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Abstract

Introduction

The ability to predict spontaneous preterm birth (sPTB) prior to labour onset is a challenge,

and it is currently unclear which biomarker(s), may be potentially predictive of sPTB, and

whether their predictive power has any utility. A systematic review was conducted to identify

maternal blood biomarkers of sPTB.

Methods

This study was conducted according to PRISMA protocol for systematic reviews. Four data-

bases (MEDLINE, EMBASE, CINAHL, Scopus) were searched up to September 2021

using search terms: “preterm labor”, “biomarker” and “blood OR serum OR plasma”. Studies

assessing blood biomarkers prior to labour onset against the outcome sPTB were eligible

for inclusion. Risk of bias was assessed based on the Newcastle Ottawa scale. Increased

odds of sPTB associated with maternal blood biomarkers, as reported by odds ratios (OR),

or predictive scores were synthesized. This review was not prospectively registered.

Results

Seventy-seven primary research articles met the inclusion criteria, reporting 278 unique

markers significantly associated with and/or predictive of sPTB in at least one study. The

most frequently investigated biomarkers were those measured during maternal serum

screen tests for aneuploidy, or inflammatory cytokines, though no single biomarker was

clearly predictive of sPTB based on the synthesized evidence. Immune and signaling path-

ways were enriched within the set of biomarkers and both at the level of protein and gene

expression.

Conclusion

There is currently no known predictive biomarker for sPTB. Inflammatory and immune bio-

markers show promise, but positive reporting bias limits the utility of results. The biomarkers
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identified may be more predictive in multi-marker models instead of as single predictors.

Omics-style studies provide promising avenues for the identification of novel (and multiple)

biomarkers. This will require larger studies with adequate power, with consideration of gesta-

tional age and the heterogeneity of sPTB to identify a set of biomarkers predictive of sPTB.

Introduction

Globally, over 15 million babies are born prematurely each year, a value that, according to the

Global Disease Burden study (2010–2019) has remained relatively consistent over the last

decade. While neonatal mortality rates have dropped, largely attributed to advances in neona-

tal care, preterm birth continues to be associated with lifelong morbidities and is estimated to

account for over 69 million disability-adjusted life years (DALYs) annually worldwide (Global

Disease Burden Study, 2019). An estimated 45% of all preterm births occur following sponta-

neous onset of labour with no known maternal or fetal indications [1]. The etiology of a spon-

taneous preterm birth (sPTB) remains unclear, limiting strategies for prediction and

management. Early prediction would allow for targeted clinical management, such as allowing

time for the administration of progesterone or cervical cerclage and provide valuable reassur-

ance to those identified as low risk for premature delivery.

Early prediction strategies are particularly limited for asymptomatic populations. Cervi-

covaginal levels of fetal fibronectin (fFN test) is used to predict imminent delivery (within

seven days) [2]. The fFN test is commonly ordered for those 22–35 weeks pregnant with signs

and symptoms of labour but is not generally recommended when asymptomatic for labour

[3]. The strongest predictor of sPTB currently available is a previous preterm birth, which is

associated with a 23% chance of another preterm birth [4]. While this can help guide clinical

management in a subsequent pregnancy, this cannot help those at risk for a first-time sPTB.

There is increasing evidence that biomarkers, or any biological entity or characteristic such as

proteins or metabolites, in maternal circulation during pregnancy are associated with subse-

quent onset of sPTB [5, 6]. Biomarkers within amniotic fluid have been investigated for early

prediction of sPTB [7], but amniocentesis can introduce risk of intrauterine infection and

other unwanted complications [8]. There is an ongoing need for both more accessible and reli-

able tests for early prediction of sPTB, which would identify those at-risk and who may benefit

from early intervention.

Peripheral blood is routinely collected during antenatal care and thus presents an alluring

opportunity for a relatively non-invasive tool for prediction. This has garnered extensive stud-

ies on whether a blood test can accurately assess risk of subsequent preterm birth, including

increasingly accessible high-throughput and -‘omics’ techniques, which have provided unprec-

edented amounts of data that can be used to predict health outcomes [9]. The aim of this

review was to aggregate and synthesize existing data on biomarkers for spontaneous preterm

birth, including to identify and synthesize biomarkers associated with or predictive of sponta-

neous preterm birth.

Methods

Research question

What biomarkers are predictive of, or associated with sPTB when there are no prior symptoms

of labour?
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Review method

The search strategy, study selection, and data extraction protocols undertaken in this study

were developed according to the PRISMA guidelines for systematic reviews [10]. The protocol

for this study was not prospectively registered.

Eligibility criteria

All observational studies, for example, primary case-control, cross-sectional or cohort studies

were included. Literature reviews, systematic reviews with no meta-analysis, or incomplete

publication (e.g. conference abstract) were excluded, as well as non-human studies. Eligible

studies are those which investigated the association of maternal blood biomarkers for sPTB or

developed a prediction model for sPTB using maternal blood biomarkers. Maternal samples

included whole blood, plasma, or serum. Eligible biomarkers included biochemical and molec-

ular biomarkers including, but not limited to, proteins, nucleic acids, or metabolites. Genetic

and epi-genetic variant (single nucleotide polymorphisms or other) markers were excluded. At

the time of sample collection, study participants must have no signs of labour, including but

not limited to uterine contractions and rupture of membranes. Studies investigating risk of

sPTB in multiple pregnancies, those that did not have a clear and standardized definition of

sPTB as the outcome of interest, and provider initiated preterm births, otherwise known as

medically indicated preterm births were also excluded.

Search strategy

Four databases were searched for records: MEDLINE, EMBASE, CINAHL and Scopus. Addi-

tional studies were collected by searching reference lists of records and relevant review articles

and using manual search of Google Scholar. The initial search was conducted on March 21,

2019, then repeated September 13th, 2021, to identify new publications. There was no time

restriction to the search, though time frames vary by database (earliest date range 1788 Sco-

pus– 1974 EMBASE). Only studies published in English, or which have an available English

translation were considered. The search strategy included the following terms “spontaneous

preterm birth” AND “biomarker” AND “blood”, including all relevant synonyms and alternate

terms. Search terms and syntax were adjusted accordingly for each database, including the

addition of relevant Medical Subject Headings (MeSH) where appropriate, and the searches

were kept as similar as possible. No additional filters were applied to the searches. Complete

search input for each database is described in S1 File.

Study selection

Records retrieved were exported to a citation manager (Endnote Web). Duplicates were

removed and the remaining articles were initially screened by title and abstract, those not rele-

vant to the research question were removed. Remaining full-text articles were then assessed

against the eligibility criteria. The reason for exclusion was noted for ineligible studies. Two

investigators independently assessed the articles identified using the same search terms (KKH

and EMW), and when a consensus could not be reached, a third reviewer acted as a tiebreaker

(DMS).

