS. 
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Loss of CDCA7 in braconid wasps together with DNMT1 or DNMT3 
CoPAP analysis detected the coevolutionary linkage between CDCA7 and DNMT1, 
rather than DNMT3, in Ecdysozoa. We were therefore intrigued by the fact that two 
species, Tribolium castaneum and Microplitis demolitor, whose genomic DNA does not 
have any detectable 5mC despite the presence of DNMT1 (Bewick et al., 2017; Schulz et 
al., 2018; Zemach et al., 2010), lost CDCA7 and DNMT3. To further validate the 
apparent co-loss of CDCA7 and DNMT1/DNMT3 in Ecdysozoa, we focused on the 
Hymenoptera clade (including M. demolitor), for which genome synteny has been 
reported (Table S2) (Li et al., 2021). Indeed, a striking synteny is observed in the genome 
region surrounding CDCA7 among the parasitic wood wasp (Orussus abietinus) and 
Aculeata species (bees Bombus terrestris and Habropoda laborlosa, and the eusocial 
wasp Polistes canadensis), which diverged ~250 MYA (Li et al., 2021; Peters et al., 
2017) (Fig. 7, Table S3). In these species, CDCA7 is located between Methyltransferase-
like protein 25 homolog (MET25, E) and Ornithine aminotransferase homolog (OAT, F). 
In fact, the gene cluster containing LTO1 homolog (D), MET25 (E), OAT (F), and Zinc 
finger protein 808 (ZN808, G) is highly conserved in all the analyzed Hymenoptera 
species, but not outside of Hymenoptera (e.g., Drosophila). 
 
However, CDCA7 is lost from this gene cluster in parasitoid wasps, including 
Ichneumonoidea wasps (M. demolitor, Cotesia glomerata, Aphidius gifuensis, Fopius 
arisanus, Venturia canescen) and chalcid wasps (Copidosoma floridanum, Nasonia 
vitripennis) (Figure 7, Table S1 and S2). Among Ichneumonoidea wasps, CDCA7 
appears to be lost in the Braconidae clade, while CDCA7 appears to have translocated to 
a different chromosome in Venturia canescen. In chalcid wasps, CDCA7 translocated to a 
genome segment between Artemis (I) and Chromatin accessibility complex protein 1 
(CHRC1, J). Together with the chromosome-level genome assembly for Cotesia 
glomerata and Aphidius gifuensis (Feng et al., 2020; Pinto et al., 2021), the synteny 
analysis strongly indicates that CDCA7 is lost from braconid wasps. Intriguingly, among 
those braconid wasps that lost CDCA7, DNMT3 is co-lost in the Microgastrinae linage 
(M. demolitor, Cotesia glomerata, Cotesia typhae) and Chelonus insularis, while 
DNMT1 and UHRF1 are co-lost in the Opiinae linage (Fopius arisanus, Diachasma 
alloeum) and Aphidius gifuensis (Table S2). This co-loss of CDCA7 with either DNMT1-
UHRF1or DNMT3 in the braconid wasp clade suggests that evolutionary preservation of 
CDCA7 is more sensitive to DNA methylation status per se than to the presence or 
absence of a particular DNMT subtype.  
 
Discussion 
Although DNA methylation is prevalent across eukaryotes, DNA methyltransferases are 
frequently lost in a variety of lineages. This study reveals that the nucleosome remodeling 
complex CHIRRC, composed of CDCA7 and HELLS, is frequently lost in conjunction 
with DNA methylation status. More specifically, evolutionary preservation of CDCA7 is 
tightly coupled to the preservation of HELLS and DNMT1. The conservation of 
CDCA7’s signature cysteine residues alongside three ICF-associated residues across 
diverse eukaryote lineages suggests a unique evolutionary conserved role in DNA 
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methylation. Our co-evolution analysis suggests that DNA methylation-related 
functionalities of CDCA7 and HELLS are inherited from LECA. 
 
