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ABSTRACT
Colorectal cancer (CRC), despite numerous therapeutic and screening attempts, still remains a major life-
threatening malignancy. CRC etiology entails both genetic and environmental factors. Macroautophagy/
autophagy and the unfolded protein response (UPR) are fundamental mechanisms involved in the
regulation of cellular responses to environmental and genetic stresses. Both pathways are interconnected
and regulate cellular responses to apoptotic stimuli. In this review, we address the epidemiology and risk
factors of CRC, including genetic mutations leading to the occurrence of the disease. Next, we discuss
mutations of genes related to autophagy and the UPR in CRC. Then, we discuss how autophagy and the
UPR are involved in the regulation of CRC and how they associate with obesity and inflammatory
responses in CRC. Finally, we provide perspectives for the modulation of autophagy and the UPR as new
therapeutic options for CRC treatment.
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Introduction and epidemiology

Colorectal cancer (CRC) is the second and third most common
type of cancer in females and males, respectively, with 1.24 mil-
lion new cases diagnosed in 2008 alone.1 According to the
Canadian Cancer Society, CRC has the third highest cancer
incidence in both men and women.2 Countries with the highest
incidence include those in Europe, North America, and Oce-
ania, while the lowest incidence is found in some South and
Central Asian countries and in Africa.3 In Saudi Arabia, CRC
ranks first and third among males and females, respectively, of
all cancers diagnosed in 2011.4 According to the latest data by
the Iran National Cancer Registry (INCR), the age-standard-
ized incidence rate of Iranian CRC patients is 11.6 and 10.5 for
men and women, respectively. The overall 5-year survival rate
is 41%, and the proportion of CRC among the younger age
group is higher than that of Western countries.5 In developed
countries, CRC occurrence is higher in nonsmokers of both

males and females combined.6 In Europe, CRC is the second
leading cause of death among all cancer types in both men and
women.7 In the United States of America, CRC is the third
leading cause of death and the 5-year overall survival (OS) of
this disease is nearly 65%.

Seventy percent of CRC cases are sporadic with the presence
of somatic mutations,8 while about 20–30% of CRC are associ-
ated with a family history,9,10 and 5–15% show hereditary dis-
eases, including polyposis and nonpolyposis CRC (Fig 1). The
common somatic mutations of CRC patients have been sum-
marized in Table 1. There are several types of inherited CRC
including hereditary nonpolyposis colorectal cancer (HNPCC),
familial adenomatous polyposis (FAP), attenuated FAP,
MUTYH-associated polyposis (MAP), hamartomatous polyps
as the primary lesions in Peutz-Jeghers syndrome (PJS) and
juvenile polyposis syndrome (JPS), hyperplastic polyposis
(HPP) and familial CRC (FCC) syndrome X.11 The etiologies
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of the remaining familial CRCs, which are more common com-
pared with the well-characterized inherited syndromes, are not
completely understood. However, common single nucleotide
polymorphism (SNP) in genes that regulate metabolic path-
ways or affecting genes regulated by environmental or other
genetic factors influence the incidence of this type of CRC.11

Familial CRC is classified to familial adenomatous polyposis
(FAP) and Lynch syndrome. FAP is an autosomal dominant
hereditary disease that occurs in <1% of all CRC and is associ-
ated with a germline mutation in the tumor suppressor gene
APC (APC, WNT signaling pathway regulator).12 FAP is char-
acterized by the presence of numerous adenomatous polyps (<
100) in the colon and rectum,8 and is usually diagnosed
between 20 and 30 y of age.13 Lynch syndrome makes up
approximately 2–4% of all CRC,12 and is associated with auto-
somal dominant alterations in one of the DNA mismatch repair
genes: MLH1, PMS2, MSH2, or MSH6.14 This disease is charac-
terized by early-onset CRC and an increased risk of other can-
cers, including skin, endometrium, stomach, ovary, upper
urinary tract, pancreas, hepatobiliary tract, small bowel, and to
a lesser extent, brain tumors.15

Development of sporadic CRC involves different molecular
pathways that lead to the transformation of normal epithelium to
adenoma and carcinoma with diverse phenotypes. The 3 major
genetic pathways distinguished in CRC are the chromosomal
instability (CIN) pathway, CPG island methylator phenotype
(CIMP; the “serrated” pathway), and microsatellite instability
(MSI) pathway.15-17 In cases of sporadic CRC, epigenetic changes,
including DNA methylation in gene promoters, leads to MSI
because of inactivation of mismatch repair genes. Mutations in
MMR genes can evoke similar genomic instability results.14,17

Based on these alterations, sporadic CRC is classified into 4
groups including, hypermutated, non-hypermutated, CpG island
methylator phenotype and elevated microsatellite alterations at
tetranucleotide repeats withmetastatic behavior.17,18

Etiology and risk factors

Presently, lifestyle and dietary patterns around the world are shift-
ing toward the Western (high-fat) diet pattern.19 Apart from age
and sex, dietary patterns that include the high intake of red meat
and/or processed meat, fatty meals, refined grains, and sweet
foods increase the risk of CRC.19,20 Diets with high intake of fiber,
fruits, vegetables, whole grain cereals, fish, white meats, soy deriv-
atives, vitamin D, calcium, and omega-3 fatty acids have the abil-
ity to favorably modulate the development of CRC.19 A number
of observational studies showed that regular physical exercise
decreases the risk of CRC by 40%.20 In addition, regular moderate
exercise of 150 min per wk increases CRC survival rates by 28%.21

Aside from lifestyle modifications, chemoprevention with aspirin
is effective in reducing the incidence and mortality, without sig-
nificant adverse systemic effects.22

Alcohol consumption has a positive dose-response correla-
tion with the incidence of CRC; the higher the intake of alcohol,
the higher the risk of CRC.23 Cigarette smoking is associated
with a wide variety of malignancies, and recently, has also been
linked to CRC. Male smokers, especially those who smoke
more than 20 cigarettes per d, are at the highest risk.24 Another
important risk factor is the presence of inflammatory bowel
disease (IBD), a chronic inflammatory disorder of the gastroin-
testinal (GI) tract that includes Crohn disease and ulcerative
colitis.25 Patients with IBD are 6 times more susceptible to con-
tracting CRC than the general population.26 Regular colonos-
copy is recommended after diagnosis.27 Depending on their
size, histology, and degree of dysplasia, the presence of GI tract

Figure 1. CRC distribution—relation to the genetic background. The graph shows
percentages of sporadic, familial, and hereditary (familial adenomatous polyposis,
FAP; Lynch syndrome) subtypes of CRC.

Table 1. Common somatic mutations in colorectal cancer (data extracted from:
https://civic.genome.wustl.edu/).

Genes Variants
Evidence
level References

BRAF V600E Validated 320

Clinical 321,322

Clinical 323

Clinical 324

Preclinical 325

Preclinical 326

V600 Clinical 321.
KRAS Exon 2 mutation Validated 327

G13D Clinical 328,329

G12D Clinical 330

G12C Clinical 331

PIK3CA E542K (exon9) Inferential 332

E545K (exon9) Inferential 332

H1047R Inferential 332

Exon10 Clinical 328,329

Exon21 Clinical 328,329

ERBB3 Overexpression Clinical 333

CDX2 Expression Clinical 334

EGFR S492R Preclinical 335

G465R Case study 335

G719S Preclinical 336

G724S Preclinical 336

Amplification Clinical 337

K467T Preclinical 335

R451C Preclinical 335

APC mutant Preclinical 338

NRAS Q61 Clinical 328,329

PTEN Loss Clinical 328,329

NT5E Overexpression Clinical 333

HRAS G13D Case study 339

PTP4A3 overexpression Preclinical 340

FBXW7 mutant Clinical 341

SMAD4 mutant Clinical 341

HSPH1 T17 deletion intron repeat (MSI) Clinical 342

NTRK1 NTRK1 3’ fusions (one LMNA-NTRK1 and 2
TPM3-NTRK1)

Preclinical 343

NOTCH1 Amplification Preclinical 344

SLFN11 Expression Preclinical 345

TOP1 Amplification Clinical 346
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polyps, including hyperplastic polyps, tubular adenomas,
tubule-villous and villous adenomas, adenoma with high-grade
dysplasia, and malignant adenomas, increases the risk of
CRC.28 Figure 2 summarizes preventive and promoting factors
affecting the risk of CRC.

Screening and treatment

CRC screening is an effective strategy, leading to early diagnosis
and prevention of disease-associated death. Screening proce-
dures include colonoscopy, stool occult blood testing, barium
enema, and digital rectal examination. Colonoscopy is the most
accurate method of screening,29 and often recommended as a
first-line screening approach.30 Stool occult blood testing
reduces CRC mortality,31,32 and is currently the most widely
used method of noninvasive screening for CRC. Advances in
genomics, epigenetics, and proteomics will likely lead to the
discovery of novel noninvasive biomarkers for the identifica-
tion of CRC in the stool and/or blood.33,34

Early detection of CRC may result in CRC treatment
with surgery alone, whereas late-stage advanced and/or
metastasized CRC requires additional chemotherapy and
radiotherapy. To ensure high quality treatment, a multidis-
ciplinary team approach with radiologists, oncologists, sur-
geons, and pathologists is imperative. CRC treatment can
be in the form of adjuvant therapy (AT) administered fol-
lowing primary tumor resection with the aim of reducing
the risk of recurrence or as neo-adjuvant therapy (NAT)
before tumor resection.35 AT is highly recommended for
CRC patients with stage III and ‘high risk’ stage II
patients.35 A study by Sauer et al. concluded that regardless
of radiotherapy timing, NAT is favored over AT in terms
of rates of local recurrences and toxic effects.36 There are 2
possible NAT strategies. One approach is short-course

radiotherapy without chemotherapy, followed by surgery
within 1 wk.37 Another approach is long-course pre-surgical
chemotherapy and radiotherapy, while concurrently admin-
istrating 5-fluorouracil (5-FU)-based chemotherapy followed
by surgery 8 to 12 wk later.38 For the past 2 decades, stan-
dard chemotherapy for patients undergoing AT has been 5-
FU in combination with levamisole and leucovorin.39 Sev-
eral treatment regimens have been developed since the mil-
lennium and include 5-FU in combination with leucovorin
and oxaliplatin (FOLFOX), capecitabine in combination
with oxaliplatin (CAPOX), and intravenous application of
5-FU and leucovorin in combination with irinotecan (FOL-
FIRI).40 Administration of FOLFOX in 3-weekly cycles over
24 wk shows a 5–25% improvement in overall survival
(OS).41,42 Despite the ongoing development of new thera-
peutic regimens and the inclusion of novel antitumor
agents, the primary treatment of patients with CRC contin-
ues to be systemic chemotherapy involving infusions of 5-
FU and leucovorin.40

In stage IV CRC patients with unresectable metastatic lesions,
a median OS of 6 mo was reported. After treatment with 5-FU
and leucovorin, OS increased to 12 mo.43 The GOLF regimen
(gemcitabine, oxaliplatin, leucovorin, 5-FU) is another combina-
tion highly synergistic in inducing both growth inhibition and
apoptosis of colon cancer cells.44 Introduction of infusion regi-
mens, such as FOLFIRI, has raised OS to a median of about 20
mo.45 Regorafenib is a drug that targets and inhibits several tyro-
sine kinases involved in angiogenesis (FLT1/VEGFR1, KDR/
VEGFR2, and FLT4/VEGFR3), oncogenesis (KIT, RET, RAF,
BRAF), and the tumor microenvironment (PDGFR, FGFR), and
it has been approved for use in patients that have relapsed or are
refractory to all other systemic therapies.46

Personalized medicine involves the tailoring of medical
treatment to an individual patient depending on the specific

Figure 2. Schematic representation of factors that increase risk or prevent CRC. Both lifestyle and diet affect incidence of CRC as they can be both preventive and risk
factors.
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genetic makeup of their cancer, taking into account differ-
ent stages of care, which includes prevention, diagnosis,
treatment, and followup. An example for this is temozolo-
mide, which is used in pretreated patients with advanced
CRC and MGMT promoter methylation. Patients with

KRAS, BRAF, and NRAS wild-type (WT) CRC show signifi-
cantly higher response when compared with CRC contain-
ing KRAS or BRAF mutations (44% versus 0%; P D
0.004).17 Lists of chemotherapeutic drugs and regimens are
presented in Table 2 and 3, respectively.

Table 2. Summary of the chemotherapeutic drugs and their mechanism of action in CRC.

Drugs Structure Mechanism of Action Function
Genes

interaction Cells fate effect Ref

Fluorouracil
(5-FU)

A pyrimidine analog -TYMS (thymidylate
synthetase) blocker347-349

Antimetabolite and
anticancer351,352

TP53353 Growth inhibition and apoptosis165 351,352

165,347-

349,353-

362
-Incorporation into and

destabilization of the
RNA and DNA350

TYMS354

DPYD355

CASP3356

CDKN1A357

BCL2358

CASP8359

BAX360

CASP9361

FASN362

Levamisole Synthetic imidazothiazole
derivate363

-Antagonists of TSHR
(thyroid stimulating
sormone receptor )421

-Increasing macrophage
chemotaxis and
T-lymphocyte
function.363,365,366

ALPL367 Growth inhibition, autophagy and
Inhibition of the unfolded protein
response373,377-379

363-378,380-

383

-NFE2L2 activators An antihelminthic and anti-
parasite drug restoring
the immune system

IFNG368

-Inhibitors of GLS
(glutaminase)420

RB1369

-Inhibition of ALPL
(alkaline
phosphatase, liver/
bone/kidney)418,364

ABTS1370

ENPP1371

IL4372

PTGS2373

TP53374

BAK1375

BCL2376

Oxaliplatin Platinum-based
chemotherapy drug384

-Displacement of the
labile oxalate
ligand.385

Inhibiting DNA synthesis
and nonspecific cell cycle
cytotoxicity387

TAC1388 Growth inhibition and autophagy392 189,384-

390,392

-Transient reactive
species bind with
macromolecules:

ITGA1388

monoaquo and diaquo
DACH platinum.386

FOXC1388

-Binding preferentially
to the guanine and
cytosine moieties of
DNA

GMDS389

PELO189

XRCC1390

ERCC2391

Irinotecan A semisynthetic derivative
of camptothecin393

TOP1 (topoisomerase
[DNA] I) inhibitor394

An antineoplastic drug UGT1A1396 Growth inhibition and apoptosis400 394,397-400

395

Relegation of the DNA
strand prevention394

Treatment of metastatic
carcinoma of the colon or
rectum395

ABCC4397

PLCB1398

EGFR399

Capecitabine A deoxycytidine derivative. TYMP (thymidine
phosphorylase)
activator402

Cell cycle inhibitor DPYD403 Autophagy405 401-405

Active metabolites: 5-
fluoro-20-deoxyuridine
50-monophosphate
(FdUMP) and 5-
fluorouridine
triphosphate (FUTP)401

Nucleic acid synthesis
inhibition

MTRR404

Interfere with RNA
processing and
protein synthesis401

SOX6404

Gemcitabine Deoxycytidine analog TYMS inhibition An antineoplastic
antimetabolite

