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CHRONIC OBSTRUCTIVE PULMONARY 
DISEASE (COPD) 
Etiology, prevalence and types 

COPD is a major cause of mortality and morbidity 

worldwide and poses an increasing global healthcare 

problem (1). The definition of COPD recognises the 

“abnormal”, exaggerated or amplified inflammatory 

response in the lung and systemically to cigarette smoking 

and noxious pollutions (2). The pattern of inflammation 

involves recruitment of lymphocytes, macrophages and 

neutrophils, as well as activation and damage to structural 

cells following the release of inflammatory chemokines 

and cytokines (2–5). In the Western world, the major driver 

of disease is cigarette smoke (CS) which is a complex 

mixture of organic chemicals, heavy metals and reactive 

oxygen species (ROS) (6–11). Importantly, Sopori (12) 

highlighted that chronic inhalation of cigarette smoke can 

modulate both innate and adaptive immune responses. 

Moreover, it has been speculated that many of the health 

consequences of chronic cigarette smoking might be due to 

its adverse effects on the immune system (13). Many 

inflammatory cells and their mediators, both of the innate 

and adaptive immune system, participate in the 

inflammatory processing of COPD. Macrophages, 

neutrophils and CD8+ T cells are the cells usually 

considered the prime effector cells in pathogenesis of 

COPD (14), but recently DCs have been suggested to be a 

potentially important new player/orchestrator of the 

pattern of inflammation that characterizes COPD (15, 16). 

The Global Initiative for Chronic Obstructive Lung 

Disease (GOLD) and American Thoracic Society 

(ATS)/European Respiratory Society  (ERS) COPD 

guidelines have defined COPD as a preventable and 

treatable disease characterized by airflow limitation that is 

partially reversible (17, 18).  It is likely that CS-induced 

inflammation is responsible, at least in part, for this airflow 

limitation.  Multiple intracellular signaling events occur by 

CS, which ultimately leads to the synthesis and release of 
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pro-inflammatory mediators, such as interleukin-8 (IL-

8)/CXCL8, IL-1β, and tumor necrosis factor-α TNF-α) (19, 

20).  CXCL8 levels, for example, are markedly increased in 

induced sputum of patients with COPD and this increase 

correlates with the increased proportion of neutrophils (22-

26).  

Besides CXCL8 and other inflammatory cytokines and 

chemokines, there is evidence for enhanced presence of 

markers of oxidative stress in COPD including nitric oxide 

(NO) (27), hydrogen peroxide (27) and lipid peroxidation 

products (28, 29) in COPD patients. NO is generated in 

COPD from the enzyme inducible NO synthase (NOS2), 

which is expressed in macrophages and lung parenchyma 

of patients with COPD, particularly in patients with severe 

disease (30).  In addition, there is increased expression of 

neuronal NOS (NOS1) in these patients (31). NO is 

markedly increased in exhaled breath of patients with mild 

asthma, reflecting the inflammatory process in the airways 

(31) but in patients with COPD exhaled NO levels are little 

raised above normal (32, 33) but are more clearly increased 

during exacerbations (32).  This may reflect formation of 

nitrotyrosine adducts which are markedly increased in 

COPD (14). 

  

COPD in Never Smokers 
Since the 1950s tobacco smoking has been linked to 

COPD (17) and smoking has long been widely considered 

as the single most important risk factor for COPD.  A great 

percentage of COPD mortality and morbidity in both 

genders can be attributed to cigarette smoking (14).  

Because of such well-association, a number of studies have 

concentrated on the role of smoking in COPD, focusing 

only on smokers, in particular, those with at least 20 pack-

years of cigarette smoking exposure (34).   

However, published data in recent years demonstrate a 

significant prevalence of COPD among never smokers.  

