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ABSTRACT Balneotherapeutic water springs, such as those with thermal, saline, sulfur, or
any other characteristics, have recently been the subject of phylogenetic studies with a
closer focus on the description and/or isolation of phylogenetically novel or biotechnologi-
cally interesting microorganisms. Generally, however, most such microorganisms are rarely
obtained in pure culture or are even, for now, unculturable under laboratory conditions.
In this culture-dependent study of radioactive water springs of Jáchymov (Joachimstahl),
Czech Republic, we investigated a combination of classical cultivation approaches with
those imitating sampling source conditions. Using these environmentally relevant cultivation
approaches, over 1,000 pure cultures were successfully isolated from 4 radioactive springs.
Subsequent dereplication yielded 121 unique taxonomic units spanning 44 genera and 9
taxonomic classes, ;10% of which were identified as hitherto undescribed taxa. Genomes
of the latter were sequenced and analyzed, with a special focus on endogenous defense
systems to withstand oxidative stress and aid in radiotolerance. Due to their origin from
radioactive waters, we determined the resistance of the isolates to oxidative stress. Most of
the isolates were more resistant to menadione than the model strain Deinococcus radiodur-
ans DSM 20539T. Moreover, isolates of the Deinococcacecae, Micrococcaceae, Bacillaceae,
Moraxellaceae, and Pseudomonadaceae families even exhibited higher resistance in the
presence of hydrogen peroxide. In summary, our culturomic analysis shows that subsurface
water springs contain diverse bacterial populations, including as-yet-undescribed taxa
and strains with promising biotechnological potential. Furthermore, this study suggests
that environmentally relevant cultivation techniques increase the efficiency of cultivation,
thus enhancing the chance of isolating hitherto uncultured microorganisms.

IMPORTANCE The mine Svornost in Jáchymov (Joachimstahl), Czech Republic is a for-
mer silver-uranium mine and the world’s first and for a long time only radium mine,
nowadays the deepest mine devoted to the extraction of water which is saturated
with radon and has therapeutic benefits given its chemical properties. This healing
water, which is approximately 13 thousand years old, is used under medical supervi-
sion for the treatment of patients with neurological and rheumatic disorders. Our cul-
turomic approach using low concentrations of growth substrates or the environmental
matrix itself (i.e., water filtrate) in culturing media combined with prolonged cultivation
time resulted in the isolation of a broad spectrum of microorganisms from 4 radioac-
tive springs of Jáchymov which are phylogenetically novel and/or bear various adapt-
ive or coping mechanisms to thrive under selective pressure and can thus provide a
wide spectrum of capabilities potentially exploitable in diverse scientific, biotechnologi-
cal, or medical disciplines.
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Geothermally heated groundwater, such as thermal springs with temperatures higher
than 37°C or less warm thermal springs reaching the surface with a temperature of at

least 20°C, are natural phenomena that occur worldwide (1, 2). Since the final character of
water springs can be influenced not just by the chemical composition, pH, temperature, and
salinity (3, 4), but also by tectonic settings and subsurface bedrock (1), every single water
spring can be considered to be a unique habitat. Even though microorganisms are able to
exist wherever their minimal nutritional requirements are met (5), any changed variable
(minerals, ions, carbon sources, etc.) in the surrounding conditions can lead to diversification
of the microbial community (4, 6). Moreover, results from individual studies focusing on a
genetic comparison of seemingly identical organisms, such as Sulfolobus strains with nearly
identical 16S rRNA but differing in nine protein-coding loci (7), or different lineages of
Synechococcus across geographical isolated environments (8), suggest that over time origi-
nally genetically identical microorganisms which exist and evolve in geologically distinct
sites differentiate into new, no longer common species (5). Further evidence of slowly mani-
festing evolutionary nuances was provided by Klassen and Foght, 2011 (9) who character-
ized hymenobacters isolated from Victoria Upper Glacier which differed in their conserved
and repetitive DNA segments and phenotype characteristics from already described, geneti-
cally nearly identical hymenobacters. Their divergence can be explained by long-term dor-
mancy and the fact that ancient genotypes, conserved in the ice matrix, revive thanks to
suitable conditions of the biosphere, and therefore coexist with modern genotypes at
the same time (9). Thus, the hypothesis arises that 'ancient microorganisms' separated
for a certain epoch (e.g., deep underground, in glaciers, etc.) can develop in a completely
different way than microorganisms that constantly face surface conditions and, conse-
quently, can start the evolution of a new phylogenetic branch.

The above-mentioned unique environmental sites with the possible presence of
'ancient microorganisms' are often extreme habitats. Therefore, these sites are attracting
considerable attention in the context of the search for undescribed (9–11), thermoresist-
ant (12, 13), acidophilic (14, 15), or otherwise interesting microorganisms. Due to unusual
metabolic pathways, microorganisms isolated from extreme habitats are often used as
biocatalysts or as a source of extremozymes and extremolytes (16). However, the isola-
tion of such microorganisms is significantly complicated, for example, by the dormant state
in which most of these microorganisms occur (17). Endeavoring to increase cultivation
yields, several cultivation improvements have been implemented in methodical procedures,
ranging from the 'provision of basic and specific needs' such as the addition of essential sub-
stances (nutrients, trace elements), growth factors such as Rpf (17, 18), cAMP, and homoser-
ine lactones (19); through the usage of high-tech isolating devices such as micromanipula-
tion equipment (20, 21), streaking pens (22) or ichips (23); to the application of knowledge
gathered frommetagenomic (24) and metatranscriptomic (25) analyses. It is not only sophis-
ticated cultivation approaches that have borne fruit, but also simple cultivation strategies
such as the application of oligotrophic media, possibly based directly on the environmental
matrix and/or in combination with a culture temperature relevant to the environment from
which the microbe is isolated (26–28).