DCK409 Apoptosis407 406-413

Active metabolites:
gemcitabine
diphosphate and
gemcitabine
triphosphate406

DNA synthesis
inhibition407

CACNA1C410

RRM (ribonucleotide
reductase) inhibition

DAPK1411

Competes with
endogenous
deoxynucleoside
triphosphates for
incorporation into
DNA.408

IL17F412

PRB2413
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General aspects of autophagy

New therapeutic strategies are being designed to target auto-
phagy to improve treatment options of different diseases,
including cancer. In the context of cancer, autophagy may pre-
vent cellular transformation in normal tissue by decreasing
reactive oxygen species (ROS) content of the cells. Conversely,
it can also promote cancer progression depending on the stage
of cancer.47,48 Recent investigations revealed that autophagy
has diverse functions in the development, maintenance, and
progression of tumors.48 While genetic evidence indicates that
autophagy functions as a tumor suppressor mechanism, it is
also apparent that autophagy can promote the survival of estab-
lished tumors under stress conditions and in response to che-
motherapy49-51 (Figs 3 and 4). Recent findings show that
modulation of autophagy affects the immune response and the
biology of cancer in general.52-56 Genetic alterations in auto-
phagy may predispose individuals to autoimmune, auto-
inflammatory, or infectious diseases. For instance, ATG5 muta-
tions are associated with systemic lupus erythematosus and
Crohn disease.57,58 Furthermore, stimulation or suppression of
genes important for autophagy can regulate immune responses
via antigen donor cells, antigen presenting cells, or downstream

effectors of the immune system.59 From an immunological
point of view, cancer can progress when malignant cells escape
the control of the immune system by altering their antigenic
properties or by reducing or suppressing antitumor immune
responses.59 They accumulate genetic and epigenetic altera-
tions, including, among others, loss of heterozygosity of
BECN1, constitutive signaling via MTOR, activating phosphoi-
nisotide 3-kinase (PI3K) mutations, loss of PTEN, accumula-
tion of mutant TP53, or the overexpression of anti-apoptotic
BCL2-family proteins. Such changes facilitate (directly or indi-
rectly) genomic instability in cancerous cells, leading to malig-
nant cells escaping immunosurveillance.59

Manipulation of key elements of the autophagy pathway
can be exploited as a novel therapeutic approach for CRC.60

In eukaryotic cells, autophagy is an important protein deg-
radation system and mainly responsible for the degradation
of long-lived proteins and damaged organelles.61 Autophagy
refers to a collection of tightly regulated catabolic processes,
all of which deliver cytoplasmic components to the lyso-
some for degradation. These are broadly classified into 3
types: macroautophagy, microautophagy and chaperone-
mediated autophagy (CMA).62 Macroautophagy involves the
formation of phagophores that engulf cytoplasmic proteins
and organelles, maturing into double-membrane-bound
vesicles called autophagosomes. These autophagosomes are
trafficked to lysosomes and the sequestered cargo is
degraded.62 Microautophagy refers to the invagination of
the lysosomal or endosomal membrane, resulting in the
direct engulfment of substrates that are subsequently
degraded by lysosomal proteases.62-64 CMA is distinct from
macroautophagy and microautophagy because the cargo is
not sequestered within a membrane vesicle. Instead, pro-
teins targeted by CMA contain a KFERQ-like pentapetide
motif that is recognized by HSPA8/HSC70 (heat shock pro-
tein family A [Hsp70] member 8). HSPA8 promotes the
translocation of these targets across lysosomal membranes
into the lysosomal lumen via LAMP2A (lysosomal-associ-
ated membrane protein 2A).65

Usually the term “autophagy” refers to “macroautoph-
agy” in the literature.65 Autophagy dysregulation leads to
various human diseases, including neurodegenerative dis-
orders and cancer.63,66 In both normal and malignant cells,
autophagy may be induced in response to cellular stress,62

including nutrient deprivation, hypoxia, and toxin accu-
mulation.62 The outcome of autophagy induction however,
affects the cell in various ways, being protective, and pro-
moting survival, or causing growth arrest and triggering
programmed cell death.67 The molecular components of
this pathway were first discovered in yeasts and include
more than 40 autophagy-related (ATG) proteins. Most

Table 3. Chemotherapeutic regimens (combination therapy) and their effect in CRC.

Chemotherapeutic regimen Effect on cancer cells References

FOLFOX (5-FU, Leucovorin and oxaliplatin) Autophagy and apoptosis 287

FOLFIRI (5-FU, Leucovorin and Irinotecan) Autophagy and apoptosis 212

GOLF (gemcitabine, oxaliplatin, leucovorin and 5-FU) Growth inhibition and apoptosis 44

5-FU, levamisole and leucovorin Growth inhibition, apoptosis, autophagy and Inhibition of the unfolded protein response 378,414,415

5-FU and Leucovorin Growth inhibition, apoptosis and autophagy 414,415

Figure 3. Dual role of autophagy in cancer chemotherapy. Autophagy may induce
stress adaptation (A) in cancer cells allowing them to obtain a resistance pheno-
type against cancer chemotherapy agents, or it may induce cytotoxicity (B) result-
ing in autophagic cell death of cancer cells (adapted from ref. 49).
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autophagy stimuli converge at MTOR (mechanistic target
of rapamycin) and the class III phosphatidylinositol 3-
kinase (PtdIns3K) complex, which serve as autophagy-
related key regulators. Several core autophagy machineries
are required for autophagosome formation.62,65 The core
machinery of the initiation stage during induction of auto-
phagy is the ULK (unc51-like autophagy activating kinase)
complex consisting of ULK1, ATG13, ATG101 and
RB1CC1/FIP200. Upon initiation of autophagy, a complex
nucleation arises when the PtdIns3K complex binds to its
core units, such as BECN1/Beclin-1 (the human ortholog
of yeast Vps30/Atg6) and PIK3R4/p150.65,68 This complex
resides on the phagophore membrane and facilitates
recruitment of other ATGs to the unit (Fig 5A).62,69 Dur-
ing phagophore elongation and maturation, the Atg8/LC3
protein, a ubiquitin-like protein, is conjugated to the
membrane lipid phosphatidylethanolamine (PE) or possi-
bly to phosphatidylserine.70 In yeast, and several other
organisms, the conjugated form is referred to as Atg8–PE.
The mammalian homologs of Atg8 constitute a family of
proteins subdivided into 2 major subfamilies: MAP1LC3/
LC3 and GABARAP. The former consists of LC3A, B, B2
and C, whereas the latter family includes GABARAP,
GABARAPL1 and GABARAPL2/GATE-16.71 After cleav-
age of the precursor protein, mostly by the cysteine prote-
ase ATG4B,72 the nonlipidated and lipidated forms are
usually referred to as LC3-I and LC3-II, and GABARAP-I
and GABARAP-II (Fig 5A), respectively. The increased
level of LC3-II in the presence of lysosomal proteases
inhibitors (bafilomycin A1 or chloroquine) typically serve
as an analytical marker of autophagic flux because it con-
firms the autophagy flow from autophagosome formation
to recycling in lysosomes (reviewed in refs. 65,69). In the
final stage, cargo is degraded by lysosomal hydrolases in
the autolysosomes (Fig 5A) and the resulting products are
transported back to the cytosol by lysosomal permeases.

Figure 4. Dual role of autophagy during tumorigenesis: Autophagy may suppress tumorigenesis by eliminating damaged organelles in transformed cells and protect
them against oxidative stress, resulting in subsequent genome stabilization and prevention of malignant transformation. Autophagy may also initiate an oncogene-
induced senescence, thus preventing malignant transformation. It may prevent necrosis in apoptosis-deficient cells in tumors in response to metabolic stress. This reduces
pro-tumorigenic inflammation and release of tumorigenic compounds from necrotic tumor cells. Tumor-supportive functions of autophagy are fulfilled mainly by stimu-
lating tumor cell survival and protection against detachment-induced apoptosis (anoikis), which can facilitate chemoresistance and EMT induced-metastasis (adapted
from. refs. 50,51).

Figure 5. Autophagy and the UPR signaling pathways. (A) Depiction of autophagy
pathways. Autophagy is a catabolic process that sequesters specific intracellular
cargo by engulfing them within a cytosolic double-membraned vesicle, called an
autophagosome. Extracellular stimuli or recognition of a cargo material induces
the formation of the phagophore. ULK1 is an important upstream initiator that
induces activation of nucleation complex, including PtdIns3K and BECN1, to
engage phagophores for autophagy. LC3 is conjugated to the phagophores and
controls their maturation and elongation. Upon vesicle completion, the autopha-
gosome fuses with a lysosome, releasing its contents to be degraded by hydro-
lases. (B) Initiation of the UPR: The domain structures of ERN1, EIF2AK3, and ATF6
and their associations with HSPA5 are illustrated. ERN1, EIF2AK3, and ATF6 are
docked and inactive in non-ER stress condition by binding to HSPA5. Upon ER
stress, HSPA5 is released from the lumenal domain of ERN1, EIF2AK3 and ATF6 and
this initiates the UPR.64,416
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General aspects of the unfolded protein response

The endoplasmic reticulum serves as a subcellular compart-
ment involved in maturation and folding of proteins, and plays
important roles in maintaining normal cellular functions.73,74

An imbalance between cellular demand for ER function and
ER capacity can lead to ER stress.75 To cope with ER stress,
mammalian cells are able to activate the unfolded protein
response (UPR) which aims to maintain the homeostasis of
proteins within the ER.76 The UPR is initially associated with a
stress-inducible chaperone, a glucose-regulated protein, which
mainly resides in the ER and is encoded by the HSPA5/GRP78/
BIP (heat shock protein family A [Hsp70] member 5) gene
(Fig 5B).77 The ER contains 3 transmembrane receptors
(Fig 5B) including EIF2AK3/PERK (eukaryotic translation ini-
tiation factor 2 a kinase 3), ATF6 (activating transcription fac-
tor 6) and ERN1/IRE1a (endoplasmic reticulum to nucleus
signaling 1).77 These 3 arms of the UPR sense the protein-fold-
ing status in the ER and transmit the information to the cytosol
to regulate UPR-related gene expression.78

Activation of ERN1 starts from the dissociation from
HSPA5 and results in the splicing of XBP1 to form its active
form (XBP1s). This modulates prosurvival signals by regulating
genes involved in protein folding, maturation and ER-associ-
ated degradation.79 Activation of ERN1 also targets MAP3K5/
ASK1 and MAPK/JNK proteins, followed by triggering of
TRAF2, which subsequently can promote apoptosis.80 ERN1 is
much more activated at the beginning of stress and its activity
fades over time.79

ATF6 is a basic leucine zipper (bZIP)-containing transcrip-
tion factor in the ER which include ATF6/ATF6a, ATF6B/
ATF6b, CREB3L1/OASIS, CREB3/LUMAN, CREB3L2/
BBF2H7, CREB3L3/CREBH and CREB3L4.81 ER stress causes
dissociation of HSPA5 from ATF6 (Fig 5B) and the transloca-
tion of ATF6 from the ER to the Golgi apparatus where it is
processed by serine protease MBTPS1/S1P and the metallopro-
tease MBTPS2/S2P to produce an active cytosolic fragment.82

This active product translocates to the nucleus and activates
the expression of several genes that are involved in protein fold-
ing, including the ER chaperone proteins DDIT3/CHOP/
GADD153, PDIA4/ERp72, PDI, EDEM1 and XBP1.83

The third transducer of the UPR is EIF2AK3, which is the
most immediate sensor to respond to ER stress.84 Under ER
stress condition, EIF2AK3 is released from HSPA5 (Fig 5).
Upon activation, EIF2AK3 phosphorylates EIF2A (eukaryotic
translation initiation factor 2A) and subsequently inhibits pro-
tein synthesis by reducing activity of the EIF2A complex.85

Despite global inhibition of protein synthesis, ATF4 is transla-
tionally upregulated by EIF2AK3 to increase the expression of
stress-related genes and downstream ER chaperones.86 More-
over, EIF2AK3 triggers antioxidant activity via phosphorylation
of NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2).87 NFE2L2
is a pro-survival factor and cells without NFE2L2 display
increased cell death during ER stress.87

CMA and its relevance to CRC

Chaperone-mediated autophagy (CMA) is a selective mecha-
nism for the degradation of proteins through a lysosomal-

dependent machinery.88 Basal CMA activity is evident in most
cells but is highly stimulated in response to cellular stress.88,89

CMA contributes to the degradation of proteins that are no
longer needed under stress conditions, leading to recycling and
promoting of cell survival.90,91 The cellular pathways and physi-
ological importance of CMA in cancer still needs to be delin-
eated.91 It has been reported that high basal CMA activity is a
common feature among different types of human tumors.92 In
contrast to normal cells, this upregulation of CMA occurs inde-
pendent of the macroautophagy status of cancerous cells. For
example, inhibition of CMA reduces cell proliferation and
induces cell death in human lung cancer cell lines. In contrast
to nontumor cells, cancer cells with blocked CMA upregulate
their ubiquitin-proteasome system to ensure protein quality
control. Blockade of CMA delays tumor growth and induces
regression of already formed human lung cancer xenografts in
mice. The fact that similar manipulations of CMA reduce
tumor growth of other human cancer cell lines, such as mela-
noma, highlights that targeting this autophagic pathway may
have broad antitumor activity.93

Recently, an increased level of CMA activity was detected by
immunostaining for LAMP2A in primary tumors of different
human tissues (e.g., liver, lung, skin, stomach, colon, uterus,
ovary). Although the intensity of LAMP2A staining varied
depending on the type of tumor, the overall LAMP2A signal
was significantly higher in all tumor samples when compared
with respective normal tissues. In some cases, a gradual
increase in LAMP2A staining was observed in parallel with the
transition from a normal region to peri-neoplastic and neoplas-
tic regions and with the stage of malignancy. The observed
increase in LAMP2A reflects an expansion of the lysosomal
compartment in tumor cells because control and tumor sam-
ples revealed no difference in staining for LAMP2B, a lyso-
somal protein splice variant of the same LAMP2 gene94 with
95% sequence homology to LAMP2A. Importantly, LAMP2B is
not involved in CMA.93 In another study on HCT116 human
colorectal cancer cells, inhibition of autophagy by the com-
pound spautin-1 or genetic knockdown of autophagy-related
genes promotes degradation of accumulated missense mutant
TP53 proteins through the CMA pathway. These findings sug-
gest that degradation of mutant TP53 is specifically mediated
by the CMA-lysosomal pathway during stress conditions and
reveals involvement of CMA in a unique pathway that regulates
mutant TP53 expression-dependent cell death.91

Organellophagy and its importance in CRC

Macroautophagy can also selectively eliminate organelles, a
process termed organellophagy.95 Organellophagy is common
for organelles such as mitochondrion (mitophagy), ER (reticu-
lophagy/ER-phagy), peroxisomes (pexophagy), lysosomes
(lysophagy), nucleus (nucleophagy), and even ribosomes
(ribophagy).95 Mitophagy is a specific form of macroautophagy
by which damaged mitochondria are selectively degraded.96,97