The evolutionary coupling of CDCA7, HELLS and DNMT1 is consistent with a 
proposed role of HELLS in replication-uncoupled DNA methylation maintenance (Ming 
et al., 2021). Commonly, DNA methylation maintenance occurs directly behind the DNA 
replication fork. Replication uncoupled DNA methylation maintenance is distinct from 
this process (Nishiyama et al., 2020), and HELLS and CDCA7 may be important for the 
maintenance of DNA methylation long after the completion of DNA replication, 
particularly at heterochromatin where chromatin has restricted accessibility (Ming et al., 
2020).  
 
The loss of CDCA7 is not always coupled to the loss of DNMT1 or HELLS, however. In 
the Hymenoptera clade, CDCA7 loss in the braconid wasps is accompanied with the loss 
of DNMT1/UHRF1 or the loss of DNMT3. Among these species, it was reported that 
5mC DNA methylation is undetectable in M. demolitor, which harbors DNMT1, UHRF1 
and HELLS but lost DNMT3 and CDCA7 (Bewick et al., 2017). Similarly, in the 
Coleoptera clade, the red flour beetle Tribolium castaneum possesses DNMT1 and 
HELLS, but lost DNMT3 and CDCA7. Since DNMT1 is essential for the embryonic 
development of T. castaneum and CpG DNA methylation is undetectable in this 
organism (Schulz et al., 2018), DNMT1 must have a function independent of DNA 
methylation in this species. Indeed, species that preserves DNMTs and/or HELLS in the 
absence of CDCA7 emerge repeatedly during eukaryote evolution, whereas CDCA7 
appears to be immediately dispensable in species that have a dampened requirement for 
DNA methylation. In other words, there is no evolutionary advantage to retain CDCA7 in 
the absence of DNA methylation, and CDCA7 is almost never maintained in the absence 
of any DNMTs. Alternatively, could the loss of CDCA7 precede the loss of DNA 
methylation? If CDCA7 is important to promote DNA methylation maintenance, the loss 
of CDCA7 may exacerbate an impaired epigenetic environment and stimulate the 
adaptation of the organism towards DNA methylation-independent epigenetic 
mechanisms, thereby decreasing the necessity to maintain the DNA methylation system. 
In this way, the loss of CDCA7 could trigger the subsequent loss of DNMTs (and 
HELLS), unless these proteins acquired important DNA methylation-independent roles. 
In line with this scenario, insects possess robust DNA methylation-independent 
mechanisms (such as piwi-RNA and H3K9me3) to silence transposons and DNA 
methylation is largely limited to gene bodies in insects (Bonasio et al., 2012; Feng et al., 
2010; Libbrecht et al., 2016). The loss of CDCA7 is more frequently observed in insects 
than plants or vertebrates, which rely heavily on DNA methylation to silence transposons. 
(Czech et al., 2018; Onishi et al., 2021). Thus, lowering the demand of DNA methylation 
at transposable elements might reduce the essentiality of CDCA7 (and then perhaps that 
of DNMTs), though it is difficult to deduce which evolutionary change occurs first.  
 
The observation that some species retain HELLS but lose CDCA7 (while the reverse is 
never true) suggests that HELLS can evolve a CDCA7-independent function. Indeed, it 
has been suggested that the sequence-specific DNA-binding protein PRDM9 recruits 
HELLS to meiotic chromatin to promote DNA double-strand breaks and recombination 
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(Imai et al., 2020; Spruce et al., 2020). Unlike CDCA7, PRDM proteins are found only in 
metazoans, and are even lost in some vertebrates such as Xenopus laevis and Gallus 
gallus (Birtle and Ponting, 2006). Thus, it is plausible that HELLS acquires a species-
specific CDCA7-independent role during evolution through acquiring a new interaction 
partner. Another example of this may be found in S. cerevisiae, where DNA methylation 
and CDCA7 are absent and the HELLS homolog Irc5 interacts with cohesin to facilitate 
its chromatin loading (Litwin et al., 2017).  
 
