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Abstract
Purpose  Personalized treatment schemes are being systematically applied to ensure best treatment outcome in oncologic 
patients. This is true also for personalized dosimetry in transarterial radioembolization (TARE) in hepatocellular carcinoma 
(HCC) patients. Precise and detailed volumetric and functional data derived from radiological and nuclear imaging methods 
are essential for personalized dosimetry. We sought to evaluate accuracy of dual-phase cone-beam CT (CBCT) in comparison 
to pre-treatment contrast-enhanced CT (CECT), and 99mTc-macroaggregated albumin-SPECT/CT ([99mTc]MAA SPECT/
CT) to predict and assess the efficacy of TARE based on post-treatment 90Y PET/CT.
Material and methods  Thirty consecutive patients with HCC treated with TARE were included. Intraprocedural dual-phase 
CBCT acquisition protocol was developed to distinguish tumor volume in the early arterial phase and perfused volume of non-
affected liver in the late arterial phase. Volumetric data obtained from pre-treatment CECT, dual-phase CBCT and [99mTc]
MAA SPECT/CT were compared to post-treatment 90Y PET/CT considered the standard reference. Treatment simulations 
for final calculated dose from the different imaging derived volumes were then compared to post-treatment 90Y PET/CT.
Results  CBCT resulted as the most accurate method in predicting tumor- (R2 0.88) and perfused volumes (R2 0.82). Dosim-
etry prediction planning performed on derived volumes from the different methods did not show significant difference 
(p < 0.05), yet highest concordance with 90Y PET/CT data was observed with dual-phase CBCT.
Conclusion  Our study shows that dual-phase CBCT acquisition is a novel alternative method for correctly and safely admin-
istering more accurate and defined doses during TARE.
clinicaltrials.gov ID: NCT03981497.

Keywords  Transarterial embolization (TARE) · Cone-beam computed tomography (CBCT) · Hepatocellular carcinoma 
(HCC) · Personalized dosimetry

Introduction

Effective treatment of hepatocellular carcinoma (HCC) may 
be challenging and early detection and intervention, along 
with risk factor management, play a crucial role in improv-
ing prognosis for individuals at risk of HCC [1].

Transarterial radioembolization (TARE) with yttrium-90 
(90Y) has been used as a transition to transplant and pallia-
tive care in patients with HCC and recently introduced as 
definitive treatment for very early stage and early-stage HCC 
as per BCLC recommendations [2].

A recent randomized clinical trial comparing drug eluting 
bead transarterial chemoembolization to TARE showed that 
the latter had a significant reduction in time-to-progression 
and a better overall survival (respectively, 17.1 months Extended author information available on the last page of the article
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versus 9.5 months (0.36 hazard ratio, p = 0.002) and 30.2 
versus 15.6 months (0.48 hazard ratio, p = 0.006)) [3]. These 
results supported the previously published data compar-
ing the efficacy of TARE, in terms of overall response rate 
(ORR) and time to progression, to that of chemoemboliza-
tion in treating single HCC nodules < 8 cm [4].

TARE induced complete or at least partial necrosis of 
treated lesions that varied significantly based on adminis-
tered dose [5]. Personalized dosimetry was an important 
factor in positive outcome also in advanced local disease, 
increasing median overall survival (OS) from 10.7 to 
26.6 months and objective response rate (evaluated 3 months 
after treatment) from 36 to 76% in subjects in which stand-
ard dosimetry was applied [6].

Efficacy of the procedure, therefore, depends on a correct 
dosimetry planning with accurate tumor volume (TV) and 
perfusion volume (PV) segmentation, yet debate remains on 
how different imaging techniques and artifacts may influence 
these evaluations. [99mTc]MAA-SPECT/CT has been dem-
onstrated to be more accurate than single-phase cone-beam 
computed tomography (CBCT) in predicting final tumor vol-
ume [6, 7], but CBCT is essential in correct dosimetry and in 
patients with multiple feeders [6]. The European Association 
of Nuclear Medicine (EANM) 2021 and 2022 guidelines 
detail the use of contrast-enhanced CT (CECT) for tumor 
volume segmentation and SPECT/CT for evaluating the per-
fused region [8, 9] as best suggested approach.