Previous investigations demonstrated that mitophagy prevents
the accumulation of damaged organelles that are sources of
ROS.98 To maintain proliferative capacity and constantly gen-
erate progeny, cancer cells must continuously supply sufficient
energy and building blocks such as amino acids, lipids and
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sugars.99 Many solid tumors depend on activated glycolysis to
cope with the energy requirement for faster proliferation (the
Warburg effect). This process requires efficient glucose uptake
even in a stressful environment, such as hypoxia frequently
experienced by tumor cells.100 If glycolysis can meet the cellular
energy requirement for cancer cells, then the maintenance of a
high level of mitochondrial mass is not essential for ATP pro-
duction. Therefore, autophagy-dependent degradation of
unnecessary mitochondria may serve as a useful mechanism to
resupply nutrients and expedite glycolysis. This hypothesis is
well supported by recent reports that autophagy facilitates gly-
colysis;101 hence, transformed cells maintain small numbers of
mitochondria during periods of rapid proliferation.102 Further
support in favor of this hypothesis comes from electron micros-
copy images which show a decreased number of intracellular
organelles within the cytosol of proliferating cancer cells. This
could mean that cancer cells may activate autophagy-mediated
organelle degradation to maintain cellular ATP levels and
resupply nutrients when glucose levels are insufficient.102 Selec-
tive autophagy is also a backup mechanism for the failed pro-
teasomal degradation of ubiquitinated aggregation-prone and
misfolded proteins. Because ubiquitination has also been impli-
cated in mitophagy,103 modulation of the expression levels of
the ubiquitin-binding autophagic receptors SQSTM1/p62 and
NBR1 (cargo receptors for selective autophagy) by selective
autophagy might also play a role in mitophagy. Thus, failures
in selective autophagy may cause accumulation of protein
aggregates and damaged organelles that mediate neoplastic
transformation. In contrast, established tumors depend on
autophagy to fuel their increased metabolic demands. Selective
autophagy may ensure tumor survival via degradation of mis-
folded proteins and damaged organelles that accumulate in
genetically unstable tumor cells.104

Defective autophagy is linked to colonic tumor formation
through a mechanism involving the aberrant activation of
WNT-signaling from impaired degradation of DVL (disheveled
segment polarity protein) by autophagy.105 Therefore, pharma-
cological activators of autophagy may be of potential benefit for
cancer chemoprevention.106,107 However, there is only indirect
evidence for a role of organellophagy in CRC. In a recent
report, TP53 inactivation in HCT116 colon cancer cells
induced both reticulophagy and mitophagy.108 When TP53
was inhibited in an acute fashion by addition of pifithrin-a,107

reticulophagy was induced more rapidly than mitophagy, sug-
gesting an intimate relationship between TP53 inhibition and
ER stress-induced reticulophagy.108 Interestingly, new findings
show that some tumor suppressor proteins play a role in organ-
ellophagy, especially mitophagy, in various types of cancers,
including CRC.109

Autophagy and the microbiome in CRC

A growing body of evidence suggests that alterations in the
population of gut microorganisms, the microbiome, contribute
to the development of CRC.110,111 CRC patients show a distinct
microbial signature in their gut which may predispose them to
a tumor-promoting inflammation.112,113 Analysis of next-gen-
eration sequencing data112,114 indicate that the colonic mucosa
is initially colonized by pathogenic bacteria driving CRC via

inducing persistent inflammation. This fuels increased cell pro-
liferation and/or production of genotoxic substances involved
in development of premalignant lesions and the accumulation
of gene mutations such as in TP53.115 As a consequence of
alterations in colonic barrier permeability and cellular metabo-
lism, pathogenic “driver” bacteria are replaced by “passenger”
bacteria such as tumor-feeding opportunistic and commensal
bacteria. Collectively, a “driver-passenger model” has been pro-
posed to explain the role of the gut microbiome in CRC. The
intestinal bacteria are more likely to play a “driver” role in the
course of tumorigenesis rather than being passive
“passengers.”116

Basic studies in a mouse model of CRC have revealed that
perturbations to the gut microbiota can lead to colon tumori-
genesis in which transfer of the tumor-associated microbiome
to the germ-free mice exacerbates tumor formation compared
with the control germ-free mice that received microbiota from
healthy mice.117 Modulation of the gut microbiome has been
proposed as a therapeutic or preventative approach for CRC.
However, several mechanistic issues need to be precisely
addressed before translational modification of the gut micro-
biome in CRC.

From an immunological point of view, IL23A produced by
tumor-associated myeloid cells is a master initiator of the
inflammatory response to tumor-infiltrating microbes and this
induces expression of IL17 as a pro-tumorigenic mediator.
Interestingly, prolonged administration of antibiotics sup-
presses tumor growth induced by IL23A.118 Furthermore,
colonic innate lymphoid cells (ILCs) play a pivotal role in
microbiome-influenced CRC via regulation of IL23A-depen-
dent on IL22 secretion, which is mediated by inducing phos-
phorylation of STAT3 in a mouse model.119

Autophagy is activated in the intestinal epithelium of CRC
patients and a mouse model of CRC.120 Specific genetic abla-
tion of Atg7 in murine intestinal epithelial cells leads to a signif-
icant suppression of pre-cancerous lesion development. The
role of ATG7 in CRC is mediated by intestinal dysbiosis in
which the gut microbiome is an essential component for an
effective antitumor immune response. Inhibition of autophagy
by epithelial deletion of Atg7 leads to bacterial invasion of the
crypts which dramatically changes microbiome composition in
the gut. This effect is mediated by controlling a stress response
associated with activation of AMP-activated protein kinase
(AMPK) signaling and TP53-mediated cell-cycle arrest specifi-
cally in tumor cells.120 The lack of a protective response against
colonic tumor upon antibiotic treatment further confirms the
crucial role of the gut microbiome in ATG7-deficient mice.120

Decreased levels of antimicrobial defenses mediated by Paneth
cells (secretory cells of the intestinal crypts) and goblet cells
may explain how the inhibition of autophagy in intestinal epi-
thelial cells can downregulate host immunity.121

The role of the microbiome in energy homeostasis is signifi-
cantly more pronounced in colon than other tissues, which is
mainly because of consuming bacterial butyrate as the primary
energy source in colon cells. Interestingly, enhanced levels of
autophagy are observed in colon cells of mice lacking a micro-
biome and this increase is rescued upon addition of butyrate to
germ-free colon cells.122 It has been suggested that butyrate, as
a short chain fatty acid, has a protective role in colon
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tumorigenesis via induction of apoptosis and inhibition of pro-
liferation and regulation of cell differentiation.123

While investigating the mechanisms underlying the regula-
tion of the gut microbiome by VDR (vitamin D [1,25 dihydrox-
yvitamin D3] receptor), Jin et al. demonstrated that VDR status
influences the intestinal bacteria at both the taxonomic and
functional level, and correlates with the VDR-associated bacte-
rial changes in clinical diseases. Since VDR is a nuclear receptor
that regulates the expression of antimicrobial peptides and the
autophagy regulator ATG16L1, future studies need to address a
crucial unknown link between the gut microbiome and auto-
phagy mediated by VDR in the context of CRC.124 Understand-
ing the precise impact of the microbiome on autophagy in CRC
will open new avenues, leading to the development of novel
therapeutic strategies for CRC.

Mutations in autophagy-related genes in CRC

UVRAG
Recently, the role of UVRAG (UV radiation resistance associ-
ated) as a tumor suppressor gene has been described and the
first reports of cancer-specific mutations in UVRAG have been
published.125 A 10-polyadenine repeat in exon 8 in MSI colo-
rectal tumors was identified with mono-allelic frame-shift
mutations. UVRAG positively regulates BECN1, suggesting that
the interaction with BECN1 is necessary for the tumor suppres-
sor function of UVRAG. In a colon cancer cell line carrying a
deletion in UVRAG (c.709delA), a reduction in endogenous
UVRAG levels and impaired autophagy induction were
observed.50,125

ATG16L1
ATG16L1 is an autophagy gene that also controls host immune
responses against bacteria and viruses. The nonsynonymous
SNP in ATG16L1 (Thr300Ala) is associated with improved OS
in human CRC and increased basal production of type I IFN,
providing a mechanism to influence clinical outcome.126 SNP
may also explain why some patients have a higher risk of CRC
or are prone to more mucosal inflammation than others. Auto-
phagy gene polymorphisms correlate with the development of
human CRC. The ATG16L1 (C898A>G [Thr300Ala] SNP)
GG genotype is found at higher frequencies in moderately and
poorly differentiated CRC cases. Whereas the AA genotype is
correlated with a lower risk for CRC, the SNP switch to the GG
genotype is correlated with a higher risk for CRC.127

Autophagy and the UPR pathways provide a link between
inflammation and cancer in CRC

Malignancies are the second most common cause of death after
cardiovascular disease in both genders in patients with IBD.128

IBD has etiological links to CRC at multiple levels and auto-
phagy plays a crucial protective role.129 The intestinal tract is
the interface between the organism and its outer environment
and a potential site of infection/inflammation and cancer for-
mation. Clearance of invading microbes and intracellular waste
components seems to be a protective function of autophagy in
inflammatory disease.130

Entero-pathogenic Escherichia coli (EPEC) are equipped
with a well-developed infectious machinery by which they
evade the host defenses and deplete host DNA mismatch repair
(MMR) proteins in colonic cell lines. Alterations in the MutS
or MutL complexes of mammalian cells may be associated with
EPEC pathogenesis and the development of CRC. The MMR
proteins of E. coli have been considered as potential therapeutic
targets and early detection biomarkers for CRC.131 The role of
gut microbiota in the development of human CRC is influenced
by diet and inflammation.132 Importantly, autophagy deregula-
tion in IBD and CRC development is associated with alterations
in immune responses, defects in bacterial clearance, and mal-
function of goblet and Paneth cells.60

There is tight crosstalk between inflammation and the ER
stress pathway, which can influence the pathology and progres-
sion of several diseases. ER stress-induced inflammation may
aid the progression of type 2 diabetes, obesity, and cause IBD
progression in Crohn disease and ulcerative colitis.133 In addi-
tion, pro-inflammatory diets (i.e., high carbohydrates along
with low antioxidants) are associated with increased risk of
CRC.134

Chronic inflammation in IBD can lead to prostaglandin
release, production of ROS, and secretion of tumor-promoting
cytokines. These cytokines promote the survival, growth, and
metastasis of tumor cells through NFKB/NFkB (nuclear factor
kappa B; mediators downstream of the UPR), STAT3 (signal
transducer and activator of transcription 3) and AP-1 (AP-1
transcription factor) signaling pathways as well as cytokines
such as IL1B/IL1b, IL6, IL11, and IL23A.131 Prostaglandin E2
(PGE2) induces cancer stem cell (CSC) expansion by activating
NFKB via E-type PTGER4/EP4-PtdIns3K and PTGER4-
MAPK (mitogen activated protein kinase) signaling and pro-
motes the formation of CRC liver metastases in mice. The
PGE2 signaling pathway may serve as a therapeutic target to
counteract CRC metastasis.135 Dysregulation of PTGS/COX
(prostaglandin-endoperoxide synthase) pathway may lead to
the accumulation of pro-inflammatory mediators such as
PGE2. In particular, PTGS, PTGER3 (prostaglandin E receptor
3), PTGFR (prostaglandin F receptor), and AKR1B1 (aldo-keto
reductase family 1 member B) were found hyper-methylated in
more than 40% of colorectal tumors.136 A recent study on 618
participants diagnosed with CRC showed that CRC-specific
mortality was higher in patients with PTGS2-positive tumors,
when GDF15/MIC1 (growth differentiation factor 15) plasma
levels were high preceding diagnosis.137 When visceral adipose
tissue (VAT) and subcutaneous adipose tissue (SAT) compart-
ments were analyzed for metabolic and transcriptomic differen-
ces to elucidate a link between obesity and colorectal
carcinogenesis, results showed that VAT compartments dis-
played elevated markers of inflammatory lipid metabolism,
prostaglandin synthesis-related enzymes (PTGDS/PGS2S),
PLA2G10 (phospholipase A2 group X), and free arachidonic
acid. The presence of these inflammation markers in VAT sup-
ports a role of visceral adiposity in promoting cancer.138,139

CRC incidence is higher in wild type than in ppp1r15a/
gadd34 (protein phosphatase 1, regulatory [inhibitor] subunit
15A) knockout mice.140 PPP1R15A/GADD34 is part of a fam-
ily of DNA damage-inducible proteins and it is a target of
ATF4 during ER stress that regulates inflammation and host
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defense systems. For example, dextran sodium sulfate-induced
inflammatory responses are curbed as a result of PPP1R15A
deficiency. In addition, both expression of pro-inflammatory
mediators and epithelial cell proliferation are lower in ppp1r15a
KO mice.140

Various ER-stress-associated proteins, such as HSPA5,
ATF6, HSP90B1/GRP94, and XBP1s, are upregulated in can-
cer.141 Therefore, a model of association between ER stress-
induced tumor and pro-inflammatory gene pathways has been
proposed.133 In this model, ER stress induces NFKB and AP-1
activation in tumor cells followed by cytokine secretion in can-
cer cells.142,143 Continuous infiltration of immune cells into the
tumor microenvironment,142,144 and induction of ER stress in
tumor cells can affect both immune cells and cancer cells by
triggering cytokine secretion from tumor cells.145,146 Finally,
ER stress is also induced in tumor-infiltrating immune cells
because of their high cytokine production in the tumor micro-
environment.147 Hence, it has been shown that inflammation
can induce the UPR via pathways that are activated by ER
stress. All 3 sensors of the UPR, EIF2AK3, ERN1, and also
ATF6, are involved in activation of inflammatory processes. ER
stress-induced inflammation contributes in the pathogenesis
and progression of several diseases, including obesity, type 2
diabetes, and cancer. However, based on the type of stress, the
UPR arms might either promote or prevent cancer progression,
depending on activated inflammatory pathways, cell type and
stage of disease.133

Neutrophils have critical roles in tumorigenesis through
their production of cytokines and chemokines, which influence
inflammatory cell recruitment and regulate tumor cell prolifer-
ation, angiogenesis, and metastasis. Thus, neutrophils have
been recognized as new targets for cancer therapy.148 Infiltra-
tion of natural killer cells and CD8C T lymphocytes into the
CRC micro-environment is a good prognostic sign in CRC
patients and suggests potential antitumor effects of natural
killer cells and CD8C T cells.149 In addition to elevated levels of
cytokines, chemokines, and ROS production, inflammasomes
are strongly linked to increased rates of epithelial proliferation
and angiogenesis, and play critical roles in colitis-associated
CRC progression.150 Furthermore, the role of proteases and
their receptors on intestinal inflammation and cancer provide a
rationale to explore the potential role of protease-activated
receptor-induced PTGS2/COX2 in colitis-associated cancer.151

American ginseng may have potential value in CRC chemopre-
vention via reduction of gene expression of inflammatory cyto-
kines, including IL1A/IL1a (interleukin 1 a), IL1B, IL6, TNF,
CSF3/G-CSF, and CSF2/GM-CSF in both the small intestine
and the colon.152

Changes in molecular mediators of the UPR in CRC

Alteration of ER stress-associated molecules has been exten-
sively studies by various genetic and pharmacological
approaches (both inhibitors and inducers) in different cells.153

In the context of CRC, Lu et al., showed that dihydroartemisi-
nin can trigger ER stress in human colorectal carcinoma
HCT116 cells through inducing the expression of HSPA5 and
DDIT3 at both mRNA and protein levels.153 Paclitaxel induces
all 3 arms of the endoplasmic reticulum stress response in CRC

cells by upregulating HSPA5 and phosphorylation of EIF2A.154

Other studies revealed that HSPA5 expression is elevated in
CRC.155,156 Knocking down EIF2AK3, ERN1, or ATF6 in CRC
HCT116 cells shows that EIF2AK3 has an important role in
hypoxia-dependent induction of MAP1LC3B and ATG5.157

SELENOS (selenoprotein S), which is involved in the metabo-
lism of unfolded or misfolded proteins, is also associated with
increased CRC risk.158 In addition, high expression levels of
XBP1 have been detected in CRC cells, emphasizing that upre-
gulation of the corresponding gene may be one of key players
in colon carcinogenesis.159 Moreover, STC2 (stanniocalcin 2),
as a main survival component of the UPR, is overexpressed in
CRC to provide tolerance to ER stress.160

Upon treatment of HCT116 cells with celecoxib, ER chaper-
ones and particularly HSPA5 are upregulated, followed by an
increased level of VEGF production, and finally, apoptosis.161

Similarly, dihydroartemisinin chemotherapy induces mito-
chondria-dependent apoptosis via ER stress pathways in CRC
HCT116 cells.162 The ERN1-XBP1 pathway is also important
for promotion and progression of CRC.163 Recent report shows
a pivotal role of XBP1 in CRC invasion.164 Inhibiting ATF4
sensitizes CRC cells to chemotherapy and counteracts drug-
induced apoptosis, showing that the HSPA5-EIF2AK3-ATF4
pathway is active in CRC.165 The above-mentioned ER stress-
associated molecules seem to have therapeutic potential in
CRC and more research is required to elucidate their
importance.