Increasing evidence suggests that non-smokers may 

account for between one fourth and one third of all COPD 

cases in contrast to the 50-70% whose COPD is smoking- 

related (37-40).  This prevalence varies across nations in 

both developed and developing regions and mainly relates 

to exposure to indoor pollution (35). However, little is 

known about the pathological features and molecular 

mechanisms underlying this type of COPD in non-smokers 

(36).   

Recognizing the etiology of generalized 

bronchopulmonary lesions in nonsmokers with an 

unknown history of previous exposure is a challenge to 

physicians and researchers.  Indoor air pollution includes 

coal and biomass fuel combustion, as well as ETS, which is 

one of the major etiologies for non-cigarette smoking-

induced COPD (41-44). Biomass fuels such as wood, 

charcoal, crops, twigs, dry grass and dung are widely used 

for cooking or heating in low-income countries (43).  

According to the World Health Organization WHO) 

estimation, approximately 50% of all households and 90% 

of rural households utilize biomass or coal fuels for 

cooking and heating worldwide (43).  This suggests that 

about three billion people worldwide are exposed to 

smoke produced from biomass or coal fuel burning (43).   

In China, approximately 60% of rural households use 

biomass fuel for cooking and 31% use coal fuel (44).  A 

recent investigation of 13 urban and rural areas in China 

demonstrated that 44.6% and 73.2% of non-smokers were 

exposed to biomass and coal smoke respectively, and 40% 

had poor ventilation in the kitchen (45).  This compares 

with the first study detailing the bronchopulmonary 

characteristics of 10 Iranian women who were exposed to 

the indoor smoke published by Amoli in 1998 (46).  

There may be some variability in the presentation of 

COPD in patients who are never smokers but exposed to 

biomass smoke.  In a large epidemiological study in China 

the prevalence of COPD in non-smokers was 5.2%.  

Exposure to biomass smoke and the presence of poor 

ventilation in the kitchen were independently associated 

with a higher risk of COPD among non-smokers. 

Interestingly, non-smokers with COPD were less likely to 

present with chronic productive coughs and lower BMI, 

while more likely to have received a physician diagnosis of 

asthma and respiratory diseases in childhood, than 
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smokers with COPD and may therefore have a distinct 

profile from that of smokers with COPD (47). 

Overall, females older than 55, with a previous history 

of a respiratory disease and without expectoration or 

wheezing predominate in populations characterized as 

having COPD despite being never smokers (48). 

Furthermore, charcoal workers exposed to wood smoke 

have increased respiratory symptoms and decreased 

pulmonary function (49).  

A Brazilian study of 1402 subjects has reported that the 

amount of particulate matter less than 2.5μm in diameter 

(PM2.5), whether from indoor or outdoor biomass fuel, 

was associated with worse lung function, greater 

respiratory symptoms and the development of COPD. 

These effects were associated with the duration and 

magnitude of biomass exposure and were exacerbated by 

tobacco smoke.  This was not seen in individuals from the 

same community exposed to liquefied petroleum gas (50).  

In a similar manner, Turkish women from rural areas 

exposed to biomass fumes were more likely to suffer from 

chronic bronchitis and COPD than women from urban 

areas even though the incidence of cigarette smoking was 

much greater in the urban population (51).  Furthermore, 

in a group of 561 females from Isfahan in Iran, age, 

childhood pulmonary infection, bread baking, carpet 

weaving and use of biomass fuels were all significant risk 

factors for chronic bronchitis with a reduced risk if using 

kerosene or gas.  Only 7 women were current or ex-

smokers (52). Importantly, the concentration of respirable 

particulate matter was up to 4-fold more concentrated 

indoors than outdoors. This confirmed the earlier data 

from Amoli in 1998 (46).  

It has been suggested that the majority of serious effects 

on morbidity and mortality related to air pollution occur 

via interactions with respiratory infection (53).  However, 

the mechanisms underlying the relationship between 

infection and the development of lower airway symptoms 

after air pollution exposure are not fully understood. 