Quality assessment

The Newcastle-Ottawa Scale (NOS) scoring system was used to assess methodological quality

and risk of bias for all eligible studies (S2 File). Case-control studies were assessed based on 1)

adequate case definition for sPTB (in the case of multiple case groups, the paper was scored on

PLOS ONE Systematic review of maternal blood markers of preterm birth

PLOS ONE | https://doi.org/10.1371/journal.pone.0265853 April 4, 2022 3 / 22

https://doi.org/10.1371/journal.pone.0265853


only the case definition for sPTB), 2) representativeness of the cases, 3) selection of controls, 4)

definition of controls with respect to history of sPTB, 5) comparability of cases and controls, 6)

ascertainment of exposure/biomarker and 7) whether the same method of ascertainment for

biomarker measurement was used in both cases and controls. Cohort and cross-sectional stud-
ies were assessed based on 1) cohort representativeness of the pregnant community, 2) assess-

ment of outcome (in the case of multiple outcomes, the paper was scored on only the outcome

definition for sPTB) and 3) adequacy of follow up. Methodological quality was independently

rated by two reviewers, KKH and EMW. In the case of disagreement, ratings were discussed,

and a consensus reached. Studies with total NOS scores below 50% were excluded from subse-

quent data extraction and synthesis.

Data extraction

Data was extracted from eligible studies using a standardized template adapted from the

Joanna Briggs Institute (JBI) data extraction form. The following data was collected from each

study by a single reviewer (KH): objectives, participant characteristics, participant numbers,

study setting, study year range, tissue (blood, serum or plasma), method of measurement of

biomarker, timepoint of measurement, outcome of interest, country of origin, statistical test,

effect measures as reported by odds ratios (OR), predictive value as reported by area under the

receiver operator curve (AUC), biomarker levels in sPTB and term populations, results/direc-

tion, and comments pertaining to the heterogeneity of results. Missing or unclear information

was marked ‘not stated’.

Enrichment analysis of biomarkers

Top biomarkers were analyzed to identify common pathways or processes of interest. The goal

of pathway analysis is to detect relevant groups of genes or proteins that are commonly associ-

ated with a biological function or process [11]. Genes or proteins are annotated based on cur-

rent literature as they relate to a biological pathway, process, function, or localization which is

condensed within databases. Pathway analysis can identify whether these annotations are

enriched within a set of genes or proteins, in this case the set of biomarkers reported within

the eligible studies. Any biomarker reported to be significantly associated with or predictive of

sPTB in at least one study were analyzed with gProfiler for enrichment using the Gene Ontol-

ogy (GO) database for cellular component, and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway database.

Results

Summary of search results

Search of the four databases retrieved 2002 non-duplicate records for screening. Screening of

title and abstract identified 1695 records that were irrelevant to the research question and

thus not further assessed for eligibility. A remaining 307 articles were assessed for eligibility

using full-text records (Fig 1). The most common reason for record exclusion was study

type, specifically review articles or conference abstracts (n = 91). Reference lists of review

papers were reviewed, although no additional non-duplicate studies were identified. The

remaining records were excluded by failing to meet the eligibility criteria for population

(n = 23 studies measured biomarkers following the onset of labour symptoms, n = 33 did not

meet criteria for healthy singleton pregnancies aged 18–35), exposure/marker (n = 1 amni-

otic fluid biomarker, n = 32 epigenetic/genetic biomarker), and outcome (n = 48 studies did

not have sPTB as primary or secondary outcome). N = 66 and n = 76 studies identified by
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primary reviewer KKH and secondary reviewer EW, respectively, were cross-referenced by

third reviewer DMS, leaving n = 79 studies included. The search was conducted again prior

to submission to identify an additional n = 5 records, leaving a final total of n = 84 studies

included for quality assessment.

Fig 1. PRISMA flow diagram. Article identification, screening, and eligibility selection for systematic review of

maternal blood markers associated with subsequent sPTB. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0265853.g001
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Methodological quality assessment

Quality assessment scores for cohort studies ranged from 3 to 7 out of a total possible 7 points

(S2 File). Areas with the lowest scores among cohort studies were assessment of outcome and

adequacy of follow up. Scores for case-control studies ranged from 3 to 9 out of a total possible

9 points. Areas with the lowest scores among case-control studies were adequate case defini-

tions, representativeness of cases, and comparability of cases and controls. Of the 84 studies

identified as eligible, n = 7 studies did not reach 50% on the NOS score and were excluded

from subsequent data extraction, leaving a remaining n = 77 studies included in the final

review (Table 1).

Study characteristics

Data extraction was performed on the eligible n = 77 papers. Studies included 48 case-control

designs and 29 cohort studies. Study details including participant number, country of origin,

methods and results are outlined in S3 File. A total of n = 278 unique biomarkers were identi-

fied as significantly associated with or predictive of sPTB in at least one study (S4 File).

Prediction models for preterm birth

Analysis methods from the 77 studies included, in order of complexity, univariate analysis

comparing biomarker levels in sPTB pregnancies compared to term pregnancies (e.g., stu-

dent’s t-test), binary classification (e.g., receiver operating characteristic curve analysis), multi-

variate models (e.g., linear or logistic regression), and machine learning models (e.g., random

forest). Table 2 outlines the results from the 25 studies that conducted prediction of preterm

birth using maternal blood biomarkers, as described by the sensitivity, specificity, and AUC of

the classification. The AUC or area under the receiver operator curve is a performance metric

for classification models, an AUC of 1.0 represents a perfect classifier, whereas an AUC of 0.5

represents random classification and thus is not a useful model. Top performing models

included biomarkers identified through proteomic investigation, A2MG, HEMO, MBL2 [24],

and ITIH4 [31], with an AUC of 0.89.

Enrichment analysis of biomarkers

Based on gene ontology analysis for cellular component, 47 cellular component GO terms

were enriched within the dataset. Nine of the top ten enriched terms are nested within the

‘extracellular region’ GO term, indicating there is significant enrichment of biomarkers local-

ized to the extracellular space. Enrichment analysis using the HPA database found significant

enrichment of biomarkers originating from placental syncytiotrophoblast cell bodies (p-

adj = 0.006). A total 53 KEGG pathways were significantly enriched within the list of biomark-

ers. Of these, 32 pathways within the KEGG class ‘Human Diseases’ were excluded, as they

were deemed not relevant to the physiology of labour and preterm labour. The remaining 21

enriched pathways (Table 3) were classed as ‘Immune’, ‘Signal Transduction’, ‘Signaling mole-

cules and interaction’ ‘Development and regeneration’ and ‘Cell growth and death’.

Biomarkers from maternal serum screen tests

The most common biomarkers identified and analyzed were those measured during routine

first and second trimester screening for aneuploidy, including pregnancy associated plasma

protein A (PAPP-A), human chorionic gonadotropin (hCG), alpha fetoprotein (AFP), and

estriol. Detailed odds ratios (OR) for maternal serum screen biomarkers summarized in S5

File.
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Table 1. Summary and quality assessment of studies included in review.