In standard practice [10–12], CBCT consists in a single 
early arterial phase for assessment of lesion feeding arteries 
to guide super selective catheterization, confirm tumor load 
and treatment indication. Dual-phase CBCT acquires images 
during the early and late arterial phases depicting tumor vol-
ume and perfused parenchyma [13] with superior accuracy 
in tumor detection versus single-phase imaging [13–15].

The aim of this study was to evaluate if pre-treatment 
contrast-enhanced CT, dual-phase cone-beam CT (early and 
late arterial phase) and [99mTc]-macroaggregated albumin-
SPECT/CT accurately predict volume and 90Y-resin-micro-
sphere activity distribution compared to post-embolization 
reference standard 90Y PET/CT.

Material and methods

Following patient selection, tumor and perfused volumes 
were segmented on baseline contrast-enhanced CT and dual-
phase CBCT and co-registered to [99mTc]-MAA SPECT/CT. 
The values obtained on the different imaging modalities 
were used for treatment simulation and then were compared 
to those obtained on reference standard post-embolization 
90Y PET/CT. Details are further described in each section 
(Fig. 1).

Patient population

Thirty-six lesions of 30 HCC patients that underwent 
TARE with resin 90Y-microspheres (SIR-spheres® SIR-
Tex Medical Limited) from January 2020 to August 2023 
were collected prospectively and retrospectively evaluated. 
Pre-procedural contrast-enhanced CT (CECT) performed 
within 30 days from procedure was primary inclusion cri-
teria. Therapeutic indication for TARE was discussed and 
agreed in the dedicated multidisciplinary team prior to 
treatment. Patient data was collected after having signed 
a specific informed consent previously approved by the 
Institutions’ Ethical Committee (64/INT/2021).

Radioembolization protocol

Workup and treatment were performed following the cur-
rent standard of practice at our Institution.

Radioembolization was divided into two sessions per-
formed approximately one week apart. During the first 
session, mapping angiography and intraprocedural dual-
phase CBCT was performed. The acquisition protocol 
was divided in an early and late arterial phase, to identify, 
respectively, the target lesion, its feeders and surround-
ing perfused parenchyma. Upon correct arterial access 
selection, [99mTc]macroaggregated albumin was injected 
to evaluate lung and gastrointestinal shunt fraction and 
Tumor to Normal tissue uptake ratio (TNR) [13]. 90Y 
activity calculation was based on a multicompartmental 
model [16], considering a tumor absorbed dose > 120 Gy, 
overall normal liver dose < 40 Gy and a lung dose < 30 Gy 
[9] [13] [16]. Prior to administration of 90Y-spheres, 
patients underwent a confirmatory angiography and CBCT 
to evaluate any change in perfusion. Standard of care con-
firmatory 90Y PET/CT study is acquired within 24 h after 
treatment.

Imaging acquisition protocols

Contrast‑Enhanced CT

Upper and lower abdominal scans were acquired on multi-
detector CT scanners (Siemens Somatom definition flash 
Syngo or Philips Brilliance 64). The scan included a non-
contrast and a triple-phase acquisition to evaluate focal 
liver lesions (late arterial, portal and delayed). The arterial 
phase (30 s) was used to evaluate viable tumor tissue and 
vessels anatomy and to calculate tumor volume (TV).
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Fig. 1   Consecutio of the different study phases: tumor and perfused volume segmentation, the derived volumes co-registered with [99mTc]MAA 
SPECT for treatment simulation and verification with 90YPET
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Dual‑Phase Cone‑Beam CT Technique

Acquisition of images was performed using an angio-
graphic system (Azurion 7 C20, Philips Healthcare) 
equipped with the XperCT Dual option, that allows dual-
phase rotational acquisition (early and late arterial phases) 
with a single contrast injection. The C-arm rotation in 
head-end position (120°LAO- 185°RAO) reaches 25°/sec 
at a voltage of 120 kVp with a detector size of 12 inches; 
total rotation time is 5.2 s.