Oxidant pollutant exposures have the potential to 

exacerbate the inflammatory effects of virus infections in 

the lower airway, especially in individuals with pre-

existing lung disease (53). 

The prevalence of respiratory illnesses and symptoms 

was considerably higher in mud and brick houses when 

compared with concrete houses, and higher in those living 

on hills and in rural areas when compared with flatland 

and urban areas. Regalado et al.(54) reported that women 

who used a stove burning biomass fuel in Solis, close to 

Mexico City, showed moderate airflow obstruction with 

COPD at stage GOLD II,. In addition, Orozco-Levi et al. 

(55) reported that most of their study population of non-

smoking women with COPD in Barcelona Spain) between 

2000 and 2003 were exposed to wood and charcoal smoke 

during their childhood and youth, but remained free of 

exposure for more than 25 years prior to presenting with 

symptoms of the disease.  The risk of developing COPD 

was greatest if subjects were exposed to both wood and 

charcoal (54).   

Furthermore, the incidence of non-smoking COPD 

(GOLD stage 2) in Northern Sweden reached 7% in almost 

2000 subjects studied and was associated with increasing 

age but not sex or exposure to environmental tobacco 

smoke.  Of those subjects with airway obstruction as 

defined by GOLD, 14% of men and 27% of women had 

never smoked (56). The authors did not report on biomass 

or wood smoke exposure in these subjects.  Although use 

of biomass fuel for cooking is not common in Western 

Europe, exposure to air pollutants in workplaces such as 

farming, coal mining, construction, gold mining, plastic, 

textile, rubber, leather manufacturing, manufacture of food 

products and automotive repair have been shown to be 

important and may account for the incidence of COPD in 

non-smokers in the UK and other parts of Europe (57). 

 

Is the immunological profile of COPD due 
to indoor pollution the same as that due to 
cigarette smoke? 

The immune cells involved in COPD development and 

progression have been summarized in several excellent 

reviews (58, 59).  Innate immune cells such as epithelial 
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cells and macrophages are activated by cigarette smoke, 

either directly or indirectly through pathogen-associated 

molecular patterns (PAMPs), following binding to pattern 

recognition receptors such as Toll-like receptors.  The 

adaptive immune system is also activated in response to 

cigarette smoke and involves stimulation of specific T 

helper subsets such as Th1 and Th17 CD4+ T cells, 

cytotoxic CD8+ cells and enhanced B-cell responses.  The 

persistent inflammatory insult from continued smoking 

leads to the development of lymphoid follicles.  More 

recently, the role of activated dendritic cells in this process 

has become clear (59).   

Cosio and colleagues have defined a 3 step process by 

which the cigarette smoke-activated immune system 

produces the classic pathological symptoms of COPD (58).  

In the initial innate immune response, epithelial cells 

which are damaged by cigarette smoke release a number of 

danger signals (PAMPs) that can result in the enhanced 

expression of chemokines and cytokines including CXCL8, 

IL-1β, TNFα, CXCL10 and GM-CSF.  Damaged epithelial 

cells can also release proteases such as elastin and MMPs, 

growth factors and other matrix modifying enzymes that 

can further the release of TLR ligands providing a feed-

forward inflammatory drive and enhanced tissue injury 

and small airway remodelling.  During this process, 

dendritic cells that have processes that interdigitate 

throughout the epithelial barrier, are activated and they 

migrate to local lymph nodes where they are able to 

activate T cell proliferation.  Production of TLR ligands 

within the airways also leads to direct stimulation of 

dendritic cells resulting in enhanced expression of the cell 

surface markers CD80 and CD86 and a local inflammatory 

environment conducive to T cell antigen presentation and 

proliferation of Th1, Th17 and cytolytic CD8+ T cells.  The 

role of Treg cells and γδ CD8+ T cells in limiting this 

progression can be overcome by the presence of IL-6 which 

is secreted from activated dendritic cells.   

