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Using Automatic Assessment of Speech
Production to Predict Current and Future
Cognitive Function in Older Adults

Rachel Ostrand, PhD1 , and John Gunstad, PhD2

Abstract

Neurodegenerative conditions like Alzheimer disease affect millions and have no known cure, making early detection important.
In addition to memory impairments, dementia causes substantial changes in speech production, particularly lexical-semantic
characteristics. Existing clinical tools for detecting change often require considerable expertise or time, and efficient methods
for identifying persons at risk are needed. This study examined whether early stages of cognitive decline can be identified using an
automated calculation of lexical-semantic features of participants’ spontaneous speech. Unimpaired or mildly impaired older
adults (N ¼ 39, mean 81 years old) produced several monologues (picture descriptions and expository descriptions) and
completed a neuropsychological battery, including the Modified Mini-Mental State Exam. Most participants (N¼ 30) returned one
year later for follow-up. Lexical-semantic features of participants’ speech (particularly lexical frequency) were significantly cor-
related with cognitive status at the same visit and also with cognitive status one year in the future. Thus, automated analysis of
speech production is closely associated with current and future cognitive test performance and could provide a novel, scalable
method for longitudinal tracking of cognitive health.
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Introduction

Alzheimer disease (AD) and other forms of dementia are epi-

demic. With the aging of the baby boomer generation, the

prevalence of AD will be more than triple by 2050 and generate

US$1.1 trillion in annual health care costs in the United States

alone.1 With no known cure, early detection is essential for

disease management. Detecting early signs of cognitive impair-

ment often involves initial screening during a primary care or

neurological evaluation, followed by comprehensive neuropsy-

chological testing of cognitive function. Administration and

interpretation of these assessments require substantial expertise

and time, and thus cannot be easily conducted at regular inter-

vals to identify and track people at risk. Additionally, screening

techniques that can only be found in clinical settings may pro-

vide a barrier to individuals with reduced access to medical

care or persons reluctant to discuss concerns about memory

loss. New methods for early detection that can be delivered

in community settings or at home could allow individuals to

monitor cognitive status over time and then seek a comprehen-

sive evaluation with their providers (e.g., neurological evalua-

tion, neuroimaging, and neuropsychological testing) at the

earliest signs of decline.

Prior work has shown that AD and other forms of dementia

are associated with measurable changes in the affected person’s

speech production. In particular, during early stages of cogni-

tive decline, word-finding and semantic knowledge become

more difficult, likely due to a combination of the degradation

of the stored meaning of words and the process of lexical access

(for reviews, see studies by Kemper & Altmann,2 Burke &

Shafto,3 and Obler & Albert4). This degradation induces

reduced semantic specificity, including vague and empty

words, higher-frequency words with less precise meanings, and

indefinite articles (e.g., see studies by Bird et al.,5 Croisile et al.,6

Hier et al.,7 Feyereisen et al.,8 and Nicholas et al.9). In effect,

early-stage dementia reduces the amount of specific content

information conveyed during speech, while maintaining contex-

tual relevance and grammaticality. In contrast, other levels of

linguistic processing, including articulatory production, phonetic
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retrieval, and syntax, remain largely unimpaired until much

more advanced stages of the disease (e.g., see studies by Hier

et al.,7 Bayles et al.,10 Forbes-McKay et al.,11 Salvatierra et al.,12

Hoffmann et al.,13 and Filiou et al.14).

This relative impairment of lexical-semantics is particularly

true during the early stages of dementia, a time when other

behavioral symptoms are often not yet noticeable. This sug-

gests that measuring lexical-semantic properties of an at-risk

person’s speech production may be an effective way to identify

and track early-stage cognitive decline. The present study

investigates whether certain automatically calculable lexical-

semantic features of spontaneous speech are reliable indicators

of cognitive decline, and if spontaneous speech could be used

for frequent, longitudinal assessment of people at risk for

dementia. We do so by assessing whether a set of lexical-

semantic features which are calculated automatically from a

sample of spontaneous speech can predict current and future

neuropsychological test scores.