1˚ Author No. Year Journal Study Design Quality Rating

Abdel Malek [12] 2018 J Obstet Gynaecol cohort ●●●●○○○
Akoto [13] 2020 Sci Rep cohort ●●●●○○○

Alleman [14] 2013 Am J Obstet Gynaecol case control ●●●●●●●○○
Ashrap [15] 2020 Environ Int cohort ●●●●●●○
Aung [16] 2019 Sci Rep case control ●●●●●○○○○

Bakalis [17] 2012 J Matern Fetal Neonatal Med case control ●●●●●●●○○
Bandoli [18] 2018 J Perinatol case control ●●●●●●○○○

Beta [19] 2011 Fetal Diagn Ther case control ●●●●●●●○○
Beta [20] 2011 Prenat Diagn case control ●●●●●●●○○
Beta [21] 2012 J Matern Fetal Neonatal Med case control ●●●●●●●○○

Bradford [22] 2017 Clin Mass Spectrom cohort ●●●●○○○
Bullen [23] 2013 Reprod Sci cohort ●●●●●●●

Cantonwine [24] 2016 Am J Obstet Gynaecol case control ●●●●●●●●●
Catov [25] 2014 Am J Epidemiol case control ●●●●●●○○○

Considine [26] 2019 Metabolites case control ●●●●●○○○○
Curry [27] 2007 Acta Obstet Gynaecol Scand case control ●●●●●●●○○
Curry [28] 2009 Acta Obstet Gynaecol Scand case control ●●●●●●●○○

Dhaifalah [29] 2014 J Matern Fetal Neonatal Med case control ●●●●●●○○○
El-Achi [30] 2020 Fetal Diagn Ther cohort ●●●●●●●
Esplin [31] 2011 Am J Obstet Gynaecol case control ●●●●●●○○○
Ezrin [32] 2015 Am J Perinatol case control ●●●●●●●●●

Ferguson [33] 2014 Am J Reprod Immunol case control ●●●●●●○○○
Goldenberg [34] 2000 Am J Obstet Gynaecol case control ●●●●●●●○○
Goldenberg [35] 2001 Am J Obstet Gynaecol case control ●●●●●○○○○

Gupta [36] 2015 J Obstet Gynaecol case control ●●●●●●●○○
Hackney [37] 2010 Am J Obstet Gynaecol case control ●●●●●●●○○

Heng [38] 2016 PLoS ONE case control ●●●●●●●●○
Huang [39] 2019 Cytokine case control ●●●●●○○○○
Huang [40] 2020 Biomed J cohort ●●●●●●○

Hvilsom [41] 2002 Acta Obstet Gynaecol Scand case control ●●●●●●●○○
Inan [42] 2018 J Matern Fetal Neonatal Med cohort ●●●●●○○

Jelliffe-Pawlowski [43] 2010 Prenat Diagn cohort ●●●●●●●
Jelliffe-Pawlowski [44] 2013 Am J Obstet Gynaecol case control ●●●●●●●●○
Jelliffe-Pawlowski [45] 2015 Int J Obstet Gynaecol cohort ●●●●●●●
Jelliffe-Pawlowski [46] 2018 J Perinatol case control ●●●●●●●●○

Kansu-Celik [47] 2019 J Matern Fetal Neonatal Med case control ●●●●●●●○○
Khambalia [48] 2015 Brit J Nutr cohort ●●●●●●○
Kirkegaard [49] 2010 Prenat Diagn cohort ●●●●●●○
Kirkegaard [50] 2011 Prenat Diagn cohort ●●●●●●○

Kwik [51] 2003 Aust NZ J Obstet Gynaecol cohort ●●●●○○○
Leung [52] 1999 Brit J Obstet Gynaecol cohort ●●●●●●○
Lynch [53] 2016 Am J Obstet Gynaecol case control ●●●●●○○○○

Ma [54] 2020 J Clin Lab Anal case control ●●●●●●●●○
Manuck [55] 2021 Epigenomics case control ●●●●●●●●●

McDonald [56] 2015 PLoS ONE cohort ●●●●●○○
McElrath [57] 2019 Am J Obstet Gynaecol case control ●●●●●●●●○
Mclean [58] 1999 Am J Obstet Gynaecol cohort ●●●●●●●

(Continued)
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PAPP-A. Low levels of PAPP-A were associated with sPTB (OR range 1.7–5.4) [20, 36, 44,

45, 49–51, 64, 78, 89], though results were mixed [14, 42, 66, 69, 70].

hCG. Evidence suggesting an association between maternal levels of hCG and sPTB is

inconclusive [14, 20, 44, 50], though some studies suggest that low levels of hCG were associ-

ated with increased risk of sPTB (OR range 0.8–2.0) [43, 45, 49, 78] and that high levels of

hCG independently decreased risk of sPTB [77].

AFP. High serum AFP was significantly associated with sPTB (OR range 1.9–8.3) [14,

19, 35, 43–45, 58, 90] (OR range 1.9–8.3), though one study showed no significant difference

[81].

Estriol. Studies on serum estriol were split, while two studies showed a significant associa-

tion between high estriol and sPTB [43, 61], others found no association [14, 44, 45].

Table 1. (Continued)

1˚ Author No. Year Journal Study Design Quality Rating

Ngo [59] 2018 Science cohort ●●●●●○○
Olsen SF [60] 2018 EBioMedicine case control ●●●●●●●○○
Olsen RN [61] 2014 J Matern Fetal Neonatal Med cohort ●●●●○○○

Parry [62] 2014 Am J Obstet Gynaecol case control ●●●●●●●●○
Paternoster [63] 2002 Int J Obstet Gynaecol cohort ●●●●○○○

Patil [64] 2014 J Obstet Gynaecol India cohort ●●●●○○○
Petersen [65] 1992 Brit J Obstet Gynaecol case control ●●●●●○○○○

Pihl [66] 2009 Prenat Diagn case control ●●●●●●●○○
Pihl [67] 2009 Prenat Diagn case control ●●●●●●●○○

Pitiphat [68] 2005 Am J Epidemiol case control ●●●●●●●●○
Poon [69] 2009 Prenat Diagn case control ●●●●●○○○○
Poon [70] 2013 Fetal Diagn Ther cohort ●●●●●○○
Ruiz [71] 2002 Biol Res Nurs cohort ●●●●●●○

Saade [72] 2016 Am J Obstet Gynaecol case control ●●●●●●●●●
Shin [73] 2016 Taiwan J Obstet Gynaecol case control ●●●●●●●○○
Sibai [74] 2005 Am J Obstet Gynaecol cohort ●●●●●○○
Smith [75] 2007 Obstet Gynaecol case control ●●●●●●○○○
Smith [76] 2006 Int J Epidemiol cohort ●●●●●○○
Soni [77] 2018 J Matern Fetal Neonatal Med case control ●●●●●●●○○