Recently, the role of HELLS in the deposition of the histone variant macroH2A, which 
compacts chromatin, has been reported in mice (Ni and Muegge, 2021; Ni et al., 2020; 
Xu et al., 2021). Similarly, in Arabidopsis, DDM1 is critical for deposition of H2A.W, 
which is enriched on heterochromatin, in a manner independent of DNA methylation 
(Osakabe et al., 2021). The role of CDCA7 in the deposition of these H2A variants 
remains to be tested. HELLS and DDM1 can directly interact with macroH2A and 
H2A.W, respectively, even in the absence of CDCA7 (Ni and Muegge, 2021; Osakabe et 
al., 2021). It is thus possible that HELLS/DDM1 family proteins have an evolutionary 
conserved function in H2A variant deposition independent of CDCA7 and DNA 
methylation. However, there is no clear indication of evolutionary co-selection of HELLS 
and macroH2A, as macroH2A is largely missing from insects and the chelicerata 
Centruroides sculpturatus has macroH2A but lost HELLS and CDCA7 (XP_023217082, 
XP_023212717), 
 
Whereas the class I CDCA7-like proteins are evolutionary coupled to HELLS and 
DNMT1-UHRF1, other variants of zf-4CXXC_R1 are found in many eukaryote clades 
including Excavata, SAR, Viridiplantae, Amoebazoa, and Fungi. Interestingly, proteins 
such as IBM1 in Arabidopsis and DMM-1 in Neurospora, which contain both a variant of 
zf-4CXXC_R1 and the JmjC domain appeared convergently in several clades (Saze et al., 
2008) (Honda et al., 2010; Zhang et al., 2022). Functional studies of IBM1 and DMM-1 
suggested that they contribute to DNA methylation regulation via indirect mechanisms. 
As IBM1 and DMM-1 do not preserve ICF-associated residues, which are critical for 
nucleosome binding in CDCA7 (Jenness et al., 2018), it is likely that these variants of zf-
4CXXC_R1 are adapted to recognize different structural features of the genome and no 
longer preserve the DNA methylation function of CDCA7 orthologs. 
 
Changes in DNA methylation patterns are highly correlated with aging in mammals 
(Lowe et al., 2018; Wang et al., 2020), and may cause diseases (Nishiyama and 
Nakanishi, 2021). Mutations in CDCA7, HELLS or DNMT3B cause ICF syndrome 
(Thijssen et al., 2015; Xu et al., 1999), which leads to poor life expectancy due to severe 
infections (Gossling et al., 2017; Hagleitner et al., 2008). Considering the importance of 
DNA methylation in the immune system in vertebrates (Hemmi et al., 2000; Kondilis-
Mangum and Wade, 2013), plants (Deleris et al., 2016), and bacteria (Vasu and Nagaraja, 
2013), the evolutionary arrival of HELLS-CDCA7 in eukaryotes might have been 
required to transmit the original immunity-related role of DNA methylation from 
prokaryotes to nucleosome-containing (eukaryotic) genomes.  
 
 
Materials and Methods 
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Building a curated list of 180 species for analysis of evolutionary co-selection 
A list of 180 eukaryote species was manually generated to encompass broad eukaryote 
evolutionary clades (Table S1). Species were included in this list based on two criteria: 
(i) the identification UBA1 and PCNA homologs, two highly conserved and essential 
proteins for cell proliferation; and (ii) the identification of more than 6 distinct SNF2 
family sequences. Homologs of CDCA7, HELLS, UBA1 and PCNA were identified by 
BLAST search against the Genbank eukaryote protein database available at National 
Center for Biotechnology Information using the human protein sequence as a query 
(NCBI). Homologs of human UHRF1, ZBTB24, SMARCA2/SMARCA4, INO80, 
RAD54L, EZH2, EED or Suz12 were also identified based on the RBH criterion.  To get 
a sense of genome assembly level of each genome sequence, we divided “Total Sequence 
Length” by “Contig N50” (“length such that sequence contigs of this length or longer 
include half the bases of the assembly”; https://www.ncbi.nlm.nih.gov/assembly/help/). 
In the species whose genome assembly level is labeled as “complete”, this value is close 
to the total number of chromosomes or linkage groups. As such, as a rule of thumb, we 
arbitrarily defined the genome assembly “preliminary”, if this value is larger than 100. In 
Figure 5, these species with preliminary-level genome assembly were noted as boxes 
with dotted outlines.  
 