A promising location both in terms of potentially taxonomically and/or biotechnologically
novel microorganisms is the mine Svornost in Jáchymov (Joachimstahl), Czech Republic, a for-
mer silver-uraniummine and the world’s first and for a long time only radiummine, nowadays
the deepest mine devoted to the extraction of water which is saturated with radon (222Rn ;

24 kBq/l) (29) due to radium decay in Jáchymov subsoil, and has therapeutic benefits given its
chemical properties. This healing water, which is approximately 13 thousand years old, is used
under medical supervision for the treatment of patients with neurological and rheumatic dis-
orders. The first radioactive water spring to be used was named Curie, followed by the springs
called Agricola, C1, and Academician B�ehounek. This geologically ancient site with very rare
characteristics of its waters can be described as an inhospitable place for any form of life.
Despite this, based on the extensive microbial analyses of similar sites (4, 30, 31), we predicted
the presence of diverse microbial communities. Furthermore, due to their radioactive charac-
ter, the waters were expected to host radiotolerant or radioresistant microorganisms.
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With the above in mind, we applied a series of environmentally relevant cultivation
methods leading to the isolation of a diverse spectrum of prokaryotic microorganisms
from Jáchymov's radioactive water springs. We based our work on the presumption
that microorganisms living within the springs can utilize low-carbon substrates typi-
cally found in oligotrophic environments. Moreover, in order to imitate the conditions
of water springs, we used sterilized spring water as the liquid part of all media, or even
as the medium itself. Using these modifications, we expected to isolate phylogenetically
novel microorganisms. The cultivation yields of each method used were evaluated. Since
the microorganisms living in Jáchymov's radioactive springs are constantly exposed to
ionizing a-radiation which subsequently causes the intracellular generation of reactive oxy-
gen species (ROS) (32, 33), the oxidative stress tolerance/resistance of isolates obtained from
these springs can be assumed. Based on this presumption, we built up a functional analysis
of isolated cultures where chemical compounds menadione (34–36) and hydrogen peroxide
(34, 36, 37) were used as intracellular ROS inducers. The oxidative stress response of all iso-
lates is provided herein.

RESULTS
Evaluation of cultivation media yields. The media adjustments used here, such as

the dilution of commercial media, use of water filtrate from the original source in media,
low concentration of heterotrophic substrates, etc. (Table 1), resulted in the isolation of
1,095 pure cultures spanning 9 phylogenetic classes of 5 phyla (Fig. 1). The majority of the
isolates were obtained from the Curie spring, followed by B�ehounek, C1, and lastly, Agricola.
Tenfold diluted R2A medium gave the greatest yield of 355 isolates (32% of the total num-
ber of isolates), while the nutrient-poor media had lower yields; lactate medium yielded 185
isolates (17%), non-supplemented medium 132 isolates (12%), succinate medium 126 iso-
lates (12%), acetate medium 101 isolates (9%), and the Autotrophic medium yielded 159 iso-
lates (15%). FRR-6, FRR-8 medium (hereinafter referred to as FRR) and Thiobacillus agar pro-
vided the lowest number of isolates, 36 isolates (3%) and only a single isolate, respectively.
Importantly, phylogenetically novel isolates were obtained from 1/10 R2A (6 isolates), lactate
medium (4), FRR medium (3), and one isolate for Thiobacillus agar and non-supplemented
medium (Table 2).

Phylogenetic diversity of bacterial isolates. After the dereplication using MALDI-
TOF MS and 16S rRNA gene sequencing, 121 unique isolates were identified which spanned
44 genera from the classes Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria,
Cytophagia, Flavobacteriia, Actinobacteria, Thermoleophilia, Bacilli and Deinococci (Fig. 2a and
Table S2). The highest number of isolates (6 to 9) was obtained within the genera Bacillus,
Bosea, Sphingomonas, Sphingopyxis, Acinetobacter, and Microbacterium (Fig. 2a), and the rest
of the genera were mostly represented by only 1 or 2 members. None of the isolates were
isolated simultaneously from all 4 water springs, and only members of the genus Bacillus

TABLE 1 The media list with the chemical compositiona

Medium Composition Reference
Acetate Sodium acetate 0.5 g; Noble agar 18.0 g; water filtratea 1,000 mL This study
Lactate Aluminum L-lactate 0.5 g; Noble agar 18.0 g; water filtratea 1,000 mL This study
Succinate Disodium succinate 0.5 g; Noble agar 18.0 g; water filtratea 1,000 mL This study
Non-supplemented Noble agar 18.0 g; water filtratea 1,000 mL This study
Thiobacillus (NH4)2SO4 0.10 g; K2HPO4 4.00 g; KH2PO4 4.00 g; MgSO4 � 7 H2O 0.10 g; CaCl2 0.10 g;

FeCl3 � 6 H2O 0.02 g; MnSO4 � H2O 0.02 g; Noble agar 18.00 g; Na2S2O3 � 5 H2O
10.00 g; water filtratea 1,000 mL

DSMZ no. 36, Germany

Autotrophic (NH4)2SO4 0.6 g; KH2PO4 0.2 g; CaCl2.2H2O 0.04 g; MgS04.7H2O 0.04 g; Ferric citrate
0.5 mg; phenol red 0.5 mg; Noble agar 18.0 g; distilled water 1,000 mL

Soriano and Walker, 1968 (113)

1/10 R2A Casein acid hydrolysate 0.05 g; yeast extract 0.05 g; proteose peptone 0.05 g; starch
soluble 0.05 g; glucose 0.05 g; dipotassium phosphate 0.03 g; magnesium sulfate
0.0024 g; Na-pyruvate 0.03 g; Noble agar 18.0 g; water filtratea 1,000 mL

Merck, United States

FRR Yeast extract 1.0 g; proteose peptone 1.0 g; casamino acids 1.0 g; glucose 1.0 g; NaCl
1.0 g; Na-pyruvate 0.5 g; MgSO4 � 7 H2O 0.1 g; K2HPO4 0.6 g; Noble agar 18.0 g;
water filtratea 1,000 mL

DSMZ no. 822, Germany

aFour variants of each medium were prepared, i.e., separately for each water filtrate of Agricola, B�ehounek, C1, and Curie spring.
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were isolated from all 4 springs. Moreover, the majority of species were only isolated from a
single spring, making co-isolation across multiple springs relatively exceptional. The majority
of unique isolates were obtained from the Curie spring, followed by B�ehounek (Fig. 2b).
Twelve out of 121 dereplicated bacterial isolates (Table 2) exhibited lower 16S rRNA gene
sequence similarity to the closest type strain cataloged in the RefSeq RNA database (NCBI)
NCBI database and EZBioCloud 16S rRNA gene sequence database than the cut-off for delin-
eating a separate species, and were taxonomically classified in more detail upon whole-ge-
nome sequencing.

Whole-genome sequencing of phylogenetically novel isolates. Whole genomes
of 12 bacterial strains potentially representing novel taxa (the 16S rRNA gene similarity with
the closest type strain#98.5%) were sequenced using the ONT MinION platform. At the level
of phyla, these 12 strains were classified into Proteobacteria (n = 9), Bacteroidetes (n = 2), and
Actinobacteria (n = 1). The only isolate which was novel at the genus level was isolated from
radioactive water spring C1 (radioactivity 11 kBq/l) on the FRR medium, and was designated
J379. The novelty of this isolate at the genus level is apparent from (i) the significantly low 16S
rRNA sequence similarity of 95.19% to its closest taxonomic neighbor Parviterribacter kavango-
nensis D16/0/H6T, which belongs to class Thermoleophilia of phylum Actinobacteria; (ii) distinct
clustering of isolate J379 from the members of the family Parviterribacteraceae (Fig. S3), as
shown by the core gene-based phylogenetic analysis; and (iii) low POCP (#48.1%) and ANI
(#77.9%) values. With that in mind, isolate J379 is presented here as a novel species of a novel
genus of the family Parviterribacteraceae.