Spencer [78] 2008 Ultrasound Obstet Gynaecol cohort ●●●●○○○
Stegmann [79] 2015 Fertil Steril case control ●●●●●●●●○

Tarca [80] 2021 Cell Rep case control ●●●●●●●●○
Tripathi [81] 2014 J Pregnancy case control ●●●●●●●○○

Vogel [82] 2006 Am J Obstet Gynaecol cohort ●●●●○○○
Vogel [83] 2007 J Reprod Immunol cohort ●●●●○○○

Whitcomb [84] 2009 J Women’s Health case control ●●●●●●●○○
Winger [85] 2020 PloS ONE case control ●●●●●●○○○

Wommack [86] 2018 PLoS ONE case control ●●●●●●○○○
Zhou [87] 2020 Reprod Sci case control ●●●●●●●○○
Zhu [88] 2018 Clin Chim Acta cohort ●●●●●○○

Quality rating out of a maximum total 7 (cohort studies) or 9 (case control studies) points, as described by the quality assessment rubric (S2 File).

https://doi.org/10.1371/journal.pone.0265853.t001
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Table 2. Top prediction models for sPTB.

Paper Biomarker(s) GA Analysis Sensitivity Specificity AUC

Alleman 2013 maternal characteristics; TM1 LogR 0.18 0.97 0.70

TM1 total cholesterol;

dT total cholesterol; TM2

TM2 AFP; INHBA

Aung 2019 5-HETE; LTD4; LTC4-ME; 13-oxoODE; 5-oxoETE; 8-HETE; LTB4 23.1–28.9 wks random

forest

0.43 0.80 0.82(0.68–

0.96)

Cantonwine 2016 A2MG; HEMO; MBL2 10–12 wks LinR 0.80 0.83 0.89(0.83–

0.95)

El Achi 2020 maternal characteristics; PAPPA 11–13 wks LogR na na 0.67

Esplin 2011 ITIH4 24 and 28 wks LogR 0.87 0.81 0.89(0.82–

0.97)

Goldenberg 2000 CSF3 24 wks LogR 0.54 0.79 na

28 wks 0.37 0.95

Heng 2016 LMLN2; MIR3691; EFHD2; CST13P; ACAP2; ZNF324; SH3PXD2B; TBX21;

history of abortion and anemia

17–23 wks LogR 0.65 0.88 0.84

27–33 wks

Huang 2019 INHBA 15–20 wks ROC na na 0.57(0.64–

0.51)

Inan 2018 PROK1 11–13 wks ROC 0.77 0.52 0.69(0.59–

0.78)

Jelliffe-Pawlowski

2010

AFP; hCG; uE3 15–20 wks LogR 0.26 0.80 na

Jelliffe-Pawlowski

2013

PAPPA; AFP; INHBA 10–13 or 15–

20 wks

LogR na na na

Kansu Celik 2019 AGE 11–13 wks ROC 0.92 0.74 0.82(0.91–

0.93)

Leung 1999 CRH 15–20 wks ROC 0.73 0.78 0.79

Ma 2020 neutrophil to lymphocyte ratio; hemoglobin; platelet distribution width 20–30 wks LogR 0.89 0.41 na

Manuck 2021 B2M; RUNX3; TLR4 <28 wks ROC 0.62 0.87 0.82(0.75–

0.90)

McElrath 2019 F13A1; FBLN1; SERPING1; ITIH2; LCAT 10–12 wks ROC 0.70 0.81 0.74(0.63–

0.81)

Olsen RN 2014 uE3 15–22 wks LogR 0.05 0.98 na

Saade 2016 IGFBP4; SHBG 17–28 wks ROC 0.75 0.74 0.75

Shin 2016 IGFBP3 11–18 wks LogR 1.00 0.70 0.79(0.66–

0.89)

Smith 2006 AFP, hCG Second

trimester

logR 0.05 0.99 0.67(0.63–

0.71)

Tarca 2021 50 proteins 27–33 wks random

forest

na na 0.76(0.72–

0.80)

Vogel 2006 relaxin 12–25 wks LogR 0.45 0.19 0.64(0.48–

0.79)

Vogel 2007 TNFa; cervical sIL-6Ra; short cervix 12–25 wks LinR 0.96 0.95 na

Winger 2020 MIR181; MIR221; MIR33A; MIR6752; MIR1244; MIR148A; MIR1-1;

MIR1267; MIR223; MIR199B; MIR133B; MIR144

6–12 wks ROC 0.89 0.71 0.80(0.69–

0.88)

Zhu 2018 MIF <14 wks LogR 0.79 0.51 0.71(0.64–

0.77)

Top performing model from each paper which reported a prediction model for sPTB using maternal blood biomarkers, as measured by area under the receiver

operating curve (AUC). GA: gestational age at sample collection. LogR: logistic regression. LinR: linear regression, ROC: receiver operator curve characteristic analysis.

https://doi.org/10.1371/journal.pone.0265853.t002

PLOS ONE Systematic review of maternal blood markers of preterm birth

PLOS ONE | https://doi.org/10.1371/journal.pone.0265853 April 4, 2022 9 / 22

https://doi.org/10.1371/journal.pone.0265853.t002
https://doi.org/10.1371/journal.pone.0265853


Table 3. Enriched pathways within the set of biomarkers.

Pathway KEGG

ID

KEGG class p-adj Ratio

Total

Biomarkers

Complement and

coagulation cascades

4610 Immune 2.07E-20 24/85 A2M; C1R; C3; C4A; C5; C8A; C9; CFB; CFH; F13A1; F13B; F2; F9; KLKB1;

KNG1; MBL2; PLAUR; PLG; SERPINA1; SERPINC1; SERPINE1; SERPINF2;

SERPING1; VTN

IL-17 signaling pathway 4657 Immune 5.61E-12 18/92 CCL11; CCL2; CCL7; CSF2; CSF3; CXCL5; CXCL8; HSP90AB1; IFNG; IL13;

IL17A; IL17F; IL1B; IL4; IL5; IL6; MMP9; TNF

Intestinal immune network

for IgA production

4672 Immune 0.001749 7/45 IL10; IL2; IL4; IL5; IL6; PIGR; TGFB1

Th1 and Th2 cell

differentiation

4658 Immune 8.91E-07 13/89 IFNG; IL12A; IL13; IL2; IL4; IL4R; IL5; JAG1; NOTCH3; PPP3CA; PPP3R1;

RUNX3; TBX21

Th17 cell differentiation 4659 Immune 6.95E-07 14/104 HSP90AB1; IFNG; IL17A; IL17F; IL1B; IL2; IL4; IL4R; IL6; IL6ST; PPP3CA;