CDCA7 homolog identification and annotation 
The obtained list of CDCA7 homologs was further classified as Class I, Class II or Class 
III homologs based on the distinct characteristics of the zf-4CXXC_R1 motif, as 
described in Results, where Class I homologs are considered to be orthologs of human 
CDCA7. The classification of CDCA7 homologs was further validated based on their 
clustering in a phylogenetic tree built from the CLUSTALW alignment of the zf-
4CXXC_R1 motif (Higgins and Sharp, 1988; Thompson et al., 1994) (Fig S1), using 
MacVector (MacVector, Inc.). 
 
HELLS homolog identification and annotation 
Putative HELLS orthologs were identified according to the RBH criterion. Briefly, a 
BLAST search was conducted using human HELLS as the query sequence, after which 
protein sequences of obtained top hits (or secondary hits, if necessary) in each search 
were used as a query sequence to conduct reciprocal BLAST search against the Homo 
sapiens protein database. If the top hit in the reciprocal search returned the original input 
sequence (i.e. human HELLS), it was annotated as an orthologous protein. If HELLS 
showed up as a next best hit, it is temporally listed as a “potential HELLS ortholog”. To 
further validate the identified HELLS orthologs, full length amino acid sequences of 
these proteins were aligned using CLUSTALW in MacVector with homologs of 
SMARCA2/SMARCA4, CHD1, ISWI, RAD54L, ATRX, HLTF, TTF2, SHPRH, INO80, 
SMARCAD1, SWR1, MOT1, ERCC6, and SMARCAL1, which were also identified and 
temporarily annotated with a similar reciprocal BLAST search methods (Fig. S3). This 
alignment was used to define the conserved SNF2 domain and variable linker regions in 
the putative HELLS orthologs, which were then removed to conduct the secondary 
CLUSTALW alignment in MacVector, from which a phylogenetic tree was generated. 
Distinct cluster of HELLS and other SNF2 family proteins can be identified from the 
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phylogenetic tree, hence confirming that the annotation of HELLS orthologs based on the 
reciprocal BLAST search method is reasonable (Fig. S4). Exceptions are Leucosporidium 
creatinivorum ORY88017 and ORY88018, which classified within the HELLS clade of 
the phylogenetic tree. However, we decided to annotate L. creatinivorum ORY88017 and 
ORY88018 as HELLS orthologs since among other L. creatinivorum SNF2-family 
proteins in this species these two proteins are most similar to human HELLS while clear 
orthologs of other L. creatinivorum SNF2 family proteins, CHD1(ORY55731), 
ISWI(ORY89162), SMARCA2/4(ORY76015), SRCAP/SWR1(ORY90750) and 
INO80(ORY91599), can be identified.  
 
DNMT homolog identification and annotation 
Proteins with a DNA methyltransferase domain were identified with BLAST searches 
using human DNMT1 and DNMT3A. If necessary, additional BLAST searches was 
conducted using human DNMT2, C. neoformans DNMT5, N. crassa Dim-2 and 
DNMT4. DNMT domains were extracted based on NCBI conserved domains search, and 
were aligned with CLUSTALW to build a phylogenetic tree in MacVector. 
 
Co-PAP 
The published method was used (Cohen et al., 2013). The curated list of orthologous 
proteins listed in Table S1 was first used to generate a presence-absence FASTA file.  
Next, a phylogenetic species tree was generated from all orthologous protein sequences 
listed in Table S1 using the ETE3 toolkit. For this, protein sequences were retrieved using 
the rentrez Bioconductor package and exported to a FASTA file alongside a COG file 
containing gene to orthologous group mappings. ETE3 was used with the parameters -w 
clustalo_default-trimal01-none-none and -m cog_all-alg_concat_default-fasttree_default 
and the resulting tree exported in Newark format. COPAP was run using default 
parameters and results visualised using Cytoscape. Code and files required for COPAP 
input generation as well COPAP parameters and output results can be found in our 
Github repository (https://github.com/RockefellerUniversity/Copap_Analysis). 
 