Inhibitors and activators of autophagy and the UPR in
CRC

Autophagy modulators

HMGB1 (high mobility group box 1)may have different func-
tions including proliferation, invasion, and metastasis by ligat-
ing its multi-ligand AGER/RAGE (advanced glycosylation end
product specific receptor) in different cancer models.166,167

Necrotic cells release HMGB1 and are involved in inflamma-
tion induction.168,169 HMGB1 plays a fundamental role in the
carcinogenesis and progression of CRC.170,171 HMGB1 colonic
mucosa concentration is continuously increased in a rat azoxy-
methane model of CRC.171 Several reports have shown that
HMGB1 activates autophagy.172,173 HMGB1 can also bind to
TLR4 (toll like receptor 4), which subsequently activates innate
immunity and immunological autophagy by triggering the dis-
sociation of BECN1 from BCL2.174,175 Cytosolic HMGB1 can
directly bind to BECN1 to assist in the dissociation from BCL2
and consequently initiate an autophagic response.176

Luo et al. reported that proteolysis associated with auto-
phagy is induced in the presence of HMGB1.177 Autophagy
selectively degrades cellular components, including aged pro-
teins, protein debris, and damaged organelles, which contrib-
utes to energy production, and to supply amino acids.178,179

HMGB1 is involved in the dephosphorylation of MTOR, which
subsequently induces the proteins involved in autophagy,
including BECN1 and LC3-II via AGER-mediated MAPK p38
phosphorylation.177 An autophagy-induced glutamine supply
might be important for maintaining mitochondrial energy pro-
duction in muscles.180 In contrast, cancer cells use glucose and
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glutamine as a source of energy for the lactate fermentation
pathway.181 Cancer cells use plasma glutamine released from
the muscle, and HMGB1 treatment increases lactate fermenta-
tion in colorectal cancer cells in culture conditions.177,182 This
underlines a cancer-host interaction in energy acquisition for
cancer progression.

Initiation of the autophagy pathway involves BECN1, and
the interaction with several cofactors, including AMBRA1,
SH3GLB1/BIF (SH3 domain containing GRB2 like endophilin
B1), and UVRAG, to activate the lipid kinase PIK3C3/
VPS34.62,68 Immortalized kidney and mammary epithelial cells
that harbor a mono-allelic deletion of BECN1 show increased
growth rates when compared with their wild-type counterparts.
Conversely, the tumor-suppressing property of BECN1 is asso-
ciated with interactions of BECN1 and autophagy-related pro-
teins downstream of BECN1, such as UVRAG and ATG4.183

UVRAG overexpression suppresses the tumorigenicity of
human colon cancer cells and, not surprisingly, one copy of the
UVRAG gene is often deleted in human CRC. Furthermore, bi-
allelic deletion of Atg4 in mice favors the development of chem-
ically induced fibrosarcomas as a result of tissue-specific defects
in the autophagy pathway.183 BECN1 expression is low in
human breast tumors, glioblastoma multiforme and other
high-grade brain tumors.184 In contrast, high expression of
BECN1 is observed in the majority of colorectal (95%) and gas-
tric (83%) carcinomas when compared with normal stomach
and colon mucosa.185 In another study, 363 colorectal tissues
from CRC patients were evaluated by tissue microarray and
immunohistochemistry to investigate the expression and prog-
nostic role of BECN1 in CRC. The findings link high expression
of BECN1 with better OS and disease-free survival, suggesting
that BECN1 may serve as an independent prognostic marker in
CRC.184

Ectopic expression of the essential autophagy protein
BECN1 reduces proliferation of cancer cells, suggesting its
tumor suppressor properties. Indeed, BECN1 has been iden-
tified as a tumor suppressor complex. BECN1 serves as a
scaffold for the formation of autophagosomes. MicroRNA
(miRNA)-dependent decrease of BECN1 expression is an
indication of poor prognosis and presumably promotes
anti-apoptotic pathways.184 Conversely, overexpression of
BECN1 is associated with tumor hypoxia and these sub-
groups of tumors exhibit aggressive clinical behavior. In
CRC tissues, BECN1 can be either up- or downregulated.184

The activation of autophagy by overexpressing BECN1 may
be an effective treatment of CRC with defects in BECN1.186

In one study, the expression and significance of 3 auto-
phagy-related proteins, namely BECN1, LC3, and MTOR,
were investigated in the tumorigenesis and development of
CRC. Immuno-histochemical studies revealed that the
expression of these 3 proteins was significantly higher in
CRC than in adjacent normal tissues.186 In CRC tissues, the
expression of LC3 was positively correlated with BECN1
and cell differentiation, but negatively correlated with
MTOR, whereas the expression of MTOR was positively
associated with cell differentiation and lymph node metasta-
sis.187 BECN1 and LC3 can predict the efficacy of cetuxi-
mab therapy, as low levels of autophagy are associated with
a high antitumor efficacy of cetuximab.188

Besides BECN1, alterations in other autophagy genes, such
as deletion of the ATG5 gene or mutations in the key autopha-
gic tumor suppressor UVRAG gene have been detected in colon
cancer. We conclude that different components of the autopha-
gic pathway mutually contribute to the regulation of cancer cell
fate. The cancer-associated frame-shift mutation of UVRAG
leads to the expression of its truncated form in CRC with MSI,
and promotes tumorigenesis. The expression of truncated
UVRAG can cause CRC metastatic spread through activation
of the mall GTPase RAC1 and the epithelial-to-mesenchymal
transition (EMT).189

Increased expression of ATG10 in CRC is associated
with lympho-vascular invasion and lymph node metastasis.
ATG10 may serve as a potential prognostic maker in
CRC.190 ATG5 expression is lost in 23% of CRC patients
and plays important roles in intestinal tumor growth. Het-
erozygous deletion of Atg5 in ApcMin mice increased the
number and size of adenomas when compared with ApcMin

Atg5C/C mice.189 Early treatment of ApcMin Atg5C/- mice
with IFNG lowered the tumor incidence to 16.7% and
reduced the number of adenomas by 95.5%.189 IFNG treat-
ment also led to tumor regression.189 Heterozygous deletion
of Atg5 activates EGFR-MAPK1/ERK2-MAPK3/ERK1 and
WNT-CTNNB1/b-catenin pathways in adenomas of ApcMin

mice and enhances the effects of IFNG-dependent inhibi-
tion of tumor growth. A combination of IFNG and ATG5
deficiency or ATG5-targeted inhibition may offer promising
strategies for the prevention and treatment of CRC.189

Besides the paradoxical role of autophagy in tumorigenesis
and cancer progression, the lack of expression of 3 auto-
phagy-related proteins (ATG5, BECN1, and MAP1LC3B/
LC3B [microtubule associated protein 1 light chain 3 b) is
associated with poor prognosis in CRC, suggesting that
these proteins have a potential to serve as new prognostic
markers in CRC.191

Identified as a key autophagy-related protein and prosur-
vival factor in CRC cell lines, VMP1 (vacuole membrane pro-
tein 1) promotes autophagy via binding to BECN1 and
triggering the BECN1-autophagy pathway. Upon specific
VMP1 knockdown, CRC cells become more susceptible to apo-
ptosis suggesting that VMP1 is an important negative regulator
of the apoptotic pathways.192

Ectopic expression of MIR140–5p in colorectal CSC inhibits
CSC growth and sphere formation in vitro by disrupting auto-
phagy. There is progressive loss of MIR140–5p expression from
normal colorectal mucosa to CRC tissues and a further reduc-
tion in liver metastatic tissues. The functional and clinical sig-
nificance of MIR140–5p suggests that it is an important
regulator of CRC progression and metastatic potential, and
may serve as a lead for the development of novel therapeutic
molecules to treat CRC.193

UPR modulators

Elevated HSPA5, a marker of the UPR, correlates with higher
pathological grade, tumor recurrence, and poor survival in
patients with breast, gastric, liver, colon, and prostate cancer.194

The activation of several members of the UPR pathway, includ-
ing HSPA5, has been reported in colon cancer.195 In a cancer
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xenograft animal model, reduction of HSPA5 inhibited tumor
formation and growth. In early tumor stages, increased expres-
sion of HSPA5 may be responsible for controlling local tumor
growth, whereas in advanced stages high expression of HSPA5
and HSP90B1 is dependent on other cellular stress reactions
such as glucose deprivation and hypoxia.194

SEL1L is a member of the ER-associated protein degradation
(ERAD) and UPR pathways. When associated with the E3-
ligase SYVN1/HRD1, SEL1L assists in clearing unfolded pro-
teins in the ER.196 SEL1L expression is low in the normal gut
mucosa but significantly correlates with the progression from
adenoma to carcinoma, suggesting that it may become a poten-
tial target for CRC therapy.196

Hypoxia-like conditions (oxygen deprivation and nutrient
stress) lead to EMT and ER stress in CRC cells and alter the
localization of CTNNB1/b-catenin and CDH1/E-cadherin in
SW480 and HCT116 colon cancer cells. Nuclear CTNNB1/
b-catenin is an inducer of EMT and serves as an indicator for
CRC stem cells (CSC), which promote tumor progression and
a chemoresistance phenotype.197 When cultured under hypoxia
conditions, CRC upregulate the mesenchymal marker VIM
(vimentin) as well as HSPA5, HIF1A/HIF1a, ZEB1, and the
50-kD ATF6 fragment. It can be inferred that cellular stress
activates HIF1A and/or CTNNB1/b-catenin signaling path-
ways, resulting in the induction of the EMT and ER stress. Sev-
eral methods based on differential live staining of cells are
being developed that should allow for the identification of
CSC.198 Figure 6 depicts an interconnected network of cellular
stress-EMT-ER stress.199

Oncoproteins and tumor suppressor proteins involved in
the UPR and autophagy in CRC

MYB/cMyb
The expression of ER-located HSPA5 is mandatory for protein
folding in most cells.200 MYB is a conserved transcription factor
involved in normal colon development and hematopoiesis.201

Overexpression of MYB induces HSPA5 gene expression. The
promoters of human and murine HSPA5 and HSP90B1 contain
functional MYB binding sites as demonstrated by chromatin
immunoprecipitation assays using recombinant MYB and
nuclear extracts of colon cell lines. Amplification of MYB in
tumor cells may lead to HSPA5 gene induction, and in turn,
this promotes cell survival during oxygen deprivation and
nutrient stress conditions.202 This reinforces the view that UPR
modulation may be a new attractive therapeutic target for the
eradication of glucose-deprived solid tumors. Table 4 shows a
list of oncogenes and tumor suppressors involved in CRC.

TAGLN/SM22
TAGLN (transgelin) is considered a tumor suppressor and its
expression changes under many pathological conditions,
including CRC.203 TAGLN binds to the actin protein network

Figure 6. Hypoxia- and nutrient deprivation-induced stress cause EMT-mediated
UPR. The relationship between EMT and ER stress. At the invasive front of CRCs,
cellular stress conditions (hypoxia or changes in the microenvironment) induce
EMT via activation of HIF1A or CTNNB1/b-catenin, which consequently leads to
ZEB1 activation and EMT induction. EMT activates the UPR which induces the acti-
vation of UPR-related transcription factors (ATF6) (adapted from ref. 199).

Table 4. Oncogenes and tumor suppressors and their link to autophagy and tumorigenesis.