In more severe disease, tolerance is lost and an 

adaptive immune response develops in the lung.  This is 

linked to the additional activation of IgG-producing B cells 

and the presence of increased oxidative and nitrosative 

stress and proteinases leading to the classical pathological 

features of COPD namely cell necrosis and apoptosis, 

immune and complement deposition, tissue injury with 

airway remodeling and emphysema. 

To date, there is little available data on the 

immunologic response to indoor smoke in the literature 

and thus investigation on this field could help to 

understand the pathogenesis of COPD with various 

etiologies.  One study has reported a pathological 

examination of wood smoke-associated lung disease 

WSLD) and compared this to pathological features of 

smokers with COPD (60). In Mexico, patients with WSLD 

were non-smoking women who used wood for cooking for 

a median of 45 years. Dyspnea, airway obstruction, air 

trapping, increased airway resistance, pathological 

evidence of anthracosis, chronic bronchitis, centrilobular 

emphysema and pulmonary hypertension were present in 

most patients with WSLD. Importantly, there were no 

significant differences in the histopathological findings for 

emphysema, goblet cell hyperplasia, bronchial wall 

inflammation, airway smooth muscle hyperplasia, 

bronchiolitis or aspects of remodelling between patients 

with WSLD and smokers with COPD.  

It is evident that the effect of wood smoke exposure on 

lung health requires long-term exposure.  Acute exposure 

to wood smoke at a concentration normally found in a 

residential area with a high density of burning wood 

stoves causes only a mild transitory inflammatory 

response as determined by fractional exhaled nitric oxide 

(FENO), exhaled breath condensate (EBC) and nasal lavage 

(61). 

The innate immune response of cigarette smokers and 

subjects exposed to other environmental pollutants such as 

organic matter may also be similar.  Although not studied 

in relation to indoor biomass fuels, the response of subjects 

to inhaled LPS and of cells to in vitro challenge to LPS is 

similar between pig farmers who are constantly exposed to 

high levels of pathogen-associated molecular patterns 

(PAMPs) and cigarette smokers (62) LPS challenge in vivo 
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had no effect on markers of systemic inflammation 

including the expression of Th2 cytokines and Toll-like 

receptors TLR) in peripheral blood cells in smokers or 

farmers compared with the marked effects seen in control 

subjects.   

Animal models of wood smoke exposure also support a 

similar pathology to cigarette smoke-induced emphysema 

(63).  Long term exposure (up to 7 months) of guinea pigs 

to pine wood smoke showed alveolar mononuclear 

phagocyte and lymphocytic peribronchiolar inflammation, 

epithelial and smooth muscle hyperplasia, and pulmonary 

arterial hypertension. Mild to moderate emphysematous 

lesions were observed in wood smoke-exposed animals 

after 4 months. A higher percentage of whole blood 

carboxyhemoglobin (COHb) and elastolytic activity in 

bronchoalveolar lavage macrophages and lung tissue 

homogenates was also observed.  Increased collagen 

breakdown coincided with emphysematous changes as a 

result of enhanced MMP-2 and MMP-9 activity. 

Emphysema also correlated with enhanced apoptosis 

supporting a role for MMPs and apoptosis in emphysema 

secondary to wood smoke exposure.  Wood smoke extract 

can also directly induce apoptosis of human lung 

endothelial cells through an oxidative stress-mediated 

mechanism (64).  

Exposure of rats to wood smoke caused bronchiolitis, 

hyperplasia and hypertrophy of bronchiolar epithelial 

lining cells, edema, hyperplasia of lymphoid follicles, 

peribronchiolar and perivascular infiltration of 

polymorphonuclear cells, and mild emphysema after 15 

days.  All signs apart from emphysema got progressively 

worse with continued exposure (65). In addition, exposure 

of allergic rats to 2.5 months of low-levels of wood smoke 

exacerbated the inflammatory responses to ovalbumin in 

allergic rats (66). However, not all animal models of wood 

smoke exposure were able to demonstrate COPD-like 

responses (67).  