As negative and positive controls for the Co-PAP analysis, we identified several well-
conserved protein orthologs across the panel of 180 eukaryotic species, including Snf2-
like proteins SMARCA2/SMARCA4, INO80, and RAD54L (Flaus et al., 2006), as well 
as subunits of the polycomb repressive complex 2 (PRC2), which plays an evolutionary 
conserved role in gene repression via deposition of the H3K27me3 mark. PRC2 is 
conserved in species where DNMTs are absent (including in D. melanogaster and C. 
elegans) but is frequently lost particularly in several lineages of SAR and Fungi (Sharaf 
et al., 2022). Among the four core subunits of PRC2, we focused on the catalytic subunit 
EZH1/2, EED, and SUZ12, since the fourth subunit RbAp46/48 has a PRC2-independent 
role (Margueron and Reinberg, 2011). We are aware that the reciprocal BLAST search 
missed previously reported highly divergent functional orthologs of SUZ12 in 
Neurospora (Jamieson et al., 2013), and EED and Suz12 in Paramecium (Miro-Pina et 
al., 2022). However, we did not attempt to use these divergent homologs of EED and 
SUZ12 as baits to expand our search in order to consistently apply our homology-based 
definition of orthologs.  
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Hymenoptera synteny analysis 
The mapping of gene loci is based on the information available on the Genome Data 
Viewer (https://www.ncbi.nlm.nih.gov/genome/gdv). Genome positions of listed genes 
are summarized in Table S3. 
 
 
Artworks 
Artworks of species images were obtained from PhyloPic.com, of which images of 
Daphnia, Platyhelminthes, Tribolium and Volvox were generated by Mathilde Cordellier, 
Christopher Laumer/T. Michael Keesey, Gregor Bucher/Max Farnworth and Matt-Crook, 
respectively.  
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Figure legends 
 
Figure 1. CDCA7 is absent from model organisms with undetectable genomic 5mC 
CDCA7 homologs are absent from model organisms where 5mC is largely undetectable 
in genomic DNA and DNMT1/DNMT3 are lost 
  
Figure 2. CDCA7 paralogs in vertebrates 
A. Schematics of vertebrate CDCA7 primary sequence composition. Yellow lines and 
light blue lines indicate positions of evolutionary conserved cysteine residues and 
residues that are mutated in ICF patients, respectively. B. Sequence alignment of the zf-
4CXXC_R1 domain of vertebrate CDCA7-family proteins. White arrowheads; amino 
residues unique in fish CDCA7L. Black arrowheads; residues that distinguish CDCA7L 
and CDCA7e from CDCA7. 
 
Figure 3. CDCA7 homologs and other zf-4CXXC_R1-containing proteins in 
Arabidopsis 
Top; alignments of the zf-4CXXC_R1 domain found in Arabidopsis thaliana. Bottom; 
domain structure of the three classes of zf-4CXXC_R1-containing proteins in 
Arabidopsis. 
 
Figure 4. Evolutionary conservation of CDCA7, HELLS and DNMTs in fungi 
A. Sequence alignment of class IIf zf-4CXXC_R1 sequences found in fungi. B. Domain 
architectures of zf-4CXXC_R1-containg proteins in fungi. The class II zf-4CXXC_R1 
domain is indicated with purple circles. Squares with dotted lines indicate preliminary 
genome assemblies. 
 