The 16S rRNA gene similarity of the remaining 11 isolates to the closest type strains
was lower than the suggested species delineation cut-off 98.5%. The core gene-based
phylogenetic assessment revealed that all 11 isolates formed distinct branches from their

FIG 1 Determination of media cultivation yields and proportion of isolated bacteria at the class level for each medium used, compiled from 1,095 non-dereplicated
isolates obtained here.
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related taxa (Fig. S2 to S11). The core gene phylogeny of the 2 isolates J315 and J344 affiliated
to Sphingomonas, sharing ANI similarity of 99.9%, were collectively processed and depicted in
Fig. S5. Similarly, the POCP and ANI values of these isolates and their related members were
substantially lower than the suggested threshold of taxa divergence (Table S3). It is notewor-
thy that the DNA G1C content of only 1 novel isolate was below 50% (Flavobacterium
sp. J372, 42.4%). In fact, the G1C content was.70% in 3 isolates, with a maximum value
of 71.7% in isolates J379 and J223, and.65% in 6 isolates.

Oxidative stress response determination. In order to confirm the hypothesis that
microorganisms living in the radioactive water springs of the Svornost mine are able to
sustain oxidative stress, we conducted a functional assay of the oxidative stress response

TABLE 2 List of phylogenetically novel isolates

Isolate
Taxonomic
classification

The closest type strain based
on the 16S rRNA gene
sequence similarity

Similarity
(%)a Originb Mediumc Novelty level Accession no.d

J193 Hymenobacter sp. Hymenobacter russus BT18T 98.07 Agricola Thiobacillus agar Novel species JAJONE000000000
J219 Rhizobacter sp. Rhizobacter profundi DS48-6-5T 97.82 B�ehounek 1/10 R2A

lactate
Novel species JAJOND000000000

J223 Aquabacterium sp. Aquabacterium pictumW35T 97.32 B�ehounek 1/10 R2A Novel species CP088297
J276 Aquincola sp. Aquincola rivuli KYPY4T 98.6 B�ehounek lactate Novel species JAJONC000000000
J315 Sphingomonas sp. Sphingomonas suaedae XS-10T 98.93 C1 1/10 R2A

lactate
Non-supplemented

Novel species CP088296

J344 Sphingomonas sp. Sphingomonas suaedae XS-10T 99.29 C1 1/10 R2A Novel species JAJONB000000000
J367 Phenylobacterium sp. Phenylobacterium immobile

strain ET
98.25 C1

Curie
FRR Novel species JAJONA000000000

J372 Flavobacterium sp. Flavobacterium album
HYN0059T

97.37 C1 FRR Novel species JAJOMZ000000000

J379 Unclassified
Parviterribacteraceae
Bacterium

Parviterribacter kavangonensis
D16/0/H6T

95.96 C1 FRR Novel genus CP088295

J426 Phenylobacterium sp. Phenylobacterium
muchangponense A8T

98.38 Curie 1/10 R2A Novel species JAJOMY000000000

J428 Mesorhizobium sp. Mesorhizobium qingshengii
CCBAU 33460T

98.30 Curie 1/10 R2A Novel species JAJOMX000000000

J452 Pseudomonas sp. Pseudomonas campi S1-A32-2T 99.86 Curie lactate Novel species CP088294
aSimilarity (%) indicates the percentual 16S rRNA gene sequence match with the closest type strain.
bOrigin describes the water spring of origin.
cMedium indicates the list of media with which the strains were cultured.
dAll genomes are available in the NCBI assembly database under the indicated accession numbers.

FIG 2 (a) Relative abundance of dereplicated isolates (at the level of genus and class) in 4 radioactive water springs. (b) Phylogenetic tree showing evolutionary
relationship of isolates. This Maximum Likelihood phylogenetic tree was constructed based on trimmed partial 16S rRNA gene sequences (V2-V4 regions, ;590 bp).
Phylogenetically novel isolates are highlighted with red dots. The outer circle depicts the origin of isolates. A = Agricola, B = B�ehounek, C = C1, D = Curie.
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of the isolated cultures to menadione (80mM) and hydrogen peroxide (9.8 M). The growth
inhibition zones of the reference strain D. radiodurans DSM 20539T were very similar for
menadione and hydrogen peroxide, 18 and 17 mm, respectively. The majority of the iso-
lates were more resistant to menadione than D. radiodurans DSM 20539T, with the most
resistant isolates having an inhibition zone radius of 0–5 mm. These isolates belonged to
the Pseudomonadaceae, Sinobacteraceae, Bradyrhizobiaceae, and Caulobacteraceae families.
In addition, hydrogen peroxide appeared to be a stronger growth inhibitor than menadi-
one (Fig. 3), with the most resistant isolates being those of the genera Bacillus, Bosea,
Microbacterium, and Pseudomonas. Several isolates from the families Micrococcaceae,
Bacillaceae, Moraxellaceae, Pseudomonadaceae and even the isolate of the Deinococcus
genus isolated from B�ehounek spring exhibited higher resistance to both stress agents
than D. radiodurans DSM 20539T.

Features of the endogenous defense system in the phylogenetically novel taxa.
Seven out of the 12 phylogenetically novel isolates were more resistant to menadione
than D. radiodurans DSM 20539T, with those affiliated to the genera Pseudomonas (J452)
and Phenylobacterium (J367 and J426) exhibiting the highest resistance to menadione
(Fig. 4a). Fe-Mn superoxide dismutase and thioredoxin-dependent peroxiredoxin, which are
part of the antioxidant defense genes that enable the elimination of O2- and organic hydro-
peroxides (OHPs) were found to be present in all phylogenetically novel isolates (Fig. 4b).
Phenylobacterium sp. J367 contained 3 copies of the Fe-Mn superoxide dismutase gene,
whereas Pseudomonas sp. J452 and Parviterribacter sp. J379 contained 3 copies of thioredoxin-
dependent peroxiredoxin in their genomes. The genome of Aquincola sp. J276 contained a
diverse group of antioxidant defense genes when compared to other isolates. Assessment of

FIG 3 Response of bacterial isolates to menadione (a) and hydrogen peroxide (b). The response of individual isolates belonging to a particular family are
plotted, with the ability of isolates to resist the oxidative stress deduced as an inhibition zone radius (mm) created around the soaked sterile discs. The
boxplots were constructed from the values grouped according to their family members. The green line indicates the radius of the inhibition zone for the
reference strain Deinococcus radiodurans DSM 20539T.
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the glutathione-mediated quenching of ROS revealedg-glutamyltranspeptidase and isocitrate-
dehydrogenase [NADP] genes in all the strains except for Sphingomonas sp. J344 and
Phenylobacterium sp. J367, respectively (Fig. S12c). The glutathione peroxidase gene was pres-
ent in 3 copies in the Pseudomonas sp. J452 genome, but was absent in 2 of the isolates (J379