PPP3R1; TBX21; TGFB1

TNF signaling pathway 4668 Immune 2.11E-07 15/112 CCL2; CCL5; CSF1; CSF2; CXCL5; ICAM1; IFNB1; IL1B; IL6; JAG1;

MAP2K4; MMP9; TNF; TNFRSF1A; TNFRSF1B

Cytokine-cytokine receptor

interaction

4060 Signaling molecules

and interaction

4.35E-21 39/293 CCL11; CCL2; CCL4; CCL5; CCL7; CSF1; CSF2; CSF3; CXCL5; CXCL8;

CXCL9; CXCR3; FASLG; IFNB1; IFNG; IL10; IL10RA; IL12A; IL13; IL17A;

IL17F; IL18; IL1B; IL1R2; IL2; IL4; IL4R; IL5; IL6; IL6ST; INHBA; LEP; NGF;

PPBP; TGFB1; TNF; TNFRSF1A; TNFRSF1B; TNFSF10

Toll-like receptor signaling

pathway

4620 Immune 4.8E-06 13/102 CCL4; CCL5; CXCL8; CXCL9; IFNB1; IL12A; IL1B; IL6; MAP2K2; MAP2K4;

TLR2; TLR4; TNF

Hematopoietic cell lineage 4640 Immune 1.78E-05 12/95 CSF1; CSF2; CSF3; FCER2; IL1B; IL1R2; IL4; IL4R; IL5; IL6; KITLG; TNF

Fc epsilon RI signaling

pathway

4664 Immune 0.00322 8/67 CSF2; IL13; IL4; IL5; MAP2K2; MAP2K4; PDPK1; TNF

T cell receptor signaling

pathway

4660 Immune 0.00032 11/103 CSF2; IFNG; IL10; IL2; IL4; IL5; MAP2K2; PDPK1; PPP3CA; PPP3R1; TNF

JAK-STAT signaling

pathway

4630 Signal transduction 5.21E-06 16/162 CSF2; CSF3; IFNB1; IFNG; IL10; IL10RA; IL12A; IL13; IL2; IL4; IL4R; IL5;

IL6; IL6ST; LEP; PDGFB

HIF-1 signaling pathway 4066 Signal transduction 0.003475 10/109 ANGPT1; ANGPT2; CAMK2A; FLT1; IFNG; IL6; MAP2K2; SERPINE1; TF;

TLR4

Natural killer cell mediated

cytotoxicity

4650 Immune 0.009761 10/123 CSF2; FASLG; ICAM1; IFNB1; IFNG; MAP2K2; PPP3CA; PPP3R1; TNF;

TNFSF10

Osteoclast differentiation 4380 Development and

regeneration

0.011175 10/125 CSF1; IFNB1; IFNG; IL1B; NCF1; PPP3CA; PPP3R1; TGFB1; TNF;

TNFRSF1A

MAPK signaling pathway 4010 Signal transduction 4.99E-07 23/294 ANGPT1; ANGPT2; CSF1; DUSP1; FASLG; FGF2; FLT1; FLT4; HSPB1; IL1B;

KDR; KITLG; MAP2K2; MAP2K4; MAPKAPK3; NGF; PDGFB; PGF;

PPP3CA; PPP3R1; TGFB1; TNF; TNFRSF1A

PI3K-Akt signaling pathway 4151 Signal transduction 1.61E-07 26/353 ANGPT1; ANGPT2; CSF1; CSF3; FASLG; FGF2; FLT1; FLT4; FN1;

HSP90AB1; IFNB1; IL2; IL4; IL4R; IL6; KDR; KITLG; MAP2K2; NGF;

PDGFB; PDPK1; PGF; THBS1; TLR2; TLR4; VTN

Necroptosis 4217 Cell growth and death 0.018746 11/159 CAMK2A; FASLG; FTH1; HSP90AB1; IFNB1; IFNG; IL1B; TLR4; TNF;

TNFRSF1A; TNFSF10

Rap1 signaling pathway 4015 Signal transduction 0.003747 14/210 ANGPT1; ANGPT2; CDH1; CSF1; FGF2; FLT1; FLT4; KDR; KITLG;

MAP2K2; NGF; PDGFB; PGF; THBS1

Chemokine signaling

pathway

4062 Immune 0.022609 12/190 CCL11; CCL2; CCL4; CCL5; CCL7; CXCL5; CXCL8; CXCL9; CXCR3; NCF1;

PPBP; PREX1

Ras signaling pathway 4014 Signal transduction 0.0385 13/231 ANGPT1; ANGPT2; CSF1; FASLG; FGF2; FLT1; FLT4; KDR; KITLG;

MAP2K2; NGF; PDGFB; PGF

Enriched pathways within the set of biomarkers significantly associated with sPTB in at least one study. Of the total n = 278 biomarkers, n = 47 biomarkers were

excluded from enrichment analysis as they did not correspond to a gene or protein (e.g., lipid, heavy metal, or cell type) and thus not compatible with pathway analysis.

Ratio total represents the total number of biomarkers present within the dataset as a ratio of the total number of genes/proteins within the pathway. Protein biomarkers

(regular black font): Gene expression biomarkers (underlined): Biomarkers altered at both the protein and gene expression levels (bolded font): Cell free DNA (cfDNA)

biomarkers (bold italic font).

https://doi.org/10.1371/journal.pone.0265853.t003
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Endocrine markers

CRH. Elevated levels of corticotropin releasing hormone (CRH) were significantly associ-

ated with increased risk of sPTB [52, 71, 74]. Others reported elevated odds of sPTB with ele-

vated levels of CRH, though the findings were not statistically significant [35, 58] (S5 File).

Cortisol. Serum cortisol levels were not associated with gestational age at delivery [18],

nor was elevated cortisol associated with increased odds of sPTB [35].

AMH. Second trimester levels of anti-müllerian hormone (AMH) were not associated

with sPTB: however, stable or rising levels of AMH in early pregnancy were associated with

sPTB, but only in those with high levels of serum AFP [79].

Lipids and biomarkers associated with lipid pathways

Cholesterol. Total cholesterol (TC) at the first trimester, as well as change in TC from the

first to second trimesters, but not high density lipoproteins (HDL), low density lipoproteins

(LDL) or triglyceride levels, improved prediction of sPTB compared to sPTB history alone,

and performed similarly in those that did not have history of sPTB [14].

NEFAs. High maternal blood levels of non-esterified or “free” fatty acids (NEFA)

(>0.33mmol/L) was associated with 2.02 (confidence interval or CI 1.13–3.48) increased odds

of subsequent sPTB compared to low NEFA levels (<0.19mmol/L) [25].

Eicosanoids and other lipid markers. Biomarkers in the lipoxygenase, epoxygenase and

cyclooxygenase pathways were investigated as potential biomarkers of sPTB. Lipid biomarkers

alone performed similarly (AUC 0.79 CI 0.62–0.96) than a combined panel of inflammatory,

oxidative stress and lipid biomarkers (AUC 0.79 CI 0.61–0.98) in distinguishing sPTB [16]

from term births. Low levels of fatty acids eicosapentanaeoic acid (EPA) and docosahexaenoic

acid (DHA) in the first and second trimesters was associated with 10-times increased risk of

sPTB [60].