There may also be a link between indoor pollution and 

COPD due to cigarette smoking in that the fine particles 

produced by biomass fuels may exacerbate or enhance the 

immune response to cigarette smoking (68).  Indeed, 

exposure to biomass fuel smoke in a controlled indoor 

setting led to an altered response in COPD patients 

compared to control subjects.  At baseline, COPD patients 

had more CD14+ monocytes and neutrophils than healthy 

controls, but fewer CD3+ T cells and an altered gene 

expression profile in PBMCs (57/186 genes) with the 

majority being down-regulated in COPD.  In contrast, 

genes such as NF-B1, TIMP-1, TIMP-2 and Duffy were 

up-regulated in COPD subjects. After 4 hours exposure to 

biomass fuel smoke, monocyte levels decreased in the 

healthy subjects but not in the COPD subjects.  In addition, 

genes relating to immune and inflammatory responses and 

cell-cell signalling were differentially affected in the 

PBMCs of COPD subjects. 

 

Autoimmunity and emphysema 
The description of increased B-cell follicles in more 

advanced COPD (69) emphasized the possible importance 

of an autoimmune component in COPD pathology (27,59). 

Autoimmune diseases are characterised by circulating 

antinuclear antibodies (ANA) and these are found at 

greater levels in the serum of 25-30% of COPD patients (70, 

71). Initial reports also described that auto-antibodies 

against elastin (72) have not been consistently reproduced 

(73) although autoantibodies against other matrix 

components of the airway such as collagen V have been 

reported (74, 75).   

Serum autoantibodies against bronchial epithelial cells 

along with corresponding IgG and complement (C3) 

deposition (76) have also been observed in COPD lung. In 

addition, smoking is associated with high levels of class-

switched memory B-cells IgG versus IgA in healthy 

controls), blood and IgG memory B-cells in the lung. There 

was also a greater number of anti-decorin antibody-

producing cells in COPD patients compared with healthy 

controls (77). More recently, Packard and colleagues using 

an autoantigen array demonstrated that COPD patients 

express autoantibodies against a wide variety of self-

antigens which correlate with disease phenotype and 
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particularly with emphysema (78). Importantly, 

emphysematous patients produced autoantibodies of both 

higher titre and reactivity than those of control subjects.   

One possibility to account for these differences is that 

the autoantibodies are mainly directed against oxidative 

stress-modified self-proteins and that epitope spreading 

occurs to allow variable detection of autoantibodies against 

unmodified protein (27).  This study also reported 

autoantibodies against endothelial cells and deposition of 

activated complement in the vessels of COPD lung (27). 

This report confirmed earlier evidence for the presence of 

anti-endothelial autoantibodies in patients with COPD 

(79). An alternative explanation for the failure to 

consistently show elevated serum levels of anti-eleastin 

antibodies may be due to the fact that these antibodies are 

more easily detected as elevated in bronchoalveolar lavage 

fluid than in plasma (80). 

Ozone-exposed mice also exhibited increased antibody 

titres to carbonyl-modified protein, as well as activated 

antigen-presenting cells in lung tissue and splenocytes 

sensitized to activation by carbonyl-modified protein lung 

(27).  Similarly, cigarette smoke exposure in mice gives rise 

to the production of a humoral response against elastin, 

collagen and decorin proteins (81).  This autoimmune 

response was also accompanied by macrophage influx into 

the airway.  To date there are no studies that examine the 

expression of autoantibodies in either non-smoking COPD 

patients or in response to wood smoke exposure.  This is 

an area that needs additional research. 

 

Can a similar response to bronchodilators 
be expected in COPD patients whether due 
to cigarette smoke or indoor pollution? 

Patients with COPD are still commonly thought to 

show diminished acute bronchodilator responsiveness 

compared to asthmatics, and reversibility testing is 

sometimes proposed as a method of discriminating 

between asthma and COPD, despite previous evidence to 

the contrary (82). 