A specifically developed contrast agent injection protocol 
(Ultravist, 370 mg of iodine per milliliter) was standard-
ized to deliver 10 mL at a rate of 1 mL/second in segmental 
branches of the hepatic artery and acquisition was performed 
during end expiration apnea. In cases of superselective cath-
eterism of subsegmental branches, the injection protocol 
ratio remained unvaried, at a rate of 0,5 mL/second for 5 mL 
administered. The early arterial phase was triggered at 10 s 
after contrast injection and used to evaluate tumor volume; 
the late arterial phase, at 15–20 s after the first acquisition, 
for perfusion volume (Fig. 2). This injection protocol allows 
evaluation of both the feeding arteries and the hyper-vascu-
lar lesion/s as contrast lasts throughout the first acquisition. 
The perfused parenchyma is then visible in the late arterial 
phase (approximately at a delay of 30 s) (Fig. 3). The low 
rate of injection reduces the risk of contrast reflux to non-
target areas. Automated image reconstruction is visible after 
completion of each scan.

[99mTc]macroaggregated albumin‑SPECT/CT ([99mTc]‑MAA 
SPECT/CT  Whole body planar scintigraphy (from thyroid 
to bladder) was acquired in anterior and posterior projec-
tions followed by a SPECT/CT scan (128 × 128, 120 steps, 
20 s/step Discovery NM 670, GE Healthcare) within 30 min 
after conclusion of the angiography procedure. Planar 
images were used to define lung shunt fraction and presence 
of gastrointestinal shunt. SPECT data was obtained with a 
3D ordered-subset expectation maximization (4 iterations, 
10 subsets) with a Butterworth filter (cutoff,0.5 cycles/cm; 

order, 10) and CT-based attenuation, scatter correction and 
resolution recovery.

90Y PET/CT  Two bed positions of 15 minutes each, includ-
ing complete liver coverage, were acquired on a Time Of-
Flight (TOF) PET/CT system (Discovery PET/CT 690, GE 
Healthcare). PET data was reconstructed using a Bayesian 
reconstruction algorithm (VPFX, 2iterations 16 subsets) 
with a gaussian post-reconstruction filter of 5  mm in full 
width at half maximum including time of flight information. 
Normalization, dead time, activity decay, random coinci-
dences, attenuation, scatter and resolution recovery (imag-
ing corrections) were used.

Tumor and perfused volume delineation

All tumor- and perfused volumes (TV, PV) and overall 
healthy total liver volume were segmented using MIM 
software (Beachwood, Ohio- 7.2.8). Segmentation was per-
formed using a semi-automated method which was then cor-
rected manually, if needed.

TV on CECT and PV and TV on CBCT were evaluated 
by two interventional radiologists (EDG and LA). TV and 
PV from [99mTc]MAA SPECT/CT and 90Y PET/CT were 
evaluated by a nuclear medicine physician, using a threshold 
method.

Tumor volumes, defined as the viable tumoral tissue 
showing uptake in arterial phase, were retrospectively seg-
mented on the arterial phase of CECT and early phase of 
intraprocedural CBCT. Necrotic areas were excluded from 
volume delineation.

TVs were also delineated on [99mTc]MAA SPECT/CT 
and 90Y PET/CT images using a threshold method. Deline-
ation was carried out on the fusion images (SPECT and CT, 
PET and CT) and for each volume, the threshold value was 
visually adjusted in order to match the contours based on 
the activity distribution with the CT lesion borders. Mean 
threshold value for TVs on [99mTc]MAA SPECT/CT and 
90Y-PET/CT images was 30% [16].

Fig. 2   Dual-Phase CBCT acquisition protocol
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Perfusion volumes (defined as the parenchyma of the seg-
ment vascularized by the arterial branch selectively cath-
eterized) including the lesion and the surrounding healthy 
parenchyma enhanced following contrast injection, were 
segmented on one or more (in case of multiple feeding arter-
ies) late arterial phases of intraprocedural CBCT acquisition.

Due to the broad distribution of single phase CBCT pro-
tocols, PV was also segmented in the early phase to confirm 
accuracy compared to the late arterial phase. In addition, 

PVs were delineated on [99mTc]MAA SPECT/CT and 
90Y PET/CT images using a threshold method. The mean 
threshold value for PVs on [99mTc]MAA SPECT/CT and 
90Y PET/CT images was 5% [7].