Name Link(s) to tumorigenesis Link(s) to autophagy

Oncogenes183

BCL2, BCL2L1 Overexpressed in a relevant proportion of human cancers, and
notably in hematological malignancies

Negative regulator of autophagy by sequestering BECN1

Tumorsuppressor genes
ATG4C Implicated in the development of chemically-induced

fibrosarcomas
Operating a proper autophagy response under ER stress

conditions
BECN1 (VPS30/ATG6) Deleted in a relevant fraction of human breast, ovarian and

prostate tumors. Brain tumors are characterized by reduced
expression of BECN1

Essential modulator of autophagy

Encoding BH3-only
proteins

Loss of expression due to inactivating mutations in multiple
human tumors (e.g., melanoma, renal cell carcinoma)

Promoting autophagy by liberating BECN1 from inhibitory
interactions with anti-apoptotic members of the BCL2
protein family

DAPK1 Frequently silenced in human tumors by epigenetic mechanisms Induces autophagy by interaction with the microtubule-
associated factor MAP1B. Also promotes autophagy via
activation of TP53

TP53 Mutated in >50% of all human tumors Nuclear TP53 trans-activates autophagy-promoting factors (e.g.,
DAPK1, DRAM). Cytoplasmic TP53 exerts a tonic inhibition
on autophagy

UVRAG Mono-allelic deletion at high frequency in human colon cancers Defective in autophagy pathways
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and is also considered a marker for smooth muscle differentia-
tion.204 The expression of the tumor suppressor TAGLN is sig-
nificantly decreased in CRC tissues and a link exists between
low TAGLN expression and inhibition of autophagy in human
CRC tissues and CRC cell lines.203

SQSTM1/p62 (sequestosome 1) is a multifunctional recep-
tor protein implicated in the delivery of cargo to phago-
phores.63 SQSTM1 is a ubiquitin-binding scaffold protein that
colocalizes with and guides ubiquitinated proteins to the auto-
phagic machinery via binding to LC3.205 SQSTM1 is a marker
of autophagy flux and its upregulation could be interpreted as
inhibition of lysosomal digestion of autophagosomes.206

SQSTM1 is also involved in autophagy-related cell signaling
pathways and tumorigenesis. SQSTM1 and LC3 are upregu-
lated in a subset of CRC.207 The increase in SQSTM1 is thought
to be a crucial contributing factor in CRC tumorigenesis.
Knockdown of Sqstm1 expression significantly inhibits auto-
phagy activation and tumor growth, both in vitro and in xeno-
graft tumor models.207 SQSTM1 and autophagy have been
suggested as therapeutic targets for the treatment of CRC.207

SH3GLB1/BIF1 is a tumor suppressor gene of the endophi-
lin protein family. SH3GLB1 colocalizes with ATG5 and LC3,
which suggests its involvement in early autophagosome forma-
tion. Loss of SH3GLB1 reduces PIK3CVPS34 kinase activity
and suppresses autophagy induction in response to nutrient
starvation.50 SH3GLB1 regulates autophagy by forming a mul-
tiprotein complex with the PtdIns3K and BECN1 through
UVRAG.208 The transition from normal epithelium to CRC
coincides with a downregulation of SH3GLB1.209 Furthermore,
SH3GLB1 interacts with BAX to regulate apoptosis. Loss of
SH3GLB1 suppresses apoptotic cell death by inhibiting BAX-
BAK1 conformational change and caspase activation, hence
promoting tumorigenesis.209-211

PCDH17
PCDH17 (protocadherin 17) exerts its tumor-suppressing
activity through apoptosis and autophagy induction. PCDH17
is frequently silenced by promoter methylation in most gastric
and colorectal tumor cell lines, as well as in 95% of primary
CRC tumors. PCDH17 deletion was detected in only 18% of
gastric and 12% of CRC tissues, suggesting that both epigenetic
and genetic inactivation of PCDH17 are involved in gastric and
colorectal tumorigenesis. PCDH17 methylation status has been
suggested as an epigenetic biomarker for these tumors.212 In
gastric and CRC patients, high PCDH17 expression was signifi-
cantly correlated with low tumor stage and lower frequency of
lymph node metastasis, indicating a promising role for
PCDH17 as a prognostic marker.212 Restoring PCDH17 expres-
sion promotes apoptosis and blocks tumor cell growth both in
vitro and in vivo.212 Furthermore, PCDH17 induces autophagy
through the upregulation of autophagic proteins (such as
ATG5, ATG12 and LC3B-II) and formation of autophagic
vacuoles.

PARK2/parkin
Frequent loss of heterozygosity and deletions in the PARK2
gene are found in several cancers. Consistent with PARK2s
property as a tumor suppressor, several studies showed that
ectopic expression of PARK2 reduces cell growth and increases

apoptosis in hepatocellular and lung cancer. In a colon cancer
model, alternatively spliced variants of PARK2 failed to degrade
CCNE (cyclin E). This finding suggests that loss of CCNE regu-
lation by PARK2 contributes to colon cancer. Tumor cells often
suppress their mitochondria in response to hypoxia and ER
stress to reduce oxidative stress, a process that also utilizes
autophagy. PARK2’s role in mitophagy might also in part
account for its tumor suppressor functions. PARK2 induces
autophagy via BNIP3L/NIX, which causes mitochondrial depo-
larization and MTOR inhibition. PARK2 ubiquitinates effector
proteins and can select mitochondria for autophagy. The
HSP90/HSP70-based chaperone machinery plays a key role in
the degradation of aberrant proteins via the ubiquitin-protea-
some pathway.213 The ability of PARK2 to ubiquitinate HSP70
proteins suggests that PARK2 may play a role in the degrada-
tion of substrates normally stabilized by HSP90 and important
for tumor cell survival and proliferation.214

Class I PI3K
Class I PI3Ks phosphorylate PtdIns4P and PtdIns(4,5)P2. The
deregulation of class I PI3Ks has been described in the course
of tumorigenesis and resistance to therapy in cancer. Class I
PI3K activation and its products PtdIns(3,4)P2 and PtdIns
(3,4,5)P3 inhibit autophagy in HT-29 cells.142,185 The activation
of MTOR and the resulting inhibition of autophagy in response
to cellular stress can occur through the activation of the class I
PI3K and its downstream effector AKT/PKB. The inhibition of
AKT potently induces autophagy through inactivation of
MTORC1. Likewise, overexpression of PTEN, a dual lipid/pro-
tein phosphatase, tumor suppressor, and negative regulator of
the PI3K-AKT pathway, induces autophagy.50 The PI3K-AKT
pathway is a potent activator of cell proliferation and cell sur-
vival, and it is regulated at multiple levels.215 A dominant

Figure 7. The role of MTOR in cancer-associated signaling pathways that regulate
autophagy in mammalian cells. The best known regulator of autophagy is MTOR
(mechanistic target of rapamycin), a serine/threonine kinase conserved throughout
eukaryotes. The activity of MTORC1 is inversely correlated with autophagy induc-
tion. The mTORC1 inhibitor rapamycin potently induces autophagy, even in the
presence of abundant nutrients (adapted from ref. 50). The PI3K-AKT regulates
autophagy. This regulation is mediated via the small RHO-GTPase RHEB.
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negative AKT mutant enhances autophagy whereas expression
of active AKT decreases autophagy. Figure 7 depicts the role of
MTOR in cancer and its association with autophagy.

Class III PtdIns3K
In contrast to class I PI3Ks, class III PtdIns3Ks are autophagy
stimulators. Inhibition of class III PtdIns3K (by e.g. 3-methyla-
denine; 3-MA) decreases the rate of autophagy, whereas the
class III PtdIns3K adaptor (PIK3R4/p150) overexpression or
the addition of PtdIns3P induces autophagy.185,216 BECN1
plays an integral role in the class III PtdIns3K pathway.185

Knockdown of BECN1 inhibits autophagy and promotes cell
death through nutrient starvation. BECN1 and PTEN are
important for autophagy induction and are therefore consid-
ered potential targets in the treatment of cancer.185 Justicidin A
(JA), a novel and pure arylnaphthalide lignan isolated from Jus-
ticia procumbens, induces class III PtdIns3K-dependent auto-
phagy in a colorectal cancer cell line (HT29). This enhances
JA-mediated apoptotic activity and antitumor effects in these
cells.217

HPGD/15-PGDH
Recently, HPGD (hydroxyprostaglandin dehydrogenase 15-
[NAD]), a key enzyme in PGE2 degradation, has been indi-
cated as a tumor suppressor in several cancers, including colon
cancer.218 Glucose deprivation in colon tumors elevates
PTGS2/COX2 expression and simultaneously reduces the
expression of HPGD.218 Depriving colon tumor cells of glucose,
results in upregulation of PGE2 with both an increase in
PTGS2 expression and a decrease in HPGD expression, which
is mediated via enhanced PI3K-AKT signaling. Glucose depri-
vation leads to activation of the UPR, which, through increased

levels of DDIT3, can lead to the suppression of the key tumor
suppressor gene HPGD. This inverse regulation between
DDIT3 and HPGD suggests that tumor cells could manage to
survive in the presence of therapeutic agents that activate the
UPR. In this way, regulation of PTGS2 and HPGD might be
critical via effective PGE2 target-based chemotherapy
approaches to suppress tumor development. Figure 8 shows
how glucose deprivation increases PGE2 expression during
tumorigenesis.218

Association between obesity and CRC through autophagy
and the UPR

Obesity is a significant risk factor for various types of can-
cers.138,219 Diets high in fat and genetic predisposition to obe-
sity in Apc1638N mice, a mouse model for familial
adenomatous polyposis, differentially alter the composition of
microorganisms and metabolites in the intestine. A reduction
in P. distasonis and adenosine is anti-inflammatory in the colon
and could promote tumorigenesis.220 A study has been recently
conducted on 451 Hispanic participants, of whom 218 had
CRC, 77 had colorectal adenomas, and 156 were colonoscopy-
negative controls. The study found an increased risk of ade-
noma, especially in proximal locations, among Hispanic
women with type 2 diabetes providing a rationale for increased
screening in this population.221

The MTOR pathway integrates signals from growth factors,
nutrients, mutagens, and hormones, to induce cell proliferation
and resistance to apoptosis, and autophagy.222 Glucose depriva-
tion is a form of nutritional stress in tumor cells. ADIPOQ
(adiponectin, C1Q and collagen domain containing) negatively
influences cancer progression during glucose deprivation.130

Under normal conditions, ADIPOQ inhibits IGF1 (insulin like
growth factor 1) signaling in tumor cells and activates both
PRKAA/AMPKa and PPARA/PPARa (peroxisome prolifera-
tor activated receptor a) to inhibit the PI3K-AKT-MTOR path-
way and enhance autophagy.130 Hence, ADIPOQ provides an
important molecular link between cancer and obesity. Epidemi-
ological and clinical data show a relationship between obesity-
related inflammation via pro-inflammatory cytokines, such as
TNF secreted by macrophages. Low level of LEP (leptin) and
ADIPOQ are additional factors that play an important role in
physiological responses to inflammation and can promote the
development of CRC in obese individuals. The role of LEP and
ADIPOQ in carcinogenesis is attributed to several signaling
pathways, including the activation of JAK-STAT, MAPK,
PI3K, MTOR, and AMPK, and downregulation of PTGS2,223

and upregulation of CDH13/T-cadherin (cadherin 13), a
unique member of the cadherin superfamily lacking the trans-
membrane and cytoplasmic domains that anchors to the cell
membrane of HCT116 cells.224

Hypoglycemic agents and autophagy and the UPR in CRC

Metformin, an oral hypoglycemic agent, has recently being
receiving increased attention due to its antitumorigenic effects
in breast and colon malignancies that have an association with
obesity and hyper-insulinemia. Chemotherapy with metformin
is associated with decreased incidence of colon and pancreatic

Figure 8. Regulation of tumor survival and angiogenesis via glucose and oxygen
supply. Glucose deprivation increases PGE2 by upregulating PTGS2 and downregu-
lating HPGD expression via PI3K-AKT and DDIT3-dependent mechanisms. Hypoxia
increases PGE2 levels by upregulating PTGS2 expression via HIF1A). Elevated PGE2
increases survival of colon cancer cells exposed to both glucose deprivation and
hypoxic conditions (adapted from ref. 218).
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cancer but does not affect the outcomes in breast or prostate
cancer. A randomized pilot study involving nondiabetic
patients showed that low-dose metformin (250 mg/d) given for
1 mo suppresses the formation of aberrant crypt foci (ACF), an
early indicator of colon cancer.225

Mechanisms of action of metformin include activation of the
STK11/LKB1 (serine/threonine kinase 11)-AMPK pathway,
induction of cell cycle arrest and/or apoptosis, inhibition of
protein synthesis, reduction in circulating insulin, inhibition of
the UPR, activation of the immune system, and eradication of
cancer stem cells. Using a tumor xenograft model, Buzzai et al.
showed that metformin was able to selectively inhibit cell
growth and induce autophagy in TP53-deficient colon cancer
cells. In glucose-starved cultures of human colon, fibrosarcoma,
renal, and stomach cancer, gene expression profiling techniques
revealed that metformin was able to inhibit UPR activators and
lead to cell death.225

Aspirin, in combination with metformin, enhances AMPK
activation and this leads to MTOR suppression and autophagy
induction, which could contribute to the tumor supressor role
of AMPK in the development of CRC. The PI3K-MTOR signal-
ing pathway controls cell survival and regulates cell metabo-
lism, and deregulated PI3K-MTOR signaling is associated with
CRC development. Pharmacological AMPK activators, such as
5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR)
and metformin, inhibit growth and delay tumor initiation.226

These findings suggest a possible mechanism by which metfor-
min and aspirin may inhibit cancer growth through MTOR sig-
naling/autophagy and the UPR.

The UPR and autophagy pathways as potential treatment
strategies for IBD and CRC

Autophagic adaptive responses in CRC can increase the sensi-
tivity against autophagy inhibition and improve the efficacy of
chemotherapy. Autophagosomes are actively produced in CRC
cells under conditions of nutrient starvation. Autolysosome
inhibitors suppress autophagosome formation and enhance
apoptosis under amino acid- and glucose-deprived condi-
tions.227 We will also discuss the critical role of combinatorial
therapies with particular attention to genetic and molecular
markers associated with the autophagy and UPR pathways.

Therapeutic targeting of the autophagy pathway

Silibinin, a flavonolignan isolated from the milk thistle plant
(Silybum marianum), inhibits autophagy and enhances apopto-
tic pathways in the SW480 and SW620 CRC cell lines.228 Also,
curcumin and a curcumin analog G0-Y030 inhibit tumor
sphere formation in ALDHAC CD133C colon CSCs.229 Multiple
signaling pathways are inhibited by curcumin in epithelial can-
cers and this contributes to apoptotic cell death. Besides apo-
ptosis, curcumin induces autophagy in cancer cells.229 Chemo-
protective properties of plant-derived phytochemicals (e.g., cur-
cumin) may be induced through several effects, including cell
restorative processes, stimulation of antimetastatic and anti-
angiogenic responses and/or increased antioxidant and anti-
inflammatory activity.230,231 In the future, it may be possible to
avoid toxic effects of radio/chemotherapy by using

combinatorial strategies with nontoxic agents such as curcu-
min, which can target CSC.232 The oncogenic microRNA
MIR22 is thought to be a switch between apoptosis and auto-
phagy. MIR22 also inhibits autophagy and promotes apoptosis
both in vitro and in vivo and increases CRC cell sensitivity to
5-FU treatment.149 The oncogenic MIR22 may be considered a
predictor of 5-FU sensitivity and a target for CRC therapy.149

Mammalian MAPK14/p38a activity is required for CRC cell
growth in vitro and in mouse models of human colon cancer.
Inhibition of MAPK14 in CRC cells reduces tumor growth and
induces autophagic cell death. Combination therapy using
inhibitors of MAPK14 (SB202190) and MAP2K1/MEK1
(PD98059) significantly reduces cell survival and induces apo-
ptosis through TNFSF10/TRAIL signaling in both HT-29 and
HCT-116 cells. Several MAPK14 and MAP2K1 inhibitors are
in phase II clinical trials for the treatment of inflammation and
cancer.233,234 Also, MAPK14 is required to sustain the expres-
sion of HIF1A target genes. Inhibition of MAPK14 causes a
rapid drop in ATP levels in CRC cells. The AMPK-FOXO3
(forkhead box O3) axis is a metabolic switch that senses varia-
tions in the AMP:ATP ratio. Manipulation of this pathway in
combination with drugs targeting the ‘Warburg effect’ and/or
autophagy may be an effective strategy for selective targeting of
cancer cells.235-237 In addition, AMPK is a major regulator of
energy metabolism with key roles in the inhibition of biosyn-
thetic pathways and enhancement of ATP-generating path-
ways. Compound C, a small molecule inhibitor of AMPK,
causes an increase in the sub-G1 cell population (apoptotic
cells), in HCT116 and KM12C cells. Compound C also triggers
acidic vesicular formation, conversion of LC3-I to autophago-
some-associated LC3-II, and finally autophagic cell death in
DLD1 and SW480 cells.238

Ectopic expression of MIR124–2HG, a modulator of energy
metabolism and tumor suppressor, enhances oxidative stress.
The MIR124–2HG-PTBP1/PTB1-PKLR/PKM1-PKM/PKM2
axis induces apoptosis and autophagy in colon cancer cells.239

MAPKs are activated by 5-FU. SB203580 compound-mediated
inhibition, or the shRNA-specific knockdown of MAPK p38,
are associated with resistance to 5-FU-induced apoptosis in
HCT116 cells.240 This resistance is correlated with an autopha-
gic response mediated by a decrease in TP53-induced apoptosis
but does not affect TP53-dependent autophagy. The critical
role of the MAPK p38 signaling pathway in modulating the
rates of autophagy and apoptosis in response to 5-FU has been
outlined in Figure 9.240 We have summarized agents targeting
autophagy pathways in vivo and in vitro in CRC in Figure 10.