Linguistic Changes in AD and Related Dementias

There is substantial research documenting linguistic changes in

people with neurodegenerative disorders. In particular, in

early-stage mild cognitive impairment (MCI) and dementia,

lexical access, word retrieval, and other types of semantic

knowledge become more difficult (for reviews, see studies by

Burke & Shafto3 and Obler & Albert4), stemming from the

degradation of both the semantic meaning of particular words

in the lexicon in addition to a disruption to the process of

lexical access.2 Behaviorally, this is manifest in speech produc-

tion as a reduction in semantic specificity, causing an increase

in vague, generic, or empty words, higher-frequency words

with less precise meanings, and increased use of indefinite

articles and anaphora (e.g., see studies by Bird et al.,5 Croisile

et al.,6 Hier et al.,7 Feyereisen et al.,8 and Nicholas et al.9). This

reduction in semantic specificity means that speakers produce

less specific content information while still maintaining the

overall semantic context and grammaticality. In contrast, other

levels of linguistic processing remain largely unimpaired, as

demonstrated by oral reading, writing to dictation, word repeti-

tion, and phonemic fluency tasks that are nearly on par with

those of unimpaired controls.10-12,15

Research on the changes in speech production among people

with dementia has, broadly speaking, been conducted using

two types of methodologies. One method is using controlled

elicitation tasks—where the participant is given some stimulus

and is asked to produce small bits of speech in response. These

types of tasks include confrontation naming, when the partici-

pant is shown a series of pictures and asked to give their names

(e.g., the Boston Naming Test), and semantic or phonemic

fluency, when the participant is given a category or a letter and

asked to provide as many words as they can which belong to

that category or start with that letter, among others. The con-

straint of controlled tasks is both a benefit and a disadvantage.

It makes quantification of a participant’s performance and

comparison against other patients or established norms easier,

as there is a specific, predetermined metric to measure, such as

the number of words produced in the given category. On the

other hand, these tasks only measure a small slice of the parti-

cipant’s linguistic and cognitive abilities and do not measure a

person’s language abilities in a way that is similar to everyday

language use.

The other method to assess speech production is via spon-

taneous speech elicitation tasks—a prompt which allows the

participant to speak in a relatively unconstrained manner and

produce connected speech, such as describing a picture or

answering an open-ended question. With these types of tasks,

the lack of constraint is both a benefit and a disadvantage. They

can assess the participant’s abilities and deficits in a situation

which is much more relevant to real communication skills in

their life, quantifying a major challenge with the disease,16 and

also allow a wide range of linguistic properties to be measured

at multiple linguistic levels, including word choice, semantic

content, syntactic structures, and acoustic properties. This mea-

surement flexibility is a downside, however, as it is less

straightforward to compare deficits between participants and

to determine which metrics are the appropriate ones to

measure.

Linguistic Changes on Controlled Elicitation Tasks

Controlled elicitation tasks are a good way to assess deficits on

a specific linguistic characteristic. On semantic fluency tasks,

where participants name as many exemplars of a category (e.g.,

animals) that they can, persons with AD perform significantly

below the level of age-matched controls, and degree of impair-

ment is correlated with clinically assessed dementia sever-

ity7,11,12,15,17-20 (see study by Henry et al.21 for a review).

Patients with AD also perform significantly below the level

of sex- and education-matched controls on verb fluency tasks,

in which they need to specifically access words for “things that

people do,” and verb naming tasks, in which they are shown a

picture and are asked to say what the person is doing or what is

happening in the picture.22

People with AD are also impaired on explicit lexical access

tasks. For example, patients with AD are impaired compared to

healthy controls on confrontation naming, when they are shown

a picture of an object and asked to produce its

name.7,10,11,15,18,20 In addition, participants with dementia

score lower than healthy controls on the Wechsler Adult Intel-

ligence Scale - 4 (WAIS) vocabulary subtest, which tests par-

ticipants’ ability to provide a concise definition for a given

word.7

However, these linguistic deficits seem to be primarily

focused on lexical and semantic processes. For example,

although people with AD were impaired on semantic fluency

tasks, they are relatively unimpaired compared to controls on

similar phonemic fluency tasks, in which they are asked to

produce as many words as they can which begin with a partic-

ular letter11,12 (but see study by Sajjadi et al.15 for different

results). In a cuing task, participants were asked to write from

dictation a pair of words. The second word was a homophone
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(e.g., nose/knows); the first word provided a cue as to which

lexical item of the homophone pair was intended. The cue word

was either semantically (thinks) or syntactically (she) related to

the target homophone (knows). Although controls performed

the task with the same accuracy for the two types of cues,

people with AD made significantly more errors when given a

semantic cue rather than a syntactic cue, suggesting that seman-

tic lexical access is particularly impaired in AD.23 Similarly, on

various neuropsychological tests, including the subtests of the

Boston Diagnostic Aphasia Exam, participants with MCI and

mild AD are more impaired on semantic and general fluency

tasks,24 and these tasks tend to be the most discriminative

between early-stage patients and healthy controls.

Thus, evidence from controlled, experimental tasks points

toward the linguistic deficits which occur in dementia, partic-

ularly in MCI and early-stage AD, as being those involving

lexical-semantic processes. Research measuring patients’

spontaneous speech shows similar types of deficits, as dis-

cussed in the following section.

Linguistic Changes on Spontaneous Speech Tasks

There is also some prior research which has investigated AD or

MCI patients’ linguistic deficits on spontaneous speech tasks

(for reviews, see studies by Filiou et al.,14 Boschi et al.,25 Kavé

& Goral,26 Slegers et al.,27 and Mueller et al.28). The most

common spontaneous speech elicitation task is picture descrip-

tion, when the participant is shown a relatively complex scene

and asked to describe in detail what is occurring. A popular

picture for these types of tasks is the Cookie Theft from the

Boston Diagnostic Aphasia Exam.29 Other tasks include short

writing prompts, semi-structured interviews, in which the

experimenter prompts the participant with only occasional ques-

tions to keep the speech largely monologue, and retelling a

story.25 Spontaneous speech tasks demonstrate similar deficits

as do controlled experimental tasks: Particularly in the early

stages of cognitive decline, participants show impairment on

lexical access and measures of semantic specificity, and rela-

tively intact syntax and phonological and phonetic production.