FIG 4 Response to induced oxidative stress as zone of clearance upon exposure of strains to hydrogen
peroxide and menadione (a) and presence of genes (shown as a gene copy per genome) involved in
endogenous defense mechanism (EDM), including antioxidant defense genes (b) and completeness of
diverse carotenoid biosynthesis pathway (c) in genomes of phylogenetically novel taxa from Jáchymov’s
radon water springs.
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and J428), as well as in the reference strain D. radiodurans DSM 20539T. In summary, the bacte-
rial strains Pseudomonas sp. J452, Phenylobacterium sp. J367, Phenylobacterium sp. J426, and
Aquincola sp. J276 with abundant stress response genes also had the highest tolerance to
hydrogen peroxide and menadione (Fig. 4 a and b, and Fig. S12 a and b).

Diverse carotenoid biosynthesis pathways were detected in the genome of isolate J276
(Fig. 4c). Neurosporene biosynthesis pathway was found in isolates J193, J276, J315, and J344,
whereas b-carotene biosynthesis was detected in isolates J276 and J315. Furthermore, genes
encoding the biosynthetic pathways of spheroidene and spheroidenone as well as spirilloxan-
thin and 2,2’-diketo-spirilloxanthin were detected in the genome of isolate J276. Nostoxanthin
biosynthesis was found in the genomes of isolates J315 and J344 (Fig. 4c). DNA repair genes
were ubiquitously present in all the isolates, including those encoding recombination protein
RecA, single-stranded-DNA-specific exonuclease RecJ, DNA helicase UvrD/PcrA, and DNA
recombination and repair proteins RecO and RecR (Fig. S12c). The key DNA repair and
recombination protein RadA was present in 8 isolates (Fig. S12c). It is noteworthy that the
gene for multifunctional exodeoxyribonuclease III was present in all isolates, but absent in
Flavobacterium sp. J372. Similarly, genes encoding for DNA mismatch repair proteins MutL
and MutS were found in all the isolates except for Parviterribacteraceae strain J379.

The Spearman's correlation revealed a potential role of endogenous defense mechanism
(EDM) genes in response to oxidative stress (Fig. 5). The presence of genes that were positively
correlated with tolerance to both hydrogen peroxide and menadione included:mutL,mutS
(DNA mismatch repair protein) (P # 0.05 and P # 0.001, respectively), and glutathione
peroxidase (P # 0.01 and P # 0.001, respectively). A negative correlation was observed
for endonuclease IV (P # 0.05 and P # 0.001, respectively) and isocitrate dehydrogenase
(NADP) (P # 0.05 and P # 0.001, respectively). The presence of the recF gene (DNA
recombination and repair protein) (P # 0.05) was positively correlated with tolerance to
hydrogen peroxide, whereas catalase-peroxidase (P # 0.05), g-glutamyltranspeptidase
(P # 0.05) and glucose-6-phosphate 1-dehydrogenase (P # 0.01) were correlated nega-
tively. Similarly, the genes for catalase-peroxidase (P # 0.05), the superoxide dismutase-
Cu-Zn family (P # 0.001), DNA polymerase IV (P # 0.001), radA (DNA recombination and

FIG 5 Spearman's rank correlation analysis representing relationship between response to induced oxidative stress (menadione and hydrogen peroxide)
and the presence of endogenous defense genes. The positive correlation (RED) implies a proportionate abundance of the genes and thereby an active response
toward the induced oxidative stress and vice-versa. Significant correlations are denoted with an asterisk (where ***, P # 0.001; **, P # 0.01; *, P # 0.05).
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repair protein) (P # 0.001), 5-oxoprolinase (P # 0.001), glutamate-cysteine ligase
(P# 0.001), and glutathione synthetase (P# 0.001) were positively correlated with toler-
ance to menadione, whereas crtL (Lycopene b-cyclase) (P # 0.01), Mn-containing cata-
lase (P# 0.05), DNA polymerase I (P# 0.001), endonuclease III (P# 0.001), and formami-
dopyrimidine-DNA glycosylase (P# 0.001) were correlated negatively.

DISCUSSION

Radionuclides in subsurface waters are a common phenomenon on Earth. The majority
of radioactive elements in water come from uranium, thorium, and actinium series, with the
most abundant elements being 238U, 236Ra, and 232Th (38). Radon, produced by the radioac-
tive decay of uranium and radium, is a very frequent radioactive gas contained in water
springs (39–41), an example being Jáchymov's water springs. In general, springs with very
low (tens of Bq/l) or even negligible (tenths of Bq/l) concentrations of 222Rn are frequently
found in nature (41–43), however higher concentrations of 222Rn ranging from hundreds of
becquerel (44, 45) to units of kilobecquerel per L (46) are less common and concentrations
of 222Rn in tens of kilobecquerels per L are rarely found in the world. Among these excep-
tional sites are the Stripa granite groundwaters (Sweden), with an 222Rn concentration of
;100 kBq/l (40, 47), and also the highly radioactive water springs of Jáchymov studied here,
with the concentration of 222Rn reaching up to 24 kBq/l (29).

In general, due to their deep location and inaccessible terrain, underground water
springs are rarely explored, and so their microbial colonization remains hidden. So far, only
a small number of radioactive water springs have been subjected to microbial screening
(48–50), and extremely little is known about the composition of the microbial communities
of underground radioactive springs. Nevertheless, the aforementioned microbial analyses
of thermal (51) and underground non-radioactive springs (52) confirmed the presence of
diverse rock-dwelling bacteria belonging to various clades, many of which had been unex-
plored. The study of Enyedi, 2019 (50) in Hungarian radioactive springs even revealed the
presence of previously unidentified taxa of Chloroflexi, Nitrospirae, Proteobacteria, Planctomycetes.
In addition, the application of a series of modified cultivation approaches led to the isolation of
various novel bacterial species (50). The 16S rRNA gene-based and metagenomic analyses also
proved the presence of several members of Archaea in many water springs (51–54). In fact,
extreme aquatic biomes have previously appeared to be a promising source of novel prokary-
otic taxa, such as Obsidian Pool in Yellowstone National Park (55) from which the novel 16S
rRNA gene sequences of the bacterial phylum Armatimonadetes (56), previously termed OP10,
were recovered. Amember of the novel bacterial phylum Caldiserica (57) (former candidate phy-
lum OP5) was also first described in a hot spring in Yellowstone National Park (55). In this report,
a culturomic survey was conducted of four springs from the world’s oldest radium mine
devoted to the extraction of radon-saturated water by applying ‘elemental’ culture procedures
using media containing substrates relevant to oligotrophic environments (Fig. 1). These results
clearly support the hypothesis that extreme environments, such as the radon waters analyzed
here, host phylogenetically novel microorganisms (Fig. 2b and Table 2). Our findings correspond
with previously performed culture-dependent studies of radioactive sites, where novel bacterial
species were found (58, 59). Moreover, the assumption that radon water populations are able to
resist oxidative stress was confirmed (Fig. 3); some 30% of the tested isolates, in particular those
from the Micrococcaceae, Deinococcaceae, Bacillaceae, and Moraxellaceae families, exhibited
lower sensitivity to hydrogen peroxide than D. radiodurans DSM 20539T, which was reported to
be highly resistant to oxidative stress (60). In addition, the vast majority of the isolates were
more resistant to menadione (80 mM) than D. radiodurans DSM 20539T (Fig. 3). Even the isolate
of the genus Deinococcus (strain J250) was more resistant to both hydrogen peroxide and men-
adione (Fig. 3).