Autophagy and Immunotherapy in CRC

Immunotherapy has emerged as a powerful weapon to combat
different types of cancer, as it targets tumor-specific antigens.241

In the context of CRC, considering drawbacks of current treat-
ment options such as chemo- and radiotherapy, development
of novel alternative specific strategies with more efficacies and
less side effects is an unmet clinical need. In general, immuno-
therapeutic approaches to treat CRC include peptide vaccines,
dendritic cell (DC)-based vaccines, whole tumor cell vaccines,
viral vector-based vaccines,242 adoptive cell transfer therapy,
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antibody-based cancer therapy,243 cytokine therapy,241 check-
point inhibitors, and combined therapy.241,244

CRC peptide vaccines are well-characterized epitopes able to
elicit a specific immune response against colorectal tumor-asso-
ciated antigens (TAAs). For example, CRC cells often express
CEACAM5/CEA (carcinoembryonic antigen related cell adhe-
sion molecule 5),245 EGFR (epidermal growth factor recep-
tor),246 TP53,247 or KRAS,248 which are potential targets for
CRC immunotherapy. DCs can provide necessary signals to
induce an efficient antitumor immune response.249 Therefore,
several DC-based immunotherapeutic approaches have been
developed by using TAA-pulsed DCs. These approaches
include the known TAAs,250 tumor cell lysates,251 apoptotic
tumor cells,252 and tumor RNA.253

Adoptive cell transfer therapy is a passive immunotherapy
in which specific effector cells, e.g. cytotoxic T lymphocytes, are
directly infused within the CRC patient. Autologous T cells are
removed from CRC patients, activated, expanded to large num-
bers in vitro and transferred back into the patients.254,255

Immune checkpoint blockade by targeting the inhibitory
immune receptors CTLA4 (cytotoxic T-lymphocyte associated
protein 4), PDCD1/PD1 (programmed cell death 1), and
CD274/PDL1 is a novel immunotherapeutic approach to treat
CRC patients.256,257 A combined approach by using both
chemo/radiotherapy and immunotherapy seems to be more
effective for CRC.258 For instance, it has been shown that che-
motherapy increases the antitumor effects of cancer immuno-
therapy by depleting regulatory T cells (Treg).

259,260

Figure 9. The role for the MAPK p38 signaling pathway in cellular response to 5-FU. There is a critical role for the MAPK p38-signaling pathway in the cellular response to
5-FU by controlling the balance between apoptosis and autophagy (adapted from ref. 240). This pathway is tightly controlled by the TP53-mediated regulation of
autophagy.

Figure 10. Autophagy targeting strategies in in vitro and in vivo models of CRC. All chemical compounds, drugs, and inhibitors have been introduced in the section “Ther-
apeutic targeting of the autophagy pathway.”
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Several lines of evidence suggest that autophagy is involved
in development and progression of CRC and it could be consid-
ered as a potential target for treatment of CRC.261 However,
there are several issues, which remain to be addressed. It is not
clear whether targeting autophagy machinery in CRC patients
or experimental models will affect the antitumor immune
response. Furthermore, current CRC immunotherapeutic
modalities might function at least in part through modulation
of autophagy. In addition to its direct antitumorigenic roles,
autophagy can inhibit CRC by attenuating the inflammatory
response in the tumor microenvironment. Autophagy could
increase the processing and presentation of TAAs that result in
antitumor immunity. Tumor cells have the ability to escape
immunosurveillance by tuning down autophagy, though some
chemotherapies have been revealed to exert immunogenic anti-
tumor properties via inducing autophagic cell death.262

It has been demonstrated that the cell wall of Mycobacterium
bovis, and Bacillus Calmette-Guerin (BCG) induces a radiosensi-
tizing effect on colorectal cell lines via induction of autophagic
cell death through TLR2 and TLR4 signaling. In vivo evidence
further supports the idea that BCG-mediated radiosensitization
is an autophagy-dependent phenomenon. These data suggest
that the BCG cell wall in combination with ionizing radiation
provides a promising strategy for enhancing radiation therapy in
CRC through the induction of autophagy.263

Wei et al. have recently reported that autophagy is active in
Treg cells, and involved in their lineage stability and survival fit-
ness. Genetic abrogation of autophagy in these cells has led to
loss of Treg cells, greater tumor resistance and development of
inflammatory disorders in a mouse model of colon cancer.264

Specific deletion of the Atg7 gene in Treg cells has been associ-
ated with increased apoptosis and downregulation of transcrip-
tion factor FOXP3. Loss of autophagy leads to upregulation of
metabolic mediators such as MTORC1 and MYC as the mecha-
nism underlying the defective Treg phenotype in this CRC
model.264 These findings indicate that targeting autophagy in
Treg cells along with tumor cells could heighten the efficacy of
treatment in CRC.

Considering the inhibitory effect of chloroquine as an
autophagy inhibitor on colon cancer cell growth,265 and
also development of systemic autophagic syndrome upon
recombinant IL2 immunotherapy, Liang et al. demonstrated
that co-administration of chloroquine increases IL2 immu-
notherapeutic efficacy and also limits toxicity in an
advanced murine metastatic liver tumor model. This benefi-
cial dose-dependent combinatorial therapy is associated
with increased long-term survival, vascular leakage and
enhanced immune cell proliferation and infiltration.266

From a mechanistic point of view, IL2 treatment alone
induces autophagy and overexpression of HMGB1, IFNG,
IL6, and IL18 within the liver and translocation of HMGB1
from the nucleus to the cytosol in hepatocytes, which is sig-
nificantly inhibited upon addition of chloroquine.266 Fur-
thermore, the chloroquine effect could be directly mediated
on tumor cells by several mechanisms such as increased
autophagic vacuoles and LC3-II levels, cell death, CASP3/
caspase-3 cleavage and CYCS (cytochrome c, somatic)
release from mitochondria as well as decreased oxidative
phosphorylation and ATP production.266

Collectively, in combination with chemotherapeutics and
immune checkpoint inhibitors, autophagy regulators might
strengthen the efficacy of CRC immunotherapy in a more tar-
geted manner. One has to keep in mind that the interaction
between cell proliferation and immunity is a complex one.267

Future investigations aiming to understand the effect of these
combinatorial approaches on antitumor immunity could address
several unknown issues regarding this complex problem.

Therapeutic targeting of ER stress and the UPR

Falcarindiol (FAD) is a natural polyacetylene in carrots that
induces intracellular buildup of ubiquitinated proteins in can-
cer cells, including CRC. This leads to the accumulation of
unfolded/misfolded proteins in the ER and causes an increase
in ER stress-induced cell death via FAD.268 Treatments leading
to increased ER stress enhance FAD-induced cell death.269

Cancer cells, in poorly vascularized solid tumors, are fre-
quently exposed to nutrient starvation, which activates the
UPR pathway. In a glucose-deprived environment, anticancer
agents, such as arctigenin (ARC-G), which targets the UPR,
could preferentially cause tumor cell death.34 Another target
for cancer therapy is HSPA5 because it is considered a main
target of UPR signaling for survival and often upregulated in
most cancers. Verrucosidin can disrupt HSPA5 expression dur-
ing glucose deprivation in HT-29 human colon cancer cells.270

In addition to being an inhibitor of HSPA5 expression, versipe-
lostatin, blocks the UPR and induces cytotoxicity in glucose-
deprived colon tumor cells both in vitro and in vivo.269 This
cytotoxic effect of versipelostatin is mediated through suppres-
sion of HSP90B1 expression and the UPR transcriptional acti-
vators XBP1 and ATF4.271,272

Brefeldin A (BFA), an inhibitor of protein transfer from the
ER to the Golgi, leads to an accumulation of proteins in the ER
and this results in the activation of apoptotic UPR signals. BFA
triggers apoptosis in HT-29 cells.195 These results suggest 2
approaches to target the UPR: (i) designing inhibitors of the
UPR pathway to block the adaptive response needed for sur-
vival of tumor cells, and (ii) using inducers of the UPR to over-
load stress and induce UPR-mediated cell death pathways in
cancerous cells.195 Targeting autophagy leads to increased cell
death in HCT116 colon cancer cells.273 Table 5 lists the drugs
targeting ER stress and autophagy for anticancer therapy. High
doses of selenium induce ER stress and cause subsequent
EIF2AK3-dependent ElF2 phosphorylation and apoptotic cell
death. Selenium can also contribute to an increase in ER stress
upon irradiation and may promote radio-sensitization.273

The expression of FASN (fatty acid synthase) and the
autophagy marker SQSTM1 is increased specifically in

Table 5. Drugs that target ER stress and autophagy for anticancer therapy.

Treatment Category Cancer type

Bortezomtib Proteasome inhibitor Prostate and multiple myeloma
17-AAG, IPI-504 HSP inhibitor Many solid tumors
Tubacin HDAC inhibitor Breast
Selenium Trace element Colorectal and prostate
Cerulenin or C75 FASN inhibitor Breast and prostate
Reference:273
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primary CRCs and liver metastases of CRC.274 The activa-
tion of fatty acid oxidation and the downregulation of
stress-response signaling pathways may be key adaptation
mechanisms to facilitate the effects of FASN on cancer cell
survival and metastasis. This provides a strong rationale for
targeting this pathway in advanced CRC.274 Importantly,
ER stress can be induced in tumor cells by FASN inhibitors,
such as cerulenin or C75, but not in normal cells. FASN
inhibitors exhibit selective apoptosis-inducing cytotoxicity
particularly in therapy-resistant, TP53-deficient cells. The
selective activation of the FASN pathway could be responsi-
ble directly for CRC destruction by apoptosis and/or target
them for immunological attack. FASN inhibitors were toxic
to HT-29 cells expressing a dominant negative EIF2AK3.
This was also observed in cells expressing normal levels of
EIF2AK3 and is mediated by FASN inhibitor-induced per-
sistent phosphorylation of EIF2A by EIF2AK3.275 In this
context, FASN causes inhibition of protein synthesis and
the activation of ERN1 to increase the expression of the ER
stress regulated genes ATF4, DDIT3, and HSPA5. This sug-
gests that an approach combining irradiation-induced ER
stress with FASN inhibitors could potentially improve the
outcome of cancer treatment.275

To prevent protein misfolding and degradation, cells upre-
gulate protein chaperone members of the heat shock protein
(HSP) family. HSPs form interactions with key proteins in the
UPR pathway. HSP90 inhibitors, such as 17-allylamino-17-
demethoxygeldanamycin (17AAG), act as UPR activators and
can activate all 3 major UPR arms (Fig 5B). All HSP90 inhibi-
tors tested repress cell proliferation and increase the expression
of the chaperones HSP90B1 and HSPA5. In 17AAG-treated
myeloma cells, exposure to HSP90 inhibitors changed the LC3
expression levels consistent with autophagosome formation.
HSP90 inhibitors may be interesting targets for the treatment
of myeloma, breast cancer, and CSC.194 Analogous to the ER
responses initiated by defective protein folding, a mitochon-
drial UPR may play a role in HSP90- and proteasome inhibi-
tor-mediated apoptotic pathways. Application of HSP
inhibitors blocks chaperone function and increases

mitochondrial protein expression. This is associated with
increased cytochrome oxidase activity, leading to mitochon-
drial dysfunction.

ER stress inducers, such as thapsigargin or bortezomib,
exhibit significantly higher cytotoxicity along with enhanced
UPR activation when used under hypoxic conditions. Despite
being generally more resistant to genotoxic agents, these drugs
may induce hypersensitivity to proteasome inhibitors via
increased UPR signals in hypoxic tumor cells.276

N-3 poly-unsaturated fatty acids, such as docosahexaenoic
acid (DHA), induce apoptosis by altering the expression and
localization of HSPA5 in colon cancer cell lines (i.e., HT-29,
HCT116 and SW480). Transfection of SW480 cells with
HSPA5-GFP induced increased cell growth and inhibited the
DHA induced apoptosis.277 As shown in Figure 11, DHA indu-
ces key mediators of ER stress and the UPR and it may also
coordinate many downstream pathways, including the regula-
tors of cholesterol metabolism, calcium homeostasis, ubiquiti-
nation, and proteasomal degradation. DHA may cause
cholesterol depletion in the ER due to reduced de novo choles-
terol synthesis and inhibition of cholesterol transport to the ER
through redistribution of cholesterol from the ER to DHA-cho-
lesteryl ester-enriched lipid droplets.278 Accompanied by
increased cholesterol esterification, this is an important factor
for the initiation of calcium mobilization. Subsequent ER stress
may lead to growth inhibition and cell death. Therefore, com-
pounds that decrease cellular cholesterol stores activate a net-
work of stress responses leading to cell death.278

Synthetic 3-thia fatty acid, tetradecylthioacetic acid, can
inhibit proliferation in SW620 cells. Like DHA, tetradecylthio-
acetic acid induces growth inhibition, which is mediated via ER
stress and the UPR and involves EIF2A phosphorylation and
downstream regulation of ATF4.279 Riproximin (RPX) is a
component of a plant extract and cytotoxic to breast and colo-
rectal cancer cells by targeting type II ribosome inactivating
proteins with high selectivity in certain tumor cell lines. This
increases the expression of the UPR genes ATF6 and ERN1. A
higher concentration of RPX induces the UPR pathway via the
EIF2AK3 branch, which results in numerous complex effects,

Figure 11. Endoplasmic reticulum (ER) stress induction by docosahexaenoic acid (DHA). DHA induces ER stress in colorectal cells. Diagram showing transcripts affected by
DHA treatment in SW620 colon cancer cells by gene expression analysis in the main pathways of ER stress signaling. Three transmembrane proteins mediate the unfolded
protein response (UPR) across the ER membrane after dissociation from HSPA5-ATF6, EIF2AK3 and ERN1 (adapted from ref. 278).
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such as translational arrest, growth inhibition, and apoptosis by
enhanced EIF2A phosphorylation that includes elevated
expression of transcription factors such as ATF3 and
DDIT3.280 The antioxidant 2-(3, 4-dihydroxyphenyl) ethanol
(DPE) derived from olive oil induces growth arrest and apopto-
sis in HT-29 cells. Like DHA, DPE acts via ER stress induction
and leads to the activation of 2 routes of the UPR, the ERN1-
XBP1-HSPA5 and EIF2AK3-EIF2A pathway, resulting in
enhanced expression of the pro-apoptotic factor DDIT3.281