Heterogeneity of sPTB

Ethnicity-specific biomarkers. The most common country of study origin was the

United States of America, with majority non-Hispanic Caucasian or Black populations (S3

File). Corticotropin releasing hormone (CRH) was associated with sPTB in a majority ethnic

Chinese population [52] and majority non-Hispanic Caucasian population [71], but not in a

majority Black population [74]. Serum ferritin was associated with sPTB in Indian and Egyp-

tian populations [12, 81], though results are mixed for Caucasian and Black populations in

American and European countries [21, 31, 35, 63], which may suggest socio-demographic and

ethnicity specific interactions within this biomarker. There is some suggestion that cortisol is

associated with sPTB in Caucasian, but not Black populations [18, 35].

Parity. The predictive value of alpha-fetoprotein (AFP) and multi-marker models was

higher in parous populations as compared to nulliparous [14, 19, 57], indicating that these two

populations may have distinct physiology of sPTB and may require distinct approaches to pre-

diction. Other biomarkers from maternal serum screen tests, pregnancy associated plasma

protein (PAPP-A) and human chorionic gonadotropin (B-hCG) were similarly more associ-

ated with sPTB in parous populations with previous sPTB as compared to nulliparous popula-

tions [20, 77].

BMI. Inflammatory cytokines and CRP are more strongly associated with sPTB in popula-

tions with high BMI [23, 39], and that prediction using inflammatory biomarkers may be dis-

tinct in underweight and obese populations [28, 72].

Fetal sex-specific biomarkers. There is some suggestion that there are no fetal sex-spe-

cific differences in biomarker associations with sPTB [15, 58, 79]. However, one 2010 study
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found that low pregnancy associated plasma protein (PAPP-A) levels were more strongly asso-

ciated with sPTB in pregnancies carrying a female fetus as compared to male [49].

Gestational age considerations

Inflammatory biomarkers including cytokines and serum ferritin, biomarkers from maternal

serum screen tests and CRH are more strongly associated with very early sPTB (<32 weeks

gestation) as compared to moderate-late sPTB [34, 35, 45, 46, 48, 52, 76]. On the other hand,

gene expression markers, and protein markers pro-MBP and SP1 may be more associated with

overall sPTB (<37 weeks gestation) as compared to early [55, 66, 67], while estriol is more

strongly associated with moderate sPTB (32–34 weeks) [61]. A 2015 study of Tanzanian

women found distinct angiogenic biomarkers for each subtype of sPTB prematurity, indicat-

ing distinct physiologies across subtypes [91].

Of the 77 studies included in this review, only 10 reported biomarker measurements

obtained at more than one time point. Three studies on transcript markers found that change

in transcript levels was more predictive than absolute values [38, 80, 87]. On the other hand,

Parry et al. [62], showed that change in proteomic markers was not highly associated with

sPTB. Five additional studies did not investigate change in biomarker levels, but performed

statistical analysis at each time point separately [15, 26, 33, 34, 37], while Esplin et al., [31] mea-

sured markers in separate cohorts for each time point. This limits our understanding of how

biomarker levels change throughout gestation, which may be an important indicator for risk

of sPTB. Inflammatory cytokines showed no difference in association when measured at dif-

ferent timepoints in gestation, except for IL10, which was most strongly associated with sPTB

when measured after 22 weeks gestation [33, 34]. A 2010 study found that thrombin-anti-

thrombin complexes (TAT) were more strongly associated with sPTB when measured later in

gestation (28 weeks) as compared to earlier (24 weeks) [37]. On the other hand, a 2011 study

found the free B-hCG was more strongly associated with sPTB with earlier sampling, but the

same difference was not true of PAPP-A [50]. One study compared the predictive value at mul-

tiple time points and found that among a range of time points between 17–28 weeks, samples

collected at 19–21 weeks were ideal for biomarker discovery [72].

Discussion

Main findings

Analysis of the seventy-seven papers identified via this systematic review suggest that there is

no clear single biomarker or set of biomarkers in the current existing literature for the predic-

tion of sPTB. Low levels of PAPP-A and elevated levels of AFP are associated with increased

risk of sPTB; however, these results may be biased due to secondary use of data and incomplete

datasets. Consistent study design, which would facilitate systematic meta-analyses of these

studies, would be necessary to validate these results before confirming any clinical utility of

these markers. Further, although inflammation has long been associated with labour and

sPTB, studies investigating the association between inflammatory biomarkers and sPTB are

inconclusive. G-CSF was found to have the strongest and most consistent association with

sPTB, but there is insufficient evidence to support an association with other biomarkers associ-

ated with systemic inflammation such as IL-1B, TNFa, CRP, IL-6, IL-2, IFNy, IL-10 and serum

ferritin. However, the emergence of omics technologies has identified biomarkers and path-

ways of interest that may identify novel avenues for prediction. It is likely that no single bio-

marker will be predictive of sPTB but high-throughput technologies for biomarker discovery,

improved feature selection, and integration with other known risk factors such as cervical
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length and history of sPTB may provide a set of biomarkers with clinical utility for the predic-

tion of sPTB.

The preterm birth phenotype

This systematic review was the first, to our knowledge, to systematically review the existing lit-

erature on maternal blood markers, collected before any signs of labour, that are predictive of

a spontaneous preterm birth. From our initial search, forty-eight primary studies were

excluded for not defining preterm birth following spontaneous labour or rupture of mem-

branes as their primary or secondary outcome(s). Outcomes were typically preterm delivery

(<37 weeks), with no reference to primary records that would differentiate the spontaneous

PTBs from those that follow physician initiation, otherwise referred to as medically indicated

PTBs. These medically indicated births and those arising spontaneously are not likely to have a

shared etiology, and thus identifying common biomarkers for all PTB subtypes is unlikely; this

was the basis of our justification to exclude these papers from review.

A limitation of the studies reviewed is the potential for misclassification bias due to poor

outcome definitions. Most studies did not provide reference to primary records that define the

sPTB outcome. With respect to gestational age, misclassification bias is most likely for those

preterm cases that occur near term (~36 weeks), depending on the method by which gesta-

tional age was determined (last menstrual period, ultrasound etc.). With respect to other

obstetric outcomes, most studies failed to provide repeatable protocols on how sPTBs were dif-

ferentiated from those that were medically indicated, and the extent of missing data may have

affected the risk of bias within the reported results.