Bringing environmental microorganisms to pure culture remains very difficult (17), due to
their adaptation to low concentrations of nutrients or their possible occurrence in the dor-
mant phase. Generally, the usage of conventional or nutrient-rich media mostly leads to the
acquisition of a less diverse set of fast-growing bacteria rather than heterogeneous commun-
ities comprising both fastidious and slow-growing ones (27, 61, 62). With that in mind, in our
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study specific cultivation procedures such as prolonged cultivation time, highly diluted inoc-
ula, and relatively low concentrations of growth substrates were employed, enabling the iso-
lation of pure cultures related to taxa reported only recently, such as Nevskia lacus (63),
Aquincola rivuli (64), Phreathobacter stygius (65), or even 12 species that have not been iso-
lated yet (Table 2). Although we mainly isolated members of Proteobacteria (a-, b-, g-), fol-
lowed by Actinobacteria, Firmicutes, Bacteroidetes, and Deinococcus-Thermus phyla, the diver-
sity of the isolates was much greater than those reported from hot springs, possibly due to a
more diverse set of culturing approaches. For instance, using only nutrient agar medium, Sen
and Maiti, 2014 (66) retrieved less than 10 bacterial genera, predominantly composed of
Bacillales, and Narsing Rao, 2021 (31) isolated members of 12 genera using 6 different media.
Contrarily, Enyedi, 2019 (50) isolated 452 bacterial strains from biofilm samples of the Gellért
Hill discharge area of the Buda Thermal Karst System (Hungary) and identified 51 genera (ver-
sus 44 in this study) and at least 8 potentially novel species (versus 12 in this study) while
using environment-mimicking strategies. Some isolates in our study belonged to families usu-
ally found in soils or rhizosphere, such as Bradyrhizobiaceae and Rhizobiaceae (Fig. 2a), yet
their isolation from subsurface waters is in accordance with the study of Pedron, 2019 (67),
who isolated populations of these families from Italian thermal springs. In fact, members of
Bradyrhizobiaceae and Rhizobiaceae as well as other bacteria living in aquifers can naturally
occur in sediments or on rock surfaces attached to mineral particles (67), and thus their pres-
ence in spring water samples can be expected. Numerous studies reported an increase in the
diversity of their isolates, including those hitherto uncultured, when cultivation strategies
relied on mimicking the conditions experienced at a particular site (68, 69) or by performing
the cultivation in that same environment (23). In line with the hypothesis that Jáchymov's
very deep and ancient radon waters are extremely nutrient-poor matrices where microorgan-
isms utilize inorganic substrates from the surrounding rock and water or utilize scarce organic
matter that has infiltrated into the underground through groundwater, we used plain spring
water as the main component of the cultivation media. Since we obtained more than 130
isolates using this non-supplemented groundwater-based medium (Fig. 1), we suppose that
this imitation of the environment contributes to increased cultivation yields similarly to Wu,
2020 (70). Diluted R2A medium, traditionally used for the cultivation of environmental
microbes (71–73), was also found to be effective for the cultivation of a broad range of
Jáchymov's spring microbes (Fig. 1). In terms of the isolation of previously unidentified taxa,
the spring-water-amended 1/10 R2A and lactate medium turned out to be the most suita-
ble for such cultivation, yet members of novel species were also isolated on FRR and
Thiobacillus agar (Table 2). Our results thus indicate that various types of media should be
applied in searches for phylogenetically novel taxa from oligotrophic environments.

Members of 11 potentially novel species spanning the Proteobacteria and Bacteroidetes
phyla, and a member of a putative novel genus belonging to the Parviterribacteraceae family
(Table 2 and Fig. S1–S11) were isolated and characterized. The closest relatives of some of the
newly described taxa were previously isolated from aquatic environments, such as Rhizobacter
profundi DS48-6-5T (74), isolated from freshwater sediment in Korea; Aquabacterium pictum
W35T (75), isolated from Tama River in Japan; Aquincola tetriaricarbonis L10T (76), isolated from
contaminated groundwater (Germany); or Flavobacterium album HYN0059T (77), isolated from
a freshwater lake (Korea). Other closest relatives were described in different types of soils,
such as Hymenobacter psychrotolerans Tibet-IIU11T (78) in permafrost sediment in China,
Sphingomonas suaedae XS-10T (79) in the rhizosphere of Suaeda salsa (China), Phenylobacterium
immobile ET (80) in chloridazon-contaminated soil, and Phenylobacterium muchangoponense
A8T (81) in beach soil (Korea), or Pseudomonas campi S1-A32-2T (82) in grassland soil.
Mesorhizobium qingshengii CCBAU 33460T (83), the closest type strain to isolate J428, was
isolated from root nodules of Astragalus sinicus. Our study thus contributes to a growing
body of studies that report radioactive sites and water springs as sites with as-yet uncultured
or unidentified microorganisms, often with desired capabilities, such as UV-radiation resistant
Deinococcus sahariensis isolated from water springs in the Tunisian Sahara (84), org radia-
tion-tolerant Sphingomonas jaspsi isolated from fresh water in the Misasa region in
Japan, which is known for its high natural radioactivity (85).
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Radioactive radiation causes serious genomic damages in exposed microorganisms by the
direct interaction ofg-photons with DNA, and mainly indirectly by the generation of superox-
ide radicals, in the form of ROS, resulting in oxidative stress (86). Such ROS, predominantly O2-,
OH-, and NO-, damage the structures of various biomacromolecules and thus disrupt their
function (86). Radiation resistance in microorganisms is maintained by several mechanisms.
Deinococcus radiodurans, which is reported to be the most radio-resistant bacterial species (60,
87), uses a highly efficient DNA repair system (88). Apart from that, a recent study by Yang,
2021 (86) suggested that D. radiodurans possesses 2 levels of bacterial EDM against radiation,
namely structural adaptations, such as the structure of cell membranes, cell envelopes, ge-
nome, etc., and non-structural adaptations, such as cell components scavenging or quenching
ROS (86). Among the key components of EDM, carotenoids have been proposed to be crucial
in the reduction of radiation-induced membrane damage (86). Besides these, various classes
of proteins involved in redox processes have been identified to play a role in EDM, including
enzymes such as superoxide dismutases, catalases, peroxidases, glutathione peroxidases, per-
oxiredoxin, and coenzyme pyrroloquinoline-quinone (89–92). Additionally, the synthesis of glu-
tathione in bacteria has been shown to influence endogenous enzymatic antioxidants for
redox regulation, which in turn induce tolerance of oxidative stress (93, 94). Finally, increased
exposure to radiation increases the burden of the mutagenesis, and its mitigation necessitates
an effective DNA repair mechanism (95).