Figure 5. Evolutionary conservation of CDCA7, HELLS and DNMTs 
The phylogenetic tree was generated based on timetree.org. Filled squares indicate 
presence of an orthologous protein(s). Squares with dotted lines imply preliminary-level 
genome assemblies. Squares with a diagonal line; Paramecium EED was functionally 
identified (Miro-Pina et al., 2022), but not by the sequence-based search in this study; 
homologs of EZH1/2 and EED were identified in Symbiodinium sp. KB8 but not in 
Symbiodinium microadriaticum (Table S1). An opaque box of DNMT5 in Symbiodinium 
indicates a homolog that does not contain the ATPase domain, which is commonly found 
in DNMT5 family proteins. Opaque boxes of UHRF1 indicates homologs that harbor the 
SRA domain but not the RING-finger domain. Full set of analysis on the panel of 180 
eukaryote species is shown in Figure S1 and Table S1. Genbank accession numbers of 
each protein and PMID numbers of published papers that report presence or absence of 
5mC are reported in Table S1. 
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Figure 6. CoPAP analysis of CDCA7, HELLS and DNMTs in Ecdyzosoa species 
CoPAP analysis of 50 Ecdyzosoa species. Presence and absence patterns of indicated 
proteins during evolution were analyzed. List of species are shown in Table S1. 
Phylogenetic tree was generated by amino acid sequences of all proteins shown in Table 
S1. The number indicates the p-values. 
 
Figure 7. Synteny of Hymenoptera genomes adjacent to CDCA7 genes  
Genome compositions around CDCA7 genes in Hymenoptera insects are shown. For 
genome with annotated chromosomes, chromosome numbers (Chr) or linkage group 
numbers (LG) are indicated at each gene cluster. Gene clusters without chromosome 
annotation indicate that they are within a same scaffold or contig. Dash lines indicate the 
long linkages not proportionally scaled in the figure. Due to their extraordinarily long 
sizes, DE-cadherin genes (L) are not scaled proportionally. Presence and absence of 
CDCA7, HELLS, DNMT1, DNMT3, and UHRF1 in each genome is indicated by filled 
and open boxes, respectively. The phylogenetic tree is drawn based on published analysis 
(Li et al., 2021; Peters et al., 2017) and TimeTree.  
 
 
 
 
Supplemental Figure Legends 
Figure S1. Evolutionary conservation of CDCA7-family proteins and other zf-
4CXXC_R1-containig proteins 
Amino acid sequences of zf-4CXXC_R1 domain from indicated species were aligned 
with CLUSTALW. A phylogenetic tree of this alignment is shown. Genbank accession 
numbers of analyzed sequences are indicated.  
 
Figure S2. Evolutionary conservation of CDCA7, HELLS and DNMTs 
Presence and absence of each annotated proteins in the panel of 180 eukaryote species is 
marked as filled and blank boxes. The phylogenetic tree was generated based on NCBI 
taxonomy by phyloT. Bottom right; summary of combinatory presence or absence of 
CDCA7 (class I or II), HELLS, and maintenance DNA methyltransferases DNMT1/Dim-
2/DNMT5. 
 
Figure S3. Phylogenetic tree of HELLS and other SNF2 family proteins 
Amino acid sequences of full-length HELLS proteins from the panel of 180 eukaryote 
species listed in Table S1 were aligned with full length sequences of other SNF2 family 
proteins with CLUSTALW. A phylogenetic tree of this alignment is shown. Genbank 
accession numbers of analyzed sequences are indicated. 
 
Figure S4. Phylogenetic tree of the SNF2-domain 
Amino acid sequences of SNF2-doman without variable insertions from representative 
HELLS and DDM1-like proteins from Figure S3 were aligned with the corresponding 
domain of other SNF2 family proteins with CLUSTALW. A phylogenetic tree of this 
alignment is shown. Genbank accession numbers of analyzed sequences are indicated. 
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Figure S5. Sequence alignment and classification of zf-4CXXC_R1 domains across 
eukaryotes 
CDCA7 orthologs are characterized by the class I zf-4CXXC_R1 motif, where eleven 
cysteine residues and three residues mutated in ICF patients are conserved. One or more 
amino acids are changed in other variants of zf-4CXXC_R1 motifs. Note that codon 
frame after the stop codon (an asterisk in a magenta box) of Naegleria XP_002678720 
encodes a peptide sequence that aligns well with human CDCA7, indicating that the 
apparent premature termination of XP_002678720 is likely caused by a sequencing or 
annotation error. 
 