While preterm birth is often regarded as a single outcome in clinical practice, the preterm

birth phenotype has multiple and complex etiologies. There is no recognized system for

grouping preterm birth phenotypes, and the known etiologies include pre-eclampsia, multi-

ple births, infection, fetal growth restriction, fetal distress, decidual hemorrhage and placen-

tal dysfunction [92]. However, 30% of preterm births, a greater proportion than any other

etiology, are not associated with known maternal, fetal, or placental conditions, but exhibit

spontaneous contractions or rupture of membranes [93]. Increased fetal mortality and mor-

bidity is not only associated with lower gestational age at delivery, but also with the different

patterns of PTB etiology [94]. For example, it is likely that extreme PTBs (<28 weeks gesta-

tion) have a different etiology than those occurring near term. Larger studies that allow for a

high degree of stratification, such as by gestational age (extreme PTB <28 weeks, very PTB

28–32 weeks, or moderate-late PTB 32–37 weeks), and by potential etiology may identify

novel biomarkers unique to each phenotype and may mediate the effects of the heterogene-

ity. Biomarker discovery for early detection of highly heterogenous outcomes requires at

least 2-fold larger sample sizes and different statistical considerations than if the outcome

were homogenous, which must be put into consideration when performing power calcula-

tions during study design [95].

Considerations for sample collection

Our results suggest that change in biomarkers over multiple measurements throughout ges-

tation is more strongly associated with sPTB than single timepoint measurements, though

this may be dependent on the type of biomarker measured. Not only is there evidence to

suggest that multiple measurements are beneficial for biomarker discovery and predicting

sPTB, understanding the dynamics of molecular changes throughout gestation would also

provide greater insight to the mechanisms of sPTB. Sample collection in large cohorts is

time consuming and costly, not excluding the time for additional analyses, which is further
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exacerbated by multiple measurements. While there is evidence to suggest that two mea-

surements are beneficial for predicting sPTB, there is insufficient evidence to suggest that

more than two would provide any added benefit. Further, our results demonstrate that bio-

markers measured in the second and third trimesters are more predictive of sPTB than

those measured earlier, though this likely depends on the biomarker. Results of a chi-

squared analysis of markers measured in both serum and plasma found no statistical differ-

ence in the likelihood of reporting an association with sPTB (p>0.05). There is insufficient

evidence to suggest an advantage to collecting plasmas over serums, and as serums are often

collected as part of routine antenatal screening, this may be a more convenient biological

tissue to use for biomarker discovery. However, a direct comparison of biomarkers mea-

sured in both serums and plasmas would be necessary to investigate the use of either

biofluid.

The ‘Big Data’ era

High throughput technologies such as microarrays, next generation sequencing and mass

spectrometry now allow for the generation of large datasets including proteomic, metabolo-

mic, genomic and transcriptomic information. These technologies, along with subsequent

bioinformatic analyses, allows for an unprecedented opportunity to identify novel biomark-

ers [96]. Investigations into maternal biomarkers for sPTB are often limited by the currently

limited understanding of the molecular mechanisms of labour. For example, though there is

an ongoing hypothesis that labour is an inflammatory process [97], we show here that bio-

markers of systemic inflammation such as IL-1B and CRP are not associated with sPTB. The

process of labour may certainly involve inflammatory mediators but is likely much more

complex than a simple switching on or off, of inflammation. These large omics-datasets,

while identifying novel markers, also allow for investigation into global molecular changes,

providing additional insight into novel pathways and molecules that may be involved in the

mechanism of preterm birth. In particular, the field of metabolomics is largely under studied

with respect to prediction of sPTB, only one study met the inclusion criteria for this review

[26]. The field of parturition requires further investigation using these high-throughput tech-

nologies to facilitate identification of better biomarkers with clinical utility for prediction of

preterm birth.

With the advent of such high-throughput technologies and increasingly high-dimensional

datasets comes the need for more robust forms of data analysis and mining. Machine learning

and other complex data analysis methods are particularly well suited for high-dimensional and

complex data as they do not generally require the data to adhere to any a priori assumptions

about linearity of distribution [98]. These techniques can be used to identify subtle, complex

and interactive patterns within datasets which can subsequently be leveraged for prediction

and discovery of phenotypes such as sPTB [96]. A major limitation to machine learning is the

risk of overfitting the data, which is especially problematic when the number of features far

exceeds the number of observations, as is common in -omics datasets in health sciences. This

drives the impetus for dimensionality reduction and/or feature selection, which can reduce the

risk of overfitting, reduce computational resources required for analysis and, in the case of

supervised feature selection, can identify the most important features for prediction. A recent

study identified intra- and extra-uterine factors most informative of sPTB to estimate risk of

sPTB using a random forest classifier with high predictive performance (AUC 0.81) [99]. The

etiology of sPTB is multi-factorial, and is likely driven by more complex, subtle interactions

which machine learning approaches, along with feature selection for identifying informative

features, is well suited to detect.
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Limitations

This review was not preregistered. Pre-registering systematic reviews can reduce potential for

bias, increase transparency and avoid unintended duplication of reviews [100]. Though there

have been recently published systematic reviews on the topic of biomarkers of PTB in 2017

and 2018 [101, 102], there has not, to our knowledge, been a systematic review of biomarkers

specific to the maternal blood compartment prior to the onset of labour. Further, studies pub-

lished within the last 5 years since their publication, particularly those using high-throughput

proteomics and transcriptomic techniques have identified novel biomarkers of sPTB,

highlighting the value of revisiting the literature. A 2002 study of 47 systematic reviews found

that 91.5% of Cochrane reviews contained major changes to their methods and selected out-

comes as compared to their pre-registered protocols [103], suggesting a potential risk of bias

in the reported outcomes.

Another limitation of this study is that we did not collect grey literature (e.g. unpublished

work). Non reporting biases contribute to missing results in this systematic review, likely

skewing associations with sPTB more positively. Negative results, in other words, biomarkers

that have been found to not be predictive of sPTB, are less likely to be published due to high p

value, the magnitude or direction of the results. Biomarkers that did not meet thresholds for

statistical significance in preliminary/bivariate or univariate analysis were often excluded from

downstream analyses, or the data was not shown, suggesting that there was further under-

reporting of results due to insufficient p-values. Further, support for why the biomarkers of

interest were selected in each study was often missing, not thorough, or not compelling. Stud-

ies that prospectively register their protocols are more likely to report negative results [104];

however, observational studies, which make up the majority of studies included in this review,

are not typically prospectively registered, limiting options to reduce bias due to missing results.

Lastly, we did not perform a meta-analysis, primarily due to inconsistent study designs which

preclude options for meta-analyses but also that a meta-analysis of biomarkers assessed in the

literature would not be particularly useful as it would be so heavily biased by the authors’

choice of biomarker—apart from, perhaps, -omics studies. Meta-analysis of the -omics studies

was limited by highly inconsistent study designs and thus was not conducted.