Treatment of colon cancer cells with the RRM (ribonucleo-
tide reductase) inhibitor Triapine (3-AP; 3-aminopyridine-2-
carboxaldehyde thiosemicarbazone) activated all 3 ER stress
pathways (EIF2AK3, ERN1, ATF6). In particular, 3-AP-Me led
to 16-fold upregulation of an mRNA variant of XBP1. 3-AP
and 3-AP-Me activated the cellular stress kinases, MAPK/JNK
and MAPK p38 with subsequent UPR activation and apoptosis.
These data suggest that 3-AP and 3-AP-Me could induce apo-
ptosis via ER stress in colon cancer cells.282

The nonsteroid anti-inflammatory drug tolfenamic acid
(TFA) suppresses cancer cell growth and tumorigenesis in vari-
ous cancer models. TFA markedly reduced the number of pol-
yps and tumor load in an experimental rodent model of CRC.
TFA promotes ER stress and UPR activation, which leads to
CCND1 (cyclin D1) translation inhibition. The EIF2AK3-
EIF2A-ATF4 autophagy branch plays a role in TFA-induced
apoptosis in CRC cells since the silencing of ATF4 attenuated
TFA-induced apoptosis. This implicates ER stress being
involved in TFA-induced inhibition of CRC cell growth in
mice.283

The EIF2AK3-EIF2A-ATF4 pathway is critical for the adap-
tation to hypoxic stress in tumor cells. HT29 cells expressing
dominant negative EIF2AK3 are more sensitive to hypoxic con-
ditions and die by apoptosis. Autophagy acts in a prosurvival
manner by removing aggregated proteins accumulating in the
cytosol, thereby preventing manifestation of the UPR. The
accumulation of polyglutamine proteins causes the activation
of autophagy by a EIF2AK3-EIF2A-ATF4 mediated

upregulation of ATG12 after ER stress. Although this may
qualify the EIF2AK3 pathway as a bona fide target to impede
the survival of tumor cells under hypoxia, EIF2AK3 targeting
does not always produce desirable effects. For example, activa-
tion of EIF2AK3 and EIF2A signaling in highly malignant
squamous THEP3 or SW620 CRC cells induces both survival
and suppression of tumor growth both in vitro and in vivo.
Moreover, despite its prosurvival properties, EIF2AK3 may
also suppress advanced tumor growth. This dual function of
EIF2AK3 should be considered when developing EIF2AK3-tar-
geted anticancer strategies, as EIF2AK3 inhibition might stimu-
late the proliferation of quiescent state tumor cells.142 We have
summarized agents targeting ER stress and the UPR pathway
in vivo and in vitro in CRC in Figure 12.

Cancer therapy using lysosomal targeting

There is profound interest in using demethylating agents,
such as 5-aza-dC or 5-azacytidine, in the treatment of sev-
eral tumors, including CRC and other malignancies harbor-
ing KRAS mutations. 5-aza-dC also serves as a
chemosensitizer via interconnection between BNIP3 protein
and hypoxia. BNIP3 expression is initially silenced via
methylation but becomes activated in a KRAS-dependent
manner in colon cancer cells. Reactivated BNIP3 contrib-
utes to 5-FU resistance.284 Furthermore, mutants of KRAS
act via an inflammatory pathway, involving the kinase IKK,
which activates NFKB. In contrast to mutant KRAS, the
BRAF (V600E) mutant triggered the phosphorylation of a
proteolytic fragment of CHUK/IKKa (CHUK p45) in CRC
cells, which is necessary for transformation of NIH-3T3
cells and BRAF-dependent transcription. CHUK p45 is fur-
ther phosphorylated by MAP3K7/TAK1, which is associated
with the endosomal compartment. Bafilomycin A1 or chlo-
roquine-induced inhibition of the endosomal vacuolar-type
HC-translocating ATPase (V-ATPase), blocked CHUK p45
phosphorylation and induced apoptosis in BRAF-mutant

Figure 12. ER stress and UPR targeting strategies in in vitro and in vivo models for CRC therapy. All chemical compounds, drugs, and inhibitors have been introduced in
the section “Therapeutic targeting of ER stress and the UPR.”
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CRC cells independent of autophagy.16 CRC cells harboring
mutant KRAS, but not mutant BRAF, show resistance to
chemotherapy and EGFR-targeted therapy. However, these
CRC cells are sensitive to the treatment with recombinant
LGALS9/Galectin-9 (rLGALS9), a lysosomal inhibitor.
Treatment with rLGALS9 leads to elevated autophagic flux,
excessive lysosomal swelling and death in KRAS mutant
CRC cells.285

In addition to lysosomal membrane permeabilization, ace-
tate, a short-chain fatty acid secreted by Propionibacteria in the
human intestine, induces mitochondrial apoptotic death in
CRC cells. Lysosomal membrane permeabilization results in
the release of the anti-apoptotic protease CTSD (cathepsin D).
Moreover, pepstatin A (CTSD inhibitor) can increase acetate-
induced apoptosis. Hence, CTSD inhibitors could serve as
novel strategy for the prevention and/or treatment of CRC by
enhancing acetate-mediated cancer cell death.286 We have sum-
marized agents targeting the lysosomal pathway in vivo and in
vitro in CRC in Figure 13.

Anticancer potential of MTOR inhibitors

Inhibitors of TORC1 (rapamycin and rapalogs) have been
effective in IBD and in many CRC models. Second generation
MTOR inhibitors are more effective, particularly when com-
bined with proteasome inhibitors or histone deacetylase inhibi-
tors (HDACi).287 Studies also showed an inverse association
between TYMP (thymidine phosphorylase), deoxyribose, and
rapamycin. TYMP has an important role in the MTOR-
RPS6KB/p70S6K pathway and activation of RPS6KB and sub-
sequent inhibition of autophagy was observed in the human
Colo320 cells and transfected variant Colo320 TYMP1/TP1C/-

cells when treated with deoxyribose and rapamycin. Thus,
deoxyribose protects from rapamycin-induced cytotoxicity in
CRC cells.130 Conversely, the MTOR inhibitor Torin-1 nega-
tively affected the growth, motility, invasion, and survival of
CSCs in vitro, and suppressed tumor growth in vivo. Thus,
Torin-1 may serve as a potential lead compound for the treat-
ment of metastatic CRC therapy.288

Figure 13. Lysosomal targeting strategies in in vitro and in vivo models for CRC therapy. All chemical compounds, drugs, and inhibitors have been introduced in the sec-
tion “Cancer therapy using lysosomal targeting.”

Figure 14. MTOR targeting strategies in in vitro and in vivo models for CRC therapy. All chemical compounds, drugs, and inhibitors have been introduced in the section
“Anticancer potential of MTOR inhibitors.”
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The second-generation MTOR inhibitor AZD-2014 blocks
MTORC1 and MTORC2 and induces autophagic death in CRC
cells.289 AZD-2014 can inhibit the growth of tumors in SCID
mice bearing HT-29 xenografts.289 Oral AZD-2014 administra-
tion inhibits MTORC1/2 activation and HT-29 cell growth,
while inducing autophagy in vivo by upregulation of LC3B-II
and BECN1.289 In apoptosis-resistant CRC cells, autophagic
cell death is known as a major contributor of growth inhibi-
tion.289 Aspirin also induces autophagic cell death in CRC cells
through inhibition of MTOR signaling.226,289 Similar to AZD-
2014 and aspirin, bufalin induced autophagic cell death in HT-
29 and Caco-2 colon cells and this involves both ROS and the
MAPK/JNK pathway. MAPK/JNK activation is required for
the upregulation of ATG5 and BECN1, subsequent ROS gener-
ation, and autophagy-mediated cell death.203 We have summa-
rized agents targeting the MTOR pathway in CRC in vivo and
in vitro in Figure 14.

Therapeutic targeting of epigenetic regulators

Recent findings show that the anticancer effects of HDACi
compound LBH589 are augmented by the activity of the tumor
suppressor DAPK (death associated protein kinase). In auto-
phagy-deficient cells, DAPK is necessary for HDACi-induced
apoptosis. In in vitro and in vivo CRC studies, LBH589 upregu-
lated and activated DAPK, inhibited cell proliferation, and
reduced cell survival.290 LBH589 induced an accumulation of
LC3-II, promoted acidic vesicular organelle formation, and
enhanced the degradation of SQSTM1, thus, causing DAPK-
dependent autophagy. Conversely, autophagy inhibition sensi-
tized tumor cells to LBH589-induced apoptosis, which involves
DAPK. Hence, upon autophagy inhibition, DAPK acts as a
switch between autophagy and apoptosis.290 We have summa-
rized agents targeting the epigenetic pathway in CRC in vivo
and in vitro in Figure 15.

Other pharmacological autophagy inducers

Other drugs contributing to autophagy induction include the chi-
meric anti-EGFR antibody, cetuximab, which exerts its antican-
cer effect, at least in part, via autophagy-induced cell death. The
rapamycin derivative everolimus that has recently been proposed
for the treatment of neuroendocrine and colorectal tumors may
function as autophagy inducer. Blockade of VEGF can inhibit
vascularization of tumor cells and subsequent tumor growth. Co-
administration of anti-angiogenic therapy (i.e., bevazucimab or
avastin) with irinotecan may produce a favorable treatment
response and prolong the progression-free survival.291 A combi-
nation of the VEGFR tyrosine kinase inhibitor tivozanib and

everolimus resulted in stabilization of the disease in 50% of all
patients with metastatic colon cancer.292

Due to a broad overlap of apoptosis and autophagy signaling
networks, BH3-mimetics induce both apoptosis and autophagy.
For instance, in CRC cells, ABT-737 along with the PTGS2
inhibitor celecoxib synergistically induce cell death by modulat-
ing autophagy and apoptosis.292 Cellular senescence acts as a
physiological barrier to tumor development and many studies
have proposed its exploitation as a potential therapeutic strat-
egy in cancer. In HCT116 cells, addition of melatonin might
inhibit overgrowth through regulation of cell death and senes-
cence in a time-dependent manner. Within 18 h of melatonin
treatment, HCT116 cells upregulate both pro-apoptotic BAX
and anti-apoptotic BCL2L1/BCL¡XL, thus, activating both the
autophagic and apoptotic machinery.293 Pathways affecting cell
death in senescent cells include: (i) methylation of HIST2H2/
histone H2 lysine9 by the enzyme SUV39H1, (ii) telomerase-
based therapies involve the use of gene promoters of the various
telomerases for gene-therapy “suicide” strategies, and telome-
rase-derived peptides, proteins, or RNA as vaccines for immu-
notherapy, (iii) telomerase inhibitor, GRN163L, a lipidated 13-
mer oligonucleotide complementary to the RNA template
region of human telomerase RNA.294 We have summarized
this section in Figure 16.

TP53 status-dependent therapeutic strategies

Zebularine (ZEB), a cytidine deaminase inhibitor, inhibits CRC
tumorigenesis via TP53-dependent ER stress. ZEB is very stable
and preferentially targets cancer cells in human and mouse
models. Microarray analysis revealed that ZEB causes the upre-
gulation of ER stress-related genes as well as UPR genes and
stabilizes TP53 through RPS7 (ribosomal protein S7-MDM2.
ZEB also causes DNA damage and induces TP53-dependent
apoptosis and autophagy. Colonospheres enriched in cancer
stem cells derived from HCT116 ‘side populations’ expressed
higher levels of HSPA5 and SQSTM1. Treatment with ZEB
induced TP53 stabilization, EIF2A phosphorylation, and
blocked SQSTM1 expression. Hence, ZEB downregulates pro-
survival markers of ER stress and the UPR and these result in
autophagy induction in tumor tissues of CRC patients, mice
with azoxymethane- or dextran sodium sulfate-induced CRC,
and HCT116-derived colonospheres.284,295 ZEB-mediated
modulation of epigenetic signals converts ER stress-mediated
prosurvival into a pro-apoptotic response.

Figure 15. Therapeutic targeting of epigenetic regulators in in vitro and in vivo
models for CRC therapy. All chemical compounds, drugs, and inhibitors have been
introduced in the section “Therapeutic targeting of epigenetic regulators.”

Figure 16. Miscellaneous drugs targeting autophagy in in vitro and in vivo models
for CRC therapy. All chemical compounds, drugs, and inhibitors have been intro-
duced in the section “Other pharmacological autophagy inducers.”
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TP53 has been linked to regulation of autophagy by affect-
ing nutrient availability. The loss of TP53 drives LC3 overpro-
duction and forces cells to maintain high autophagy rates. A
study involving HCT116 cells showed that TP53 promotes
selective downregulation of LC3 mRNA and protein under
conditions of prolonged nutrient deprivation. Initially, auto-
phagy occurs to protect the cells. However, after complete
nutrient depletion, this process becomes stalled, causing the
accumulation of aberrant metabolic intermediates which even-
tually leads to apoptotic cell death.296 TP53 dysfunction com-
monly occurs in human cancers and contributes to disease
progression and chemotherapy resistance. Using HCT116
(TP53¡/¡) and HT-29 (TP53WT) colon cancer cells, it was
shown that 5-FU treatment causes aberrant autophagosome
accumulation and augmented autophagy in HCT116 cells.
This counteracted 5-FU toxicity but 5-FU resistance can be
overcome by specific inhibition of autophagy by 3-MA, chlo-
roquine, or siRNA-targeted knockdown of ATG5 and BECN1.
MAPK/JNK activation and BCL2 phosphorylation are key
events in 5-FU-induced autophagy. MAPK/JNK inhibition by
siRNA or SP600125 suppressed autophagy by blocking the
phosphorylation of JUN; it also blocked phosphorylation of
BCL2, leading to increased 5-FU-induced apoptosis. Thus, tar-
geting key proteins within the autophagy pathway in CRC
patients harboring TP53-mutation may be a promising strat-
egy to improve 5-FU efficacy.232

Recent studies have demonstrated that a combination of
nutlin (an MMD2 antagonist and inducer of E2F1 transcrip-
tion) with conventional antitumor agents or irradiation may
afford therapeutic benefit in cancers harboring mutant TP53. A
large proportion of human cancers have defective or hyper-
ubiquitinated TP53 and are partially resistant to nutlin due to
MDM2 overexpression. However, even in cancer cells overex-
pressing MDM2, nutlin and CDK inhibitors (roscovitine and
5,6-dichloro-1-ribofuranosylbenzimidazole) still exert anti-pro-
liferative activity by inhibition of TP53-MDM2 interaction.297

This has been observed in a variety of cancers, including mela-
noma, colon carcinoma, breast adenocarcinoma, and hepato-
cellular-carcinoma.297 Another approach will be the delivery of

adenoviral vectors containing wild-type TP53 directly to
tumors.294

CRC with mutated TP53 is resistant to 5-FU. Ursolic acid
(UA), a triterpenoid in fruits and herbs, has anticarcinogenic
potential through inhibitory effects on the PI3K pathway in
HCT15, an MSI mutant TP53 CRC cell line. UA also induces
caspase-independent apoptosis in HCT15 cells, enhances 5-FU
toxicity related to MAPK/JNK activation, promotes the induc-
tion of BECN1 expression, and enhances TP53 phosphoryla-
tion. UA induces autophagy in a MAPK/JNK-dependent
manner. Experiments in xenografted nude mice showed that
UA simultaneously decreased tumor growth while increasing
expression of autophagy markers SQSTM1 and MAPK/JNK.298

Saffron is a natural compound and toxic toward a TP53-non-
mutated CRC. In TP53¡/¡ tumors, saffron induces a prosur-
vival autophagic response.127 Interestingly, curcumin
(diferuloylmethane), the yellow pigment in Indian saffron, can
sensitize tumors to different chemotherapeutic agents including
doxorubicin, 5-FU, paclitaxel, vincristine, melphalan, butyrate,
cisplatin, celecoxib, vinorelbine, gemcitabine, oxaliplatin, eto-
poside, sulfinosine, thalidomide, and bortezomib.299 Overall, 5-
FU may induce prosurvival autophagy that partly reverses its
apoptosis-inducing effect. This may explain why the inhibition
of autophagy by 3-MA or ATG7 siRNA significantly augments
the induction of apoptosis by 5-FU.300 We have summarized
agents targeting TP53 in CRC in vivo and in vitro in Figure 17.