Figure S6. Phylogenetic tree of DNMT proteins 
DNA methyltransferase domain of DNMT proteins across eukaryotes (Table S1, 
excluding majority of those from Metazoa), the Escherichia coli DNA methylases DCM 
and Dam, and Homo sapiens PCNA as an outlier sequence, were aligned with 
CLUSTALW. A phylogenetic tree classification of this alignment is shown. 
 
Figure S7. CoPAP analysis of CDCA7, HELLS and DNMTs in eukaryotes 
CoPAP analysis of 180 eukaryote species. Presence and absence patterns of indicated 
proteins during evolution were analyzed. List of species are shown in Table S1. 
Phylogenetic tree was generated by amino acid sequences of all proteins shown in Table 
S1. The number indicates the p-values. 
 
Table S1. Lists of proteins and species used in this study 
Tab1, Full list. The list contains species names, their taxonomies, Genbank accession 
numbers of proteins, PMID of references supporting the 5mC status, and genome 
sequence assembly statistics. ND; not detected. DNMT5 proteins shown in red lack the 
Snf2-like ATPase domain. UHRF1 proteins shown in red lack the Ring-finger E3 
ubiquitin-ligase domain. CDCA7 proteins shown in red indicate ambiguous annotation as 
described in the main text. 
Tab2, Full list 2. The list is used to make presence (1) or absence (0) list. 
Tab3 Ecdysozoa CO-PAP. List of Ecdysozoa species used for CO-PAP analysis 
Tab4 Full CO-PAP. List of all species used for CO-PAP analysis 
Tab5 Full clustering. Table used for clustering analysis 
Tab6 Metazoan invertebrates. Table used for clustering analysis for metazoan 
invertebrates. 
Tab7 Fungi clustering. Table used for clustering analysis for fungi. 
 