Conclusions

Currently, there is no known clear single biomarker, or set of biomarkers, for the prediction of

spontaneous preterm birth. This review highlights that current biomarker discovery tech-

niques are largely limited by the heterogenous nature of preterm birth and an incomplete

understanding of the mechanisms that drive this process. Omics-style studies with more

robust feature selection and analytical approaches provide a promising avenue for the identifi-

cation of novel biomarkers. Larger studies with adequate power and more consistent study

design, namely, clearly defined outcomes that consider the heterogeneity and subtypes of PTB,

are needed to identify a set of biomarkers predictive of sPTB.
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94. Letouzey M, Foix-L’Hélias L, Torchin H, Mitha A, Morgan AS, Zeitlin J, et al. Cause of preterm birth

and late-onset sepsis in very preterm infants: the EPIPAGE-2 cohort study. PEDIATR RES. 2021.

https://doi.org/10.1038/s41390-021-01411-y PMID: 33627822

95. Wallstrom G, Anderson KS, Labaer J. Biomarker discovery for heterogeneous diseases. CANCER

EPIDEM BIOMAR. 2013; 22(5):747–55. https://doi.org/10.1158/1055-9965.EPI-12-1236 PMID:

23462916

96. Dhar V. Data science and prediction. Commun ACM. 2013; 56(12):64–73.

97. Challis JR, Lockwood CJ, Myatt L, Norman JE, Strauss JF, Petraglia F. Inflammation and Pregnancy.

Reproductive Sciences. 2009; 16(2):206–15. https://doi.org/10.1177/1933719108329095 PMID:

19208789

98. Alpaydin E. Introduction to machine learning. Ieee Xplore d, Mit Press p, ebrary I, editors: Cambridge,

Massachusetts: MIT Press; Third edition.; 2014.

PLOS ONE Systematic review of maternal blood markers of preterm birth

PLOS ONE | https://doi.org/10.1371/journal.pone.0265853 April 4, 2022 21 / 22

https://doi.org/10.1016/j.xcrm.2021.100323
http://www.ncbi.nlm.nih.gov/pubmed/34195686
https://doi.org/10.1155/2014/623269
http://www.ncbi.nlm.nih.gov/pubmed/25405034
https://doi.org/10.1016/j.ajog.2005.12.009
http://www.ncbi.nlm.nih.gov/pubmed/16600167
https://doi.org/10.1016/j.jri.2007.02.008
http://www.ncbi.nlm.nih.gov/pubmed/17442403
https://doi.org/10.1089/jwh.2008.0883
https://doi.org/10.1089/jwh.2008.0883
http://www.ncbi.nlm.nih.gov/pubmed/19105692
https://doi.org/10.1371/journal.pone.0236805
https://doi.org/10.1371/journal.pone.0236805
http://www.ncbi.nlm.nih.gov/pubmed/32790689
https://doi.org/10.1371/journal.pone.0199029
http://www.ncbi.nlm.nih.gov/pubmed/29949620
https://doi.org/10.1007/s43032-020-00320-5
http://www.ncbi.nlm.nih.gov/pubmed/32959224
https://doi.org/10.1016/j.cca.2018.04.029
http://www.ncbi.nlm.nih.gov/pubmed/29684382
https://doi.org/10.1016/j.tjog.2015.12.007
https://doi.org/10.1016/j.tjog.2015.12.007
http://www.ncbi.nlm.nih.gov/pubmed/26927253
https://doi.org/10.1093/ije/dyl154
https://doi.org/10.1093/ije/dyl154
http://www.ncbi.nlm.nih.gov/pubmed/16882673
https://doi.org/10.1001/jamapediatrics.2014.3040
http://www.ncbi.nlm.nih.gov/pubmed/25561016
https://doi.org/10.1038/s41390-021-01411-y
http://www.ncbi.nlm.nih.gov/pubmed/33627822
https://doi.org/10.1158/1055-9965.EPI-12-1236
http://www.ncbi.nlm.nih.gov/pubmed/23462916
https://doi.org/10.1177/1933719108329095
http://www.ncbi.nlm.nih.gov/pubmed/19208789
https://doi.org/10.1371/journal.pone.0265853


99. Della Rosa PA, Miglioli C, Caglioni M, Tiberio F, Mosser KHH, Vignotto E, et al. A hierarchical proce-

dure to select intrauterine and extrauterine factors for methodological validation of preterm birth risk

estimation. BMC Pregnancy Childbirth. 2021; 21(1):306. https://doi.org/10.1186/s12884-021-03654-3

PMID: 33863296

100. Stewart L, Moher D, Shekelle P. Why prospective registration of systematic reviews makes sense.

Syst Rev. 2012; 1:7. https://doi.org/10.1186/2046-4053-1-7 PMID: 22588008

101. Polettini J, Cobo T, Kacerovsky M, Vinturache AE, Laudanski P, Peelen MJCS, et al. Biomarkers of

spontaneous preterm birth: A systematic review of studies using multiplex analysis. Journal of Perina-

tal Medicine. 2017; 45(1):71–84. https://doi.org/10.1515/jpm-2016-0097 PMID: 27514075

102. Lucaroni F, Morciano L, Rizzo G, F DA, Buonuomo E, Palombi L, et al. Biomarkers for predicting spon-

taneous preterm birth: an umbrella systematic review. J Matern Fetal Neonatal Med. 2018; 31(6):726–

34. https://doi.org/10.1080/14767058.2017.1297404 PMID: 28274163

103. Silagy CA, Middleton P, Hopewell S. Publishing protocols of systematic reviews: comparing what was

done to what was planned. Jama. 2002; 287(21):2831–4. https://doi.org/10.1001/jama.287.21.2831

PMID: 12038926

104. McAuley L, Pham B, Tugwell P, Moher D. Does the inclusion of grey literature influence estimates of

intervention effectiveness reported in meta-analyses? Lancet. 2000; 356(9237):1228–31. https://doi.

org/10.1016/S0140-6736(00)02786-0 PMID: 11072941

PLOS ONE Systematic review of maternal blood markers of preterm birth

PLOS ONE | https://doi.org/10.1371/journal.pone.0265853 April 4, 2022 22 / 22

https://doi.org/10.1186/s12884-021-03654-3
http://www.ncbi.nlm.nih.gov/pubmed/33863296
https://doi.org/10.1186/2046-4053-1-7
http://www.ncbi.nlm.nih.gov/pubmed/22588008
https://doi.org/10.1515/jpm-2016-0097
http://www.ncbi.nlm.nih.gov/pubmed/27514075
https://doi.org/10.1080/14767058.2017.1297404
http://www.ncbi.nlm.nih.gov/pubmed/28274163
https://doi.org/10.1001/jama.287.21.2831
http://www.ncbi.nlm.nih.gov/pubmed/12038926
https://doi.org/10.1016/S0140-6736%2800%2902786-0
https://doi.org/10.1016/S0140-6736%2800%2902786-0
http://www.ncbi.nlm.nih.gov/pubmed/11072941
https://doi.org/10.1371/journal.pone.0265853