Therapeutic agents prevent and control symptoms, 

reduce exacerbations, increase exercise tolerance, and 

improve health status (83, 84). Long-acting β2-adrenergic 

agonists (LABAs, such as salmeterol) combine symptom 

control with improvement in lung function and provide 

clinically relevant improvements in health status. Inhaled 

corticosteroids (ICS) are recommended for the treatment of 

patients with a more severe disease and frequent 

exacerbations, and inhalation of the combination of LABAs 

and ICS is more effective in improving lung function and 

symptoms and reducing exacerbations than either drug 

alone (85, 86). Moreover, recently, it has been 

demonstrated that LABAs can enhance the anti-

inflammatory action of GCs. 

The acute bronchodilator responsiveness in patients 

with COPD has not been characterized rigorously in large 

cohorts. This is because determination of the response to a 

bronchodilator is influenced by physiological and 

methodological factors, including differences in baseline 

degree of airflow obstruction, diurnal and day-to-day 

variability in bronchomotor tone, dose and class of inhaled 

bronchodilator therapy, method of bronchodilator 

administration e.g. metered-dose inhaler with or without a 

spacer or solution nebuliser), dose of bronchodilator, and 

timing of post-bronchodilator spirometry. These responses 

may also be confounded by the presence of specific mast 

cell subtypes which may alter the response to 

bronchodilators (94). 

We and others have previously described the potential 

involvement of mast cells in the pathogenesis of lung 

diseases including COPD (87-89). Mast cells are thought to 

contribute to bronchoconstriction, mucus secretion, 

mucosal edema, bronchial hyperreactivity (BHR), 

inflammation, angiogenesis and airway remodelling in 

asthma (90-93). In particular, an increase in the number of 

airway smooth muscle (ASM) layer mast cells has been 

suggested to be related to asthmatic BHR (94). 

Bronchodilator responsiveness (BDR) has been shown to 

be related to BHR (95) and is probably based on similar 

underlying mechanisms.  In addition, we demonstrated in 
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an in vitro study that cigarette smoke medium CSM) 

stimulated the release of chemokines from mast cells in a 

noncytotoxic manner but did not induce mast cell 

degranulation (88).  

It is generally held that, by definition, airway 

obstruction in COPD is irreversible. However, significant 

BDR is in fact present in a large subgroup of patients with 

COPD, although they are mainly screened out from 

therapeutic studies (96, 97, ). Some investigators have 

suggested that this BDR feature in COPD is related to 

“asthma-like” pathology, i.e. an overlap syndrome (98, 

99)). A substantial number of COPD subjects have been 

shown to have BHR (100, 101) with a significant correlation 

between BDR and BHR (102). Recently, it has been shown 

that in COPD subjects without BDR, there was a positive 

relationship between mast cell density and better airway 

function (89). In this regard we were not able to rule out 

the role of eosinophils in BDR reaction since it has been 

shown that  high sputum eosinophil count did identify a 

subgroup of patients with COPD who respond to inhaled 

corticosteroids in terms of lung function. 

In summary, despite the heterogeneity across the 

selected studies, exposure to solid fuel smoke is 

consistently associated with COPD and chronic bronchitis.  

Women using biomass fuel for cooking typically spend 

about 40,000 hours and inhale a total volume of 25 million 

litres of polluted air during their lifetime (57). A recent 

meta-analysis has reported that the odds of COPD in 

biomass smoke exposed individuals is of a similar 

magnitude to that reported between tobacco smoking and 

COPD (57). The limited evidence available to date suggests 

that the pathology of biomass-induced and cigarette 

smoke-induced COPD are the same.  This suggests that the 

prognosis and response to inhaled β2-agonists and 

combination therapy should be similar in these groups of 

patients. We await the development of better anti-

inflammatory treatments for COPD in order to prevent the 

inexorable progression of disease seen in these patients.  
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