Treatment planning simulation and verification

TVs and PVs delineated on CECT and CBCT were 
transferred to the SPCET/CT images using non-rigid 

Fig. 3   Dual-phase CBCT: a Early arterial phase (10–15  s) Lesion 1; b Late arterial phase (30  s) Lesion 1; c Early arterial phase (10–15  s) 
Lesion 2 and 3; d Late arterial phase (30 s) Lesion 2 and 3
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co-registration. Treatment planning simulations were per-
formed independently considering volumes segmented on 
the three imaging modalities: CECT, CBCT and [99mTc]
MAA SPECT/CT. For CECT alone, the overall healthy total 
liver was used to calculate perfused volume toxicity.

Fixed tumor- and perfused parenchyma doses were set at 
120 Gy and 40 Gy, respectively. Simulations of PET dose 
distribution were evaluated by normalizing PET images to 
the three fictitious activities derived from the treatment plan-
ning obtained with volumes delineated on the three imaging 
modalities. All phases of the treatment planning simulation 
were performed using the MIM software.

Comparisons

90Y PET/CT volumes were considered as reference stand-
ards. TVs obtained on CECT, CBCT early arterial phases 
and [99mTc]MAA SPECT/CT were compared to those 
obtained on post-embolization 90Y PET/CT. PVs from 
CBCT early and late arterial phases and [99mTc]MAA 
SPECT/CT were compared to those obtained on post-
embolization 90Y PET/CT. Early arterial dual-phase CBCT, 
CECT and [99mTc]MAA-SPECT/CT were compared head-
to-head using a one-way ANOVA. In order to evaluate the 
agreement of the predicted dosimetry derived from the treat-
ment planning simulations and post-treatment dosimetry, the 
dosimetric metrics considered were V120Gy, defined as the 
percentage of target volume receiving at least 120 Gy, and 
V40Gy, percentage of healthy parenchyma volume receiv-
ing 40 Gy [9].

Statistical analysis

Statistical analysis was performed using MedCalc software 
(Medcalc Software Ltd, Ostend, Belgium – v20.216). The 
coefficient of determination R2 of the regression model 
was calculated to compare PVs and TVs derived in CECT, 
CBCT and [99mTc]MAA SPECT/ to those obtained on post-
embolization 90YPET/CT. Interobserver agreement (for 
tumor and perfused volume) on all imaging was evaluated 
using the Dice coefficient. Correlation of volumes obtained 
between techniques is depicted using Bland–Altman plots. 
Quantitative descriptive statistics are expressed as medians 
and interquartile ranges; tumor size is reported in mean and 
standard deviation. A p-value less than 0.05 was considered 
significant. Head-to-head comparisons among modalities 
was evaluated with one-way ANOVA. Agreement between 
V120Gy and V40Gy obtained in CECT, CBCT, SPECT, 
values were calculated on PET normalized imaging. Con-
cordance correlation coefficient (CCC) for dose comparison 
were calculated with a 95% Confidence Interval (CI).

Results

Most patients were males (n = 28) with Child B stage liver 
predominant disease (n = 17). Seven patients had multiple 
tumors treated in the same session. Patient data is described 
in Table 1. No major peri-procedural or post-procedural (up 
to discharge, 2 days post procedure) complications were 
observed. Interobserver Dice coefficient among the two 
readers was 0.88 for tumor volume and 0.85 for perfused 
volume, therefore subsequent calculations were derived 
from data of one single reader. An example of perfusion- and 
tumor volume segmentation on the four different imaging 
modalities are depicted in Fig. 4. 

Median TVs and PVs are described in Table 2. No statis-
tically significant differences between volumes calculated 
per different imaging modalities were obtained. No signifi-
cant differences were found in a direct head-to-head com-
parison comparing CECT to dual-phase CBCT early arterial 
phase and [99mTc] MAA-SPECT/CT for predicting tumor 
volume (one-way ANOVA followed by Tukey’s test CBCT 
vs SPECT p = 0.8034; CBCT vs CECT p = 0.2052; SPECT 
vs CECT p = 0.4366). TV correlation between modalities 
and agreement (according to Bland–Altman) is depicted in 
Fig. 5. 