The high radon level in Jáchymov's water springs very likely represents conditions that
have forced the indigenous microorganisms to undergo some of the above specific adapta-
tions. Radio-resistant microorganisms are often co-resistant, or at least less sensitive, to other
types of DNA- or protein damage caused by UV-irradiation, desiccation, exposure to toxic
metals, high temperatures (50), or by certain chemical compounds such as menadione or
hydrogen peroxide that were also used here as oxidative stress inducers. Many of our iso-
lates proved to be more tolerant to menadione than the reference strain D. radiodurans
DSM 20539T, and some were more resistant to hydrogen peroxide (Fig. 3). The greater resist-
ance to oxidative stress of the isolates studied here might be also ascribed to several other
causes. For example, the isolates of the genus Bacillus intrinsically contain multiple copies of
the menaquinone MK-7 (96), which are involved in the respiratory electron transport chain,
and their reduced forms protect the cellular membranes against oxidation (97). The diverse
pigmentation of Brevundimonas (orange), Deinococcus (pink), Methylorubrum (purple),
Kocuria (yellow), and Sphingopyxis (yellow-orange) strains, which is often the result of
the presence of various carotenoids, can play a pivotal role in the response to radia-
tion, as in other UV/a/b/g radiation-resistant microorganisms such as red-pigmented
Deinococcus radiodurans (87, 98) and Rubrobacter radiotolerans (99, 100), or orange-
red-pigmented Brevundimonas sp. ZF12 (58). Carotenoids, being radical scavengers,
have a direct protective role in quenching oxidative stress in cells. Their importance
was confirmed by the study by Zhang, 2007 (101) and the follow-up study by Yang, 2021
(86), where mutants of the type strain D. radiodurans DSM 20539T exhibited increased sen-
sitivity to oxidative stress. In this regard, the genomic analysis of colored phylogenetically
novel bacterial isolates, including pink-colored isolates J193 and J276 or yellow-colored
J315 and J344, revealed diverse carotenoid biosynthesis pathways, with neurosporene bio-
synthesis being present in all four isolates (Fig. 4). The biosynthesis of b-carotene, spher-
oidene, spheroidenone, spirilloxanthin, and 2,2’-diketo-spirilloxanthin were other major
carotenoid biosynthesis pathways detected in these isolates (Fig. 4).

The phylogenetically novel bacterial isolates were mostly rich in G1C content. In fact, 9
out of 12 isolates had a G1C content of$65% (Table S3). The higher environmental tempera-
ture has been associated with increased heat-induced mutagenesis, resulting in increased
DNA repair activity and G1C content in microorganisms (95). Thus, the observed G1C con-
tent of the bacterial isolates is very likely part of an EDM to tolerate heat and/or radiation. The
genomic analyses also showed that the isolates harbor a wide spectrum of genes encoding
for ROS-scavenging enzymes (Fig. 4b). The potential of the isolates for withstanding oxidative
stress was supported by the analysis based on Spearman’s rank correlation between the pres-
ence or absence of EDM genes and the response to oxidative stress (Fig. 5). One of the genes
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positively correlated with the response to hydrogen peroxide and menadione was glutathione
peroxidase (P# 0.01 and P# 0.001, respectively) (Fig. 5). Similarly, antioxidant genes such as
those encoding catalase-peroxidase (P # 0.05) and the superoxide dismutase-Cu-Zn family
(P # 0.001) were also positively correlated with tolerance of menadione. The presence of
diverse catalases, peroxidases, superoxide dismutases, and glutathione peroxidases has
been extensively reported to reduce the deleterious impact of oxidative stress on macromo-
lecules (102–107). Additionally, a positive correlation between hydrogen peroxide or mena-
dione tolerance and the presence of genes encoding MutL, MutS (DNA mismatch repair pro-
tein) (P # 0.05 and P # 0.001, respectively) emphasize the role of DNA repair in the
adaption to this stress (95). The DNA recombination and repair protein RadA (P # 0.001)
was also positively correlated wiht the response to menadione. The DNA recombination and
repair protein RadA, along with the recombination protein RecA, have been demonstrated
to play a key role in extensive DNA repair (108). Although the recombination protein RecA
was present in all the isolates, the absence of DNA recombination and repair protein RadA
in four isolates might have a detrimental impact (Fig. S12). In fact, our isolates with missing
radA genes were less tolerant to hydrogen peroxide (Fig. 4a and Fig. S12). Similarly, the ab-
sence of DNA mismatch repair proteins, namely, MutL and MutS in Parviterribacteraceae
strain J379, could be coupled with the observed limited tolerance to oxidative stress. The
positive correlation of the presence of genes responsible for glutathione synthesis, such as
glutamate-cysteine ligase (P # 0.001) and glutathione synthetase (P # 0.001), with menadi-
one tolerance emphasizes the glutathione-mediated scavenging of ROS (93, 94).

In summary, our culturomic approach using low concentrations of growth substrates or
the environmental matrix itself (i.e., water filtrate) in culturing media combined with pro-
longed cultivation time resulted in the isolation of a broad spectrum of microorganisms. In
order to further increase cultivation yields, experimental designs should incorporate strat-
egies that take into account information derived from metagenomic studies, such as those
employing genome-informed media, which were already shown to be beneficial for the iso-
lation of symbiotic Nanoarcheon species (21) or for the cultivation of Xylella fastidiosa, which
requires amino acids for growth (109). Nonetheless, our study contributes to the recent key
progress in understanding prokaryotic life, taxonomy, physiology, and ecology which has
been made by exploring extreme environments (110), which include Jáchymov’s radioactive
springs studied here. Our results confirm that microorganisms living under extreme condi-
tions bear various adaptive or coping mechanisms to thrive under selective pressure and
can thus provide a wide spectrum of capabilities potentially exploitable in diverse scientific,
biotechnological, or medical disciplines (111). In the past, radiotolerant cultures have been
found to be useful in several biotechnological applications, such as bioremediation of nu-
clear waste, bioethanol production, or for medical purposes such as an acquisition of UVR-
protective or desiccation-protective compounds further used in the prevention of skin can-
cer (112). Therefore, the future microbial exploration of distinct extreme environments
should stay in the spotlight, not only as cultivation-independent studies, but also as studies
focused on culturomics and cultivation improvements.