Table S2. Lists of proteins in Hymenoptera species supporting Figure 5 
 
Table S3. Summary of Hymenoptera genome location supporting Figure 5 
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Figure 1. CDCA7 is absent from model organisms with undetectable genomic 5mC
CDCA7 homologs are absent from model organisms where 5mC is largely undetectable in 
genomic DNA and DNMT1/DNMT3 are lost
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Figure 2. CDCA7 paralogs in vertebrates.
A. Schematics of vertebrate CDCA7 primary sequence composition. Yellow lines and light blue lines indicate positions of evolutionary conserved cysteine 
residues and residues that are mutated in ICF patients, respectively. B. Sequence alignment of the zf-4CXXC_R1 domain of vertebrate CDCA7-family 
proteins. White arrowheads; amino residues unique in fish CDCA7L. Black arrowheads; residues that distinguish CDCA7L and CDCA7e from CDCA7.
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Figure 3. CDCA7 homologs and other zf-4CXXC_R1-containing proteins in Arabidopsis. Top; alignments of the zf-4CXXC_R1 domain found in Arabidopsis thaliana. Bottom; 
domain structure of the three classes of zf-4CXXC_R1-containing proteins in Arabidopsis.
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Figure 4. Evolutionary conservation of CDCA7, HELLS and DNMTs in fungi. A. Sequence alignment of class IIf zf-4CXXC_R1 sequences found in fungi. B. Domain architectures of 
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Figure 5. Evolutionary conservation of CDCA7, HELLS and DNMTs. The phylogenetic tree was generated based on timetree.org. 
Filled squares indicate presence of an orthologous protein(s). Squares with dotted lines imply preliminary-level genome assemblies. 
Squares with a diagonal line; Paramecium EED was functionally identified (Miro-Pina et al., 2022), but not by the sequence-based 
search in this study; homologs of EZH1/2 and EED were identified in Symbiodinium sp. KB8 but not in Symbiodinium microadriaticum 
(Table S1). An opaque box of DNMT5 in Symbiodinium indicates a homolog that does not contain the ATPase domain, which is 
commonly found in DNMT5 family proteins. Opaque boxes of UHRF1 indicates homologs that harbor the SRA domain but not the 
RING-finger domain. Full set of analysis on the panel of 180 eukaryote species is shown in Figure S1 and Table S1. Genbank acces-
sion numbers of each protein and PMID numbers of published papers that report presence or absence of 5mC are reported in Table S1.
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Figure 6. CoPAP analysis of CDCA7, HELLS and DNMTs in Ecdyzosoa 
species
CoPAP analysis of 50 Ecdyzosoa species. Presence and absence patterns of 
indicated proteins during evolution were analyzed. List of species are shown 
in Table S1. Phylogenetic tree was generated by amino acid sequences of all 
proteins shown in Table S1. The number indicates the p-values.
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Figure 7
. Synteny of Hymenoptera genomes adjacent to CDCA7 genes. 
Genome compositions around CDCA7 genes in Hymenoptera insects are shown. For genome with annotated chromosomes, chro-
mosome numbers (Chr) or linkage group numbers (LG) are indicated at each gene cluster. Gene clusters without chromosome 
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ClustalW multiple sequence alignment:
    Open Gap Penalty = 10.0; Extend Gap Penalty = 0.2; Delay Divergent = 30%
    Gap Distance = 4; Similarity Matrix = gonnet
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ClustalW multiple sequence alignment:
    Open Gap Penalty = 10.0; Extend Gap Penalty = 0.2; Delay Divergent = 30%
    Gap Distance = 4; Similarity Matrix = gonnet
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Figure S3. Phylogenetic tree of HELLS and other SNF2 family proteins. 
Amino acid sequences of full-length HELLS proteins from the panel of 180 eukaryote species 
listed in Table S1 were aligned with full length sequences of other SNF2 family proteins with 
CLUSTALW. A phylogenetic tree of this alignment is shown. Genbank accession numbers of 
analyzed sequences are indicated
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ClustalW multiple sequence alignment:
    Open Gap Penalty = 10.0; Extend Gap Penalty = 0.2; Delay Divergent = 30%
    Gap Distance = 4; Similarity Matrix = gonnet
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Figure S4. Phylogenetic tree of the SNF2-domain. Amino acid sequences of SNF2-doman without variable insertions from represen-
tative HELLS and DDM1-like proteins from Figure S3 were aligned with the corresponding domain of other SNF2 family proteins with 
CLUSTALW. A phylogenetic tree of this alignment is shown. Genbank accession numbers of analyzed sequences are indicated.
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Figure S5. Sequence alignment and classification of zf-4CXXC_R1 domains across eukaryotes. 
CDCA7 orthologs are characterized by the class I zf-4CXXC_R1 motif, where eleven cystein residues and three resi-
dues mutated in ICF patients are conserved. One or more amino acids are changed in other variants of zf-4CXXC_R1 
motifs. Note that codon frame after the stop codon (an asterisk in a magenta box) of Naegleria XP_002678720 encodes 
a peptide sequence that aligns well with human CDCA7, indicating that the apparent premature termination of 
XP_002678720 is likely caused by a sequencing or annotation error.
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Figure S6. Phylogenetic tree of DNMT proteins.
DNA methyltransferase domain of DNMT proteins across eukaryotes (Table S1, excluding 
majority of those from Metazoa), the Escherichia coli DNA methylases DCM and Dam, and 
Homo sapiens PCNA as an outlier sequence, were aligned with CLUSTALW. A phyloge-
netic tree classification of this alignment is shown.
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Figure S7. CoPAP analysis of CDCA7, HELLS and DNMTs in eukaryotes
CoPAP analysis of 180 eukaryote species. Presence and absence patterns of 
indicated proteins during evolution were analyzed. List of species are shown 
in Table S1. Phylogenetic tree was generated by amino acid sequences of all 
proteins shown in Table S1. The number indicates the p-values.
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