PV correlation in early arterial phase CBCT, late arte-
rial phase CBCT, [99mTc] MAA SPECT/CT and PET-based 
volumes and agreement are depicted in Fig. 6.

Early arterial CBCT and late arterial CBCT provided 
the best R2 (0.89, 0.84) for TVs and PVs, respectively. 
[99mTc]MAA SPECT/CT showed a better correlation with 
PET for tumor volume (R2 = 0.77) versus CECT. Simula-
tion of median activities based on a tumor dose of 120 Gy 
derived from TV/PV on the different imaging modalities are 

Table 1    Population demographic data

HCC, hepatocellular carcinoma; BCLC, Barcelona Clinic Liver Can-
cer; SD, standard deviation

Number of patients 30

Age at TARE (mean ± SD) 74 (14.7)
Gender, n (%)
Male 28 (93.33%)
Female 2 (6.66%)
BCLC
BCLC A 9 (30%)
BCLC B 17 (56.7%)
BCLC C 4 (13.3%)
Child- Pugh Score
A 26 (86.7%)
B 4 (13.3%)
Baseline tumor size (mean ± SD) 52.5 ± 24.72 mm



480	 La radiologia medica (2025) 130:474–485

described in Table 3. No statistically significant difference 
between the calculated activities was observed.

Best agreement was found both for V120Gy and V40Gy 
calculated on CBCT and SPECT versus CECT.

Discussion

The benefit of personalized dosimetry in TARE has been 
demonstrated by several authors [7, 17–19]. Accurate cal-
culation of target and perfused volumes is mandatory due 
to the direct impact on absorbed dose estimation [20]. To 

Fig. 4   TV and PV segmentation in different imaging modalities a) CECT portal phase, b) CBCT late arterial phase c) 99mTc-MAA-SPECT, d) 
90Y PET/CT

Table 2   Tumor (TV) and perfusion volumes (PV) per different imag-
ing modalities

TV (cc)
median (range)

PV (cc)
median (range)

CECT 77.84 (6.89–324.92) n.c
CBCT 95.6 (6.48–386.17) 445.10 (19.19–960)

early arterial phase
321.03 (14.74–960)
late arterial phase

SPECT 89.39 (10.77–326.03) 466.10 (24–1171.55)
90Y PET 92.63 (9.18–309.17) 427.48 (38.76–961.22)
n.c.- not calculated
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Fig. 5   Correlation (right) and agreement (left) derived from TVs delineated on a CECT, b early arterial phase CBCT, c 99mTc-MAA SPECT/
CT and PET
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Fig. 6   Correlation (right) and agreement (left) derived from PVs delineated on a early arterial phase CBCT, b late arterial phase CBCT, c 
[99mTc]MAA SPECT/CT and PET-based volumes
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the best of our knowledge, this is the first study that evalu-
ates tumor- and perfused volumes with dual-phase cone-
beam CT in comparison to contrast-enhanced CT (CECT) 
and [99mTc] macroaggregated albumin-SPECT/CT ([99mTc]
MAA SPECT/CT) versus 90Y distribution on standard of ref-
erence PET/CT. 90Y PET is a well-established technique for 
90Y treatment verification after selective internal radiation 
therapy (SIRT) as it provides improved accuracy for dosim-
etry [21] and reflects tumor heterogeneity [22] Our dual-
phase cone-beam computed tomography (CBCT) acquisition 
protocol warrants more precise volumetric assessment and 
more accurate definition of tumor and perfused volume. This 
may be of particular interest in patients with multiple lesions 
and/or multiple feeders (super selective catheterization) or 
in patients with infiltrative diseases.

Our results demonstrate that late arterial phase cone beam 
computed tomography (CBCT), obtained by our standard-
ized and dedicated injection protocol, more accurately pre-
dicts perfusion volume, as defined in 90Y PET/CT, than early 
arterial phase CBCT and [99mTc]MAA-SPECT/CT. This 
result must not be considered divergent from what previ-
ously reported by Rodríguez‐Fraile et al. [7], in which that 
[99mTc]MAA-SPECT/CT was more accurate than single-
phase CBCT, since single arterial phase acquisition used for 
perfusion volume delineation can produce errors in volume 
estimation due to reflux artifacts [7].