MATERIALS ANDMETHODS
Site description and sample collection. The 4 radioactive water springs Agricola (water resource

yield 10 l/min., temperature 29°C, radioactivity 20 kBq/l), B�ehounek (300 l/min., 36°C, 10 kBq/l), C1 (30 l/min., 29°C,
11 kBq/l), and Curie (30 l/min., 29°C, 5 kBq/l) spring up at a depth of 500 m below the surface of gneiss mountain
bedrock, in the former silver-uranium mine Svornost (Jáchymov, Czech Republic; GPS 50°22922.90N 12°54942.10E).
The chemical composition of the water springs is summarized in Table S1. Under sterile conditions, 20 liters of
each spring water was collected and separately filtered with low vacuum through Merck Millipore Sterito Sterile
Vacuum Bottle-Top Filters with PES filter membranes with a 0.2mm pore size (Fisher Scientific). Filtered water (fil-
trate) was preserved for further experiments overnight at 28°C or 37°C (according to the spring’s temperature).
Filter membranes with retained cells were excised from the plastic cup using a sterile pair of tweezers, placed
into 25 mL of sterile filtrate of the respective spring water, and incubated for 48 h at 120 rpm.

Media preparation. Six nutrient-poor media imitating the original conditions of the water springs
and 2 nutrient-rich media were used in this study (Table 1). The nutrient-poor media were prepared as follows:
the filtrate of each spring, acquired in the previous filtration step, was supplemented with acetate/lactate/succi-
nate to a final concentration of 0.05%wt/vol or was left unsupplemented with any carbon source, and was solidi-
fied with extra pure Noble agar (Difco) at a final concentration of 1.8%wt/vol. These media are hereinafter
referred to as acetate medium, lactate medium, succinate medium, and non-supplemented medium,
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respectively. The fifth nutrient-poor medium, an Autotrophic medium containing mineral salts and citrate, was
prepared according to Soriano and Walker, 1968 (113). The sixth nutrient-poor medium, a Thiobacillus agar
(DSMZ, no. 36m), and 2 nutrient-rich media, 10x diluted Reasoners' 2A medium (1/10 R2A; Merck) and FRR 6,
FRR 8 agar (DSMZ no. 822, herein referred to as FRR), were prepared according to the manufacturers' instruc-
tions, except that the distilled water was replaced with the filtrate.

Inoculation and cultivation. After 48 h, each filtrate with cells released from a filter membrane was
used as an inoculum. One hundred mL of the original, 10x, 100x, and 1,000x diluted inoculum were
spread evenly over the 8 types of solid media, each dilution in triplicates. Inoculated and sealed plates
were incubated at 28°C or 37°C, according to the respective water spring’s temperature, for 6 to
14 weeks until the appearance of colonies.

Collection and identification of isolates. Grown colonies were transferred onto fresh 10x diluted
Plate count agar medium (1/10 PCA, Merck) and subcultured until pure cultures were obtained. These
were then identified by MALDI-TOF MS using a MALDI Biotyper 3.1 Autoflex speed MALDI-TOF mass
spectrometer (Bruker Daltonics). The subsequent dereplication was carried out based on the approach
described in Strejcek, 2018 (114). Briefly, mass spectra obtained with the MALDI Biotyper were clustered
using 0.90 cosine similarity cut-off to mimic bacterial species delineation. A random member was chosen
from each cluster as a representative culture. The validity of dereplication was confirmed by subsequent
identification of representative cultures based on the 16S rRNA gene sequencing.

Genomic DNA of dereplicated isolates was isolated by thermal lysis (by resuspending an entire microbiologi-
cal loop of biomass in water for molecular biology and heating it at 98°C for 20min) or, for hardly lysable cultures,
with the aid of a PureLink Genomic DNA Kit (Invitrogen) according to the manufacturer’s instructions. The nearly
complete 16S rRNA gene was amplified with 8-27F primer (59-AGAGTTTGATCMTGGCTCAG-3'') (115) and 1509
21492R primer (59-GYTACCTTGTTACGACTT-39) (115) in 15 mL reactions containing: 7.5 mL KAPA HiFi HotStart
Mix 2x (KapaBiosystems, Roche; 0.02U/mL; mixture already contains Mg21 and dNTPs); 0.3 mM primers (Sigma-
Aldrich, UK); 1mL of DNA template (5-20 ng/mL); and 6,41mL of water for molecular biology (Sigma-Aldrich, UK).
The PCR conditions were as follows: 5 min at 95°C; 25 cycles of: 20s at 98°C, 15s at 56°C, 15s at 72°C; 5 min of final
extension at 72°C. Amplification was verified on 1% agarose gel. Where there were insufficient DNA yields, this
was followed by a second round (reconditioning run) in which the concentration of chemicals was analogical to
the first run, differing only in the final volume (25mL) and in the DNA template (2.5mL of previous PCR product)
(116). PCR conditions were also analogical to those of the first run, only the number of cycles was decreased to 8
to 12 depending on the amplification efficiency in the first run. The obtained amplicons were purified with the
aid of a DNA Clean and Concentrator kit (Zymo Research), sequenced unidirectionally with 926-907R (59-
CCGYCAATTYMTTTRAGTTT-39) primer (117), and subjected to Sanger sequencing. All sequences were trimmed
and aligned in MEGAX (118) and subsequently identified against the RefSeq RNA database (NCBI) and
EzBioCloud 16S rRNA gene sequence database (119). Where there was ,99% sequence similarity to the 16S
rRNA gene of the closest type strain, another round of sequencing was performed with 1509R-1492R primer (59-
GYTACCTTGTTACGACTT-39) to obtain a nearly complete 16S rRNA gene sequence. Isolates were stored as 25%
glycerol stocks at280°C.

In order to assess the evolutionary relationship of dereplicated Jáchymov’s isolates, obtained partial 16S rRNA
gene sequences of isolates were aligned using the AlignSeqs and StaggerAlignment functions from the package
DECIPHER R (120) (v.2.20.0), while taking into consideration the secondary RNA structure. Since the individual
sequences were of different lengths, the resulting multiple sequence alignment (MSA) was manually trimmed to
contain only the shared sequence region. The resulting MSA consisted of 83 unique sequences and was 677 posi-
tions long, effectively covering the V2–V4 regions of the 16S rRNA gene. The phylogeny reconstruction was done
using IQtree (v.2.1.2) ModelFinder chose TIM3e1I1G4 as the best DNA model according to the Bayesian
Information Criterion. The phylogenetic tree was visualized and annotated using ggtree. The tidyverse packages
were also used for creating accompanying bar plots. All statistical analysis were performed in R.