Proteasome inhibitor-based antitumor strategies

Epoxomicin, one of the earliest documented proteasome inhibi-
tors, also activates the transcription of both BBC3/PUMA (a
TP53 upregulated modulator of apoptosis) and BCL2L11/BIM
in human colon cancer cells. Upregulation of BBC3 and
BCL2L11 are typical features of ER stress-induced apoptosis.
The combination of bortezomib and the death receptor ligand
TNFS10, provoked a synergistic apoptotic response in prostate
and colon cancer cell lines. In tumor-bearing mice, the mecha-
nistic synergism between bortezomib and TNF involves CASP3
and CASP12 proteolytic activation, TP53 accumulation,

Figure 17. TP53 status of CRC and the respective targeting strategies in in vitro and in vivo models for CRC therapy. All chemical compounds, drugs, and inhibitors have
been introduced in the section “TP53 status-dependent therapeutic strategies.”
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increased MAPK9/SAPK-MAPK/JNK phosphorylation, and
upregulation of HSPA5, and PDI. These events collectively con-
tribute to the suppression of tumor growth.301 We have sche-
matically depicted proteasome inhibitors affecting CRC in vivo
and in vitro in Figure 18.

Targeting CRC via combinatorial therapy strategies
focusing on autophagy and the UPR/ER stress pathway

The inhibition of autophagy is an attractive new therapeutic
target in colon cancer. Targeting autophagy leads to increased
cell death in HCT116 cancer cells.227,273 Inhibition of auto-
phagy in combination with modern anticancer therapies are
being tested in colon cancer.50 A list of autophagy inhibitors in
combination with chemotherapeutic agents for the treatment
of CRC is shown in Table 6. Autophagy inhibition is an effec-
tive way to promote the anticancer activity of agents such as
sulforaphane (SUL) and fluorouracil (5-FU).300,302 Trifluoro-
thymidine (TFT) is a more potent inducer of cell death than 5-
FU because it induces higher levels of cell death without auto-
phagic survival responses in colon cancer. Thus, TFT is an
attractive candidate for new treatment strategy in CRC.303

Many studies support the combinatorial use of chloroquine as
a novel therapeutic agent to improve the efficacy of 5-FU to
inhibit autophagy-dependent resistance to chemotherapy. HT-
29 cells activate autophagy as a defense mechanism against 5-
FU. Hence, chloroquine-induced inhibition of autophagy may
potentiate the anticancer effect of 5-FU.300,304

Autophagy inhibition by chloroquine, which prevents the
fusion of autophagosomes and lysosomes sensitizes HT-29
CRC cells to chemotherapy and irradiation. Presurgical treat-
ment with hydroxychloroquine improves the treatment

response to 5-FU and irradiation in patients with advanced
CRC.305 Resistance to oxaliplatin has been shown in Caco-2
cells. Agents such as 3-MA, bafilomycin A1, or RNAi knock-
down of essential autophagy genes, such as ATG5 or BECN1,
enhanced cell death and ROS production in Caco-2 treated
with oxaliplatin. Hence, increasing ROS production via inhibit-
ing autophagy may be a therapeutic strategy for the sensitiza-
tion of cells to oxaliplatin in the management of CRC.300,306

Furthermore, bufalin enhances colon cancer sensitivity through
ROS-mediated autophagy.307 Common therapeutic agents may
promote autophagy in cancer cells, while disruption of auto-
phagy alone does not necessarily enhance cell death. Blocking
ROS production by scavengers such as NAC or Tiron decreased
autophagy in tumor cells. However, blocking ER stress by RNAi
targeting NUPR1/COM1/p8 (nuclear protein 1, transcriptional
regulator) and DDIT3 decreased autophagy and ROS produc-
tion. Hence, ER stress is upstream of autophagy and ROS gen-
eration. A combination therapy that causes a subsequent
increase in ROS production is more efficient.304

Other treatments exploit the antineoplastic activation of
apoptosis and autophagy using iron core-gold shell nanopar-
ticles,308 and anti-VEGF therapy.291,309,310 When used in com-
bination with drugs like cisplatin, doxorubicin, docetaxel, or 5-
FU, Solanum nigrum leaves, a common component in tradi-
tional Chinese medicine for the treatment of cancer; treatment
efficacy in colorectal DLD-1 and HT-29 cells improves by
inducing autophagy and enhancing cytotoxicity. Since DLD-1
and HT-29 cell lines have TP53 mutations and are resistant to
the TP53-mediated apoptosis, cell death might be induced in a
CASP3-independent manner with the activation of autophagy.
The inclusion of Solanum nigrum leaves in chemotherapeutic
therapies has been suggested to improve the efficacy of CRC
treatment.311 Hence, rather than autophagy inhibition, activa-
tion of the autophagy pathway that leads to cell death is able to
improve CRC treatment. In HCT116 colon cells, combined use
of oxaliplatin and bortezomib resulted in increased caspase
activation and subsequent induction of apoptosis. This treat-
ment modulated the synergistic effect through the mitochon-
dria-dependent apoptotic pathway by promoting the MAPK/
JNK-BCL2L1-BAX pathway. BCL2L1 affects autophagy
through alteration of its interaction with BECN1. BECN1 dis-
sociates from BCL2L1 and initiates autophagy during com-
bined oxaliplatin- bortezomib treatment, which was shown to
significantly inhibit tumor growth in CRC xenografts.312 A bet-
ter understanding of the crosstalk between apoptosis and auto-
phagy may lead to new and improved treatment options for
CRC.312 Furthermore, tumor recurrence was significantly

Table 6. Autophagy inhibition during cancer chemotherapy.

Cancer type Primary treatment Target Method(s) of autophagy inhibition

Colon Vorinostat Histone deacetylases Chloroquine, RNAi (ATG7)
Radiation DNA damage RNAi (ATG3, ATG4B, ATG5)

Breast Trastuzumab ERBB2/HER2/NEU-antigen 3-MA, Baf�, RNAi (LC3)
Camptothecin TOP1 3-MA, Baf, RNAi (BECN1, ATG7)

Multiple myeloma 8-Aminoadenosine DNA synthesis Chloroquine
Prostate ADI-PEG20 Arginine in blood Chloroquine, 3-MA, RNAi (BECN1)

Abbreviations: Baf, bafilomycin A1; 3-MA, 3-methyladenine; LC3, microtubule associated protein 1 light chain 3; RNAi, RNA interference (ATG target is in parentheses).
Adapted from Chen & Debnath, FEBS Lett, 2010.50

Figure 18. Proteasome activity modulators in in vitro and in vivo models for CRC
therapy. All chemical compounds, drugs, and inhibitors have been introduced in
the section “Proteasome inhibitor-based antitumor strategies.”
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delayed with chloroquine cotreatment, and chloroquine
enhanced TP53-mediated apoptosis via inhibition of auto-
phagy. Chloroquine and its derivatives have been used in clini-
cal trials to evaluate its use as a sensitizing agent for tumor,
which would otherwise be unresponsive to standard
chemotherapy.50

The MTOR inhibitor temsirolimus and chloroquine, with an
autophagy-inhibitor function, exhibit a potent cooperative anti-
tumor effect against CRC cells. Temsirolimus was effective in
inhibiting tumor growth in CaR-1 and HT-29 cells, possibly
through the induction of G1 cell cycle arrest and a reduction in
HIF1A and VEGF levels. Chloroquine significantly potentiated
this antitumor activity. The combined therapy with temsiroli-
mus and chloroquine enhanced the level of apoptosis and
increased the BAX:BCL2 ratio.313 Temsirolimus and chloro-
quine are already in clinical use as anticancer and antimalarial
drugs, respectively, and represent a new option in the treatment
of CRC.

Photodynamic therapy (PDT) combined with bortezomib
could be a potential therapeutic strategy in CRC. Bortezo-
mib and other proteasome inhibitors effectively sensitize
cells to other therapeutics and enhance their cytotoxicity.
PDT can lead to the accumulation of carbonylated proteins,
normally degraded by proteasomes in the ER. This leads to
ER stress due to oxidative damage of cellular macromole-
cules, resulting in cytotoxicity toward tumor cells.314 It has
been recently reported that Protoporphyrin IX-mediated
PDT induced autophagy in colorectal CSC. The inhibition
of PDT-induced autophagy by genetic and pharmacological
means induced apoptosis in colorectal CSC, decreased their
clonogenic potential and tumorigenicity in vitro and in
vivo, respectively.315 These findings suggest that targeting
autophagy increases the PDT sensitivity of CSC, and thus
can aid in designing new therapeutic approaches for target-
ing this population of cancerous cells that show high resis-
tance to current therapies.

UPR induction can cause tumor cell sensitization to cis-
platin-induced death. The mechanism of action of cisplatin is
thought to involve DNA binding and interference with DNA-
repair processes. In addition, a correlation between the UPR
and sensitization to other DNA-crosslinking agents, such as
carboplatin, melphalan, and BCNU, has been observed.269 It
seems that manipulation of other signaling pathways rather
than autophagy such as MTOR or using proteasome inhibitors,
can increase cytotoxicity in tumor cells through inducing apo-
ptosis or ER stress.

Conclusions and future direction

When searching for new CRC therapeutic strategies aimed
at manipulating autophagy, particular attention should be
paid to the specific type, stage, and metabolic characteristics
of CRC. During the course of CRC, autophagy could either
promote tumor survival or cause cancer cell death, depend-
ing on the tumor type, CRC stage and the metabolic con-
text. In human CRC cells, autophagy is activated in
response to high-energy demands in the initial stage of cell
transformation or as an adaptive tumor cell response at
later stages. Combinatorial therapeutic approaches have

great potential in the treatment of colorectal tumors. Hence
a better understanding of the molecular mechanisms of
crosstalk between apoptosis and autophagy will be the key
in identifying novel applications of combinatorial treatment
to CRC. Beside important diet modifications, chemopreven-
tive measures, such as, for example, administration of low-
dose aspirin, especially in combination with metformin,
and/or intake of curcumin and statins lowers cancer inci-
dence.230,316 It is unlikely that any type of cancer, including
CRC could easily be defeated by applying a singular
approach, therefore combined effort, using the plethora of
available interventions, is the most likely path to successful
CRC-prevention and treatment. Novel experimental thera-
pies that utilize natural and modified biologics inspired by
derivates from the animal kingdom, and from plants and
viruses, are a rich source of potential anticancer therapeu-
tics.317-319

Abbreviations

3-AP-Me N4,N4-dimethyl-triapine
5-Aza-Cd 5-aza-20-deoxycytidine
3-MA 3-methyladenine
5-FU 5-fluorouracil
6TG 6-thioguanine
AGER/RAGE advanced glycosylation end product

specific receptor
AICAR 5-aminoimidazole-4-carboxyamide

ribonucleoside
AKR1B1 aldo-keto reductase family 1 member

B1
AMBRA1 autophagy and Beclin 1 regulator 1
AMPK 50-adenosine monophosphate-activated

protein kinase
AP-1 AP-1 transcription factor
AKR aldo-keto reductase
ATF6 activating transcription factor 6
BBC3/PUMA BCL2 binding component 3
BCL2, BCL2 apoptosis regulator
BCL2L1 BCL2 like 1
BECN1 Beclin 1
BFA brefeldin A
BNIP3 BCL2 interacting protein 3
CQ chloroquine
CRC colorectal cancer
CSC cancer stem cell
DC dendritic cell
DDIT3/ CHOP DNA damage inducible transcript 3
DHA docosahexaenoic acid
DPE 2–3,4-dihydroxyphenylethanol
EIF2AK3/PERK eukaryotic translation initiation factor

2 a kinase 3
EMT epithelial-to-mesenchymal transition
ERAD ER-associated degradation
ERN1/IRE1a endoplasmic reticulum to nucleus sig-

naling 1
FASN fatty acid synthase
GDF15/MIC1 growth/differentiation factor 15
HDACi histone deacetylase inhibitor

804 P. MOKARRAM ET AL.



HMGB1 high mobility group box 1
HPGD/15PGDH hydroxyprostaglandin dehydrogenase

15-(NAD)
MLH1 mutL homolog 1
HPD high-protein diet
HSP heat shock protein
HSPA5 heat shock protein family A (Hsp70)

member 5
IBD inflammatory bowel disease
IDO1 indoleamine 2,3-dioxygenase 1
MAP1LC3/LC3 microtubule-associated protein 1 light

chain 3
MetS metabolic syndrome
MMR mismatch repair protein
MSI microsatellite instability
MTOR mechanistic target of rapamycin
NFKB/NF&B nuclear factor kappa B
NOS2/iNOS nitric oxide synthase 2
OS overall survival
OR odds ratios
PCD programmed cell death
PCDH17 protocadherin 17
PDI protein disulfide isomerase
PDT photodynamic therapy
PE phosphatidylethanolamine
PG prostaglandin
PGE2 prostaglandin E2
PLA2G10 phospholipase A2 group X
PLAUR/uPAR plasminogen activator, urokinase

receptor
PPP1R15A/GADD34 protein phosphatase 1 regulatory sub-

unit 15A
PTGER3 prostaglandin E receptor 3
PTGER4/EP4 prostaglandin E receptor 4
PTGFR prostaglandin F receptor
PTGS2/COX2 prostaglandin-endoperoxide synthase 2
RIP ribosome-inactivating protein
ROS reactive oxygen species
SAT subcutaneous adipose tissue
SEL1L SEL1L ERAD E3 ligase adaptor subunit
SH3GLB1/BIF-1 SH3 domain containing GRB2 like,

endophilin B1
SIRT1 sirtuin 1
SNP single nucleotide polymorphism
STAT3 signal transducer and activator of tran-

scription 3
STK11/LKB1 serine/threonine kinase 11
SUL sulforaphane
TAA tumor-associated antigen
TFA tolfenamic acid
TNF/TNFa tumor necrosis factor
TNFSF10/TRAIL tumor necrosis factor superfamily

member 10
TP53 tumor protein p53
Treg regulatory T cells
UPR unfolded protein response
UVRAG UV radiation resistance associated
VAT visceral adipose tissue
VEGF vascular endothelial growth factor

VMP1 vacuole membrane protein 1
XBP1 X-box binding protein 1.
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