Contrast-enhanced CT and SPECT have been extensively 
used for tumor volume assessment [9, 23]. The debate about 
the correlation between activity distribution of [99mTc]MAA 
and 90Y microspheres is still open. Discrepancies are related 
to the number, density, size, and morphology differences 
between MAA and spheres or the ability to administer both 
compounds under identical conditions [24, 25]. Despite 
these limitations several authors have demonstrated a good 
correlation between [99mTc]MAA and 90Y microspheres dis-
tribution [26, 27]. Recently, alternatives have been proposed 
to overcome these above-mentioned limitations such as low 
dose 90Y [28] or Ho-166 [29] as scout dose nevertheless, 
[99mTc] MAA SPECT is routinely used in the clinical setting 
and is readily available.

Our results showed that early arterial phase CBCT yields 
a more precise volumetric assessment most likely due to 
the higher spatial resolution (versus [99mTc]SPECT/CT) and 
ability to distinguish and exclude necrotic areas. Median 

tumor volumes on CECT were lower than those obtained 
on CBCT and other imaging modalities contrary to what 
described by other authors [9, 23], most likely due to the 
different timing of the acquisition. Stein et al. [30] found 
that CBCT yielded a more accurate tumor volume dose esti-
mation in the diagnostic phase than pre-procedural CT and 
MRI in patients planned for segmentectomy. High resolution 
planning CBCT has also been applied in a computational 
tool used to segment the arterial tree and predict distribu-
tion [31]. Leveraging the strengths of CBCT in segmenta-
tion and tumor volume evaluation may therefore aid in more 
precise dosimetry. The best agreement between tumor and 
non-tumoral liver ratio, V120Gy and V40Gy, respectively, 
threshold for complete response and healthy liver, and post-
treatment dosimetry was also derived from CBCT; even if 
not statistically significant, it outperformed other modalities 
resulting in an additional asset for its use in personalized 
treatment approaches.

The following limitations need to be considered. Data 
collected prospectively from a single institution and retro-
spectively evaluated resulted in a limited number of patients 
for this cohort. Cone beam CT may include smaller fields 
of view with limited liver volume recognition or artifacts 
caused by breath hold in which acquisitions need to be 
repeated. Errors in co-registration of imaging techniques 
may also play a role in incorrect delineation. CBCT cannot 
identify extrahepatic activity and lung shunts and will there-
fore need to be integrated with other imaging modalities. 
Reference standard 90Y PET/CT calculations may be biased 
by noisy imaging and the use of threshold methods, even 
though still used as reference standards, may underestimate 
necrotic areas [22, 26].

Conclusion

Dual-phase cone beam computed tomography (CBCT) 
predicts both TVs and PVs more accurately and yields a 
better concordance correlation coefficient with 90Y PET/
CT; [99mTc]MAA-SPECT showed a good agreement with 
90Y PET/CT in terms of volume and remains essential to 
correctly derive the Tumor/Nontumor uptake ratio; SPECT 
also remains necessary for identifying potential pulmonary 
shunts and possible activity outside the liver (extrahepatic 

Table 3   The percent volume 
at 120 Gy and 40 Gy and 
concordance correlation 
coefficient with PET of the 
different imaging techniques

Imaging technique Activity (GBq) V120Gy (%) V40Gy (%) CCC (V120Gy) CCC (V40Gy)

CECT 0.70
(0.30–1.10)

36.11
(7.90–56.39)

20.9
(3.2–40.7)

0.64
(0.14–0.88)

0.24
(0.07–0.52)

CBCT 0.70
(0.20–1.00)

23.24
(5.30–54.46)

23.51
(1.00–67.87)

0.85
(0.57–0.96)

0.70
(0.06–0.93)

[99mTc]MAA SPECT/CT 0.50
(0.20–1.10)

21.42
(10.70–40.86)

19.39
(4.09–41.95)

0.75
(0.35–0.92)

0.49
(0.18–0.85)
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activity). CBCT becomes fundamental in case of multiple 
feeding arteries in which a more accurate dose split is neces-
sary. Volumes derived from CBCT give the best prediction 
of actual distribution allowing a more accurate and personal-
ized dosimetry planning in TARE.
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