Taxonomic classification of potentially novel taxa. All isolates with #98.65% 16S rRNA gene
sequence similarity to their closest type strain were subjected to whole-genome analysis to confirm their
taxonomic novelty (121). For the isolation of genomic DNA, all strains were grown for 24–72 h on solid 1/10 PCA,
R2A, or FRR. Cultures were harvested and the genomic DNA was isolated using a PureLink Genomic DNA Kit
(Invitrogen) following the manufacturer's instructions. The high-quality DNA was processed for the whole ge-
nome library preparation according to Lopez-Echartea, 2021 (122). The obtained libraries were pooled in equimo-
lar concentrations prior to sequencing in an Oxford Nanopore Technologies MinION platform using a FLO-
MIN106 flow cell. Guppy (v3.2.10) was used to perform the base-calling of nanopore sequencing signals, which
was followed by Porechop- and Filtlong-based quality filtering (https://github.com/rrwick/Porechop; https://
github.com/rrwick/Filtlong), which included removal of the sequencing adaptors, low-quality reads (#q10), chi-
meric sequences, and filtering based on the length of the reads (#500bp). The quality-filtered reads were used
for genome assembly using the Canu assembler (v1.7) (123). As the nanopore data are prone to a high sequenc-
ing error rate, the genome assemblies need to be polished prior to their downstream analysis. The polishing of
the Canu assemblies was carried out using Medaka (v1.4.3) (https://github.com/nanoporetech/medaka). CheckM,
available on the Kbase server, was used to assess the quality and the completeness of the genome assemblies
(124, 125). Genome annotations for the inference of the functional potential of the bacteria was carried out using
the combination of Prokka and PATRIC online server (126–128). The taxonomic characterization of the potentially
novel bacterial strains was initiated by extracting the 16S rRNA genes from the obtained genomes. To confirm
the validity of the 16S rRNA gene sequences extracted from genomes, a manual comparison to the sequences
obtained by Sanger sequencing of the 16S rRNA gene amplicons from individual isolates was performed. Both
methods resulted in identical sequences. The 16S rRNA gene sequences were searched against the EzTaxon data-
base (https://www.ezbiocloud.net) (119) to assess the taxonomic affiliations and to retrieve sequences of the val-
idly published closely related strains. The phylogenetic relationship of the strains under study and the associated

Bacteria of the World's Oldest Radium Mine Microbiology Spectrum

September/October 2022 Volume 10 Issue 5 10.1128/spectrum.01995-22 13

https://github.com/rrwick/Porechop
https://github.com/rrwick/Filtlong
https://github.com/rrwick/Filtlong
https://github.com/nanoporetech/medaka
https://www.ezbiocloud.net
https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.01995-22


strains was determined using the UBCG pipeline, which applies the approach of core gene-based phylogeny
reconstruction (129). Additionally, the potential taxonomic novelty of the strains was further assessed by analyz-
ing both average nucleotide identity (OrthoANI) and the percentage of conserved proteins (POCP) (130, 131). The
genome assemblies generated in this study were submitted to the NCBI Genome Archive and can be accessed
under Bio Project ID PRJNA782494 or with the genome accession number as enlisted in Table 2.

Determination of oxidative stress response. In order to assess the response of new isolates to oxi-
dative stress, the oxidative stress inducers selection and the inhibition zone assay were performed according to
Vatanaviboon, 2002 (36), with subtle adjustments. Briefly, all examined isolates were subcultured in liquid R2A
medium (starting OD600nm ; 0.05) and aerobically cultivated at 28°C or 37°C (according to the isolate’s origin)
until the log or late log-phase (OD600nm ; 0.5, 8–120 h of cultivation, depending on the isolate). After that, 0.5 mL
of the log-phase culture was mixed with 4.5 mL of R2A molten agar (0.7%wt/vol,; 50–55°C) and overlaid on solid
R2A medium plates (1.8%wt/vol agar). Menadione 80 mM (2-methyl-1,4-naphthoquinone; Merck) and hydrogen
peroxide 9.8 M (30%wt/wt; Merck) were used as oxidative stress-inducing agents. Sterile 6 mm paper discs (Merck)
were soaked with 5mL of a stress agent and placed onto completely solidified R2A medium with spread culture.
Plates were then cultivated at 28°C or 37°C according to the isolate’s origin. The type strain D. radiodurans DSM
20539T, which exhibits a strong resistance to oxidative stress, including that induced by hydrogen peroxide (60),
was used as a reference strain to determine the resistance/sensitivity of the isolates to oxidative stress. Growth in-
hibition zones were evaluated as the inhibition zone radius (mm) after 1–5 days of cultivation.

Oxidative stress tolerance-associated genes in phylogenetically novel taxa. The genomes of
identified phylogenetically novel taxa were screened for the presence of genes involved in protecting
against oxidative damage by various ROS, such as those encoding for catalases, metal-catalases, alkyl hydroperox-
ide reductases, and organic hydroperoxides as well as carotenoid biosynthesis enzymes, DNA repair enzymes,
glutathione, and other regulatory genes, including those encoding the redox-sensitive transcriptional activator
SoxR and hydrogen peroxide-inducible genes activator OxyR. These genes collectively account for the EDM in
the radiotolerant type strain D. radiodurans (39). Radiotolerant type strain D. radiodurans DSM 20539T was used
as a control for the subsequent analyses. The genes involved in oxidative stress tolerance were retrieved from the
genome of D. radiodurans DSM 20539T, and were searched against the genomes of phylogenetically novel bacte-
rial isolates using blastp. The number of stress response genes among the bacterial isolates was visualized using
the software STAMP (132). Spearman's rank correlation was computed to describe the statistical relationship
between the response of bacterial isolates to menadione and hydrogen peroxide (i.e., phenotype) and the pres-
ence or absence of stress response genes (i.e., genotype). The correlation analysis was preceded by: i) transform-
ing the values (zone of clearance) of the response of bacterial isolates to menadione and hydrogen peroxide to
the inverse scale by negating the values, and ii) transforming the stress responses gene copy number to 0 or 1.
The data visualization was performed in R using the R packages ggplot2 and corrplot.

Data availability. The 16S rRNA gene partial sequences of obtained isolates are available in GenBank
under accession numbers OP012574-OP012694. The genome assemblies generated in this study were sub-
mitted to the NCBI Genome Archive and can be accessed under Bio Project ID PRJNA782494 or with the
genome accession number as enlisted in Table 2.
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