A notable change in spontaneous speech in people with

dementia is the increased production of empty or indefinite

words as compared to healthy controls6,9,26,30 or from early-

to late-stage impairment.7 These are words that are highly

vague and nonspecific, like “thing” and “stuff,” and their pro-

duction may indicate word-finding difficulty or semantic mem-

ory degradation, as the speaker is attempting to refer to a

particular entity without being able to access its name. The

more general metric of this type of word-finding difficulty is

manifest in average lexical frequency, as people with dementia

produce more common, higher-frequency words than do

healthy controls, and average lexical frequency increases as

the patient’s disease progresses.5,20,31 Low-frequency words

are more difficult to access from the lexicon, and less specific

words (thing) tend to be substantially higher-frequency than a

more specific counterpart (cookie). People with AD and cog-

nitive decline also show reduced lexical diversity, repeating the

same words rather than producing unique words,7,32-34 a beha-

vior which increases with disease progression,35,36 another

manifestation of their reduced ability to easily retrieve words

from their lexicon.

A related linguistic deficit in MCI and AD is the reduction

of content words in spontaneous speech as compared to con-

trols.6,8,20,37 Content words convey semantic meaning (as con-

trasted with function words, which convey grammatical

relationships and largely provide syntactic scaffolding) and

include nouns, verbs, and adjectives (in contrast to, e.g., pro-

nouns and prepositions). As with the previous metrics, the

reduction of content word production in MCI and AD is likely

an indicator of a lexical access deficit and is a metric of reduced

semantic specificity. In fact, as dementia severity worsens, the

production of content words is even further reduced.38 Conver-

sely, impaired participants produce increased function words,15

particularly by replacing nouns (which are more specific) with

pronouns (which are vaguer and less explicit), compared to

controls20,31,39 and as the degree of impairment increases.7

People with AD also make fewer definite references to objects

compared to controls,8 a deficit which is thought to index

impairments in declarative memory.40

Some studies report that patients produce fewer total words

than controls6,7,26 or that total word count decreases as impair-

ment increases.35,36 However, although many studies have

found a numeric decrease in word count among impaired par-

ticipants, the difference between groups or as a function of

dementia severity is often not significant.8,15,20,34,38,39,41 How-

ever, in referential communication dialogue tasks, which

require the participant to adapt their speech based on learning

from repeated interaction with a partner, people with AD actu-

ally produce more words than controls because they do not

seem to learn and match their partner’s language use.8,41 Per-

sons with AD also speak more slowly than controls in sponta-

neous speech, and speech rate anticorrelates with impairment

severity,13,15,41,42 with longer pauses and more word-finding

delays among more impaired people.6,13,26,43 Relatedly, people

even with mild AD produce more filler words (filled pauses

such as “um” and “uh”) as compared to unimpaired older

adults, suggesting the patients may be struggling with rapid

lexical access.15

Lastly, patients with MCI or AD produce fewer words that

are important to the discourse, and the words they do produce

tend to be less relevant than those produced by elderly healthy

controls. Much prior work investigating dementia patients’

production of spontaneous speech (usually describing a picture

which has fixed visual features) has counted the number of

information or content units produced by the speaker, which

can be compared against the “correct” number for that picture.

Persons with dementia produce significantly fewer content

units about the setting, events, characters, and the main idea

of a scene compared to controls,6,8-10,15,31,37 a deficit which is

apparent even in very early-stage MCI,34 and the degree of

reduction is a function of dementia severity.44 In both mono-

logue and dialogue, more impaired participants produce fewer

pieces of crucial information41 and a lower density of relevant
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information out of the total narrative they produce.36,45 Con-

versely, people with AD produce more irrelevant information:

words that are linguistically correct but not appropriate or use-

ful to the current context.6,41,43,45 Relatedly, more impaired

patients’ speech has lower idea density and higher uninforma-

tive output, producing fewer distinct pieces of information per

number of words7,36 and also per time unit,41,45 and such def-

icits are evident in their writing as well.38,46 This is also man-

ifest in dialogue, when people with AD require more speaking

turns to convey their message to their listener.8 Together, these

observations suggest that although impaired speakers may not

reduce their total lexical output, what they do produce is wor-

dier and less precise and conveys less information about the

topic at hand. This suggests that patients, particularly with

early-stage dementia, produce reduced semantic content and

specificity, and these characteristics of speech could be used

to quantify a person’s degree of impairment. We assess this

possibility in the present work, using automated calculation of

lexical-semantic characteristics of spontaneous speech.

Can Spontaneous Speech Be Analyzed Automatically to
Detect Cognitive Impairment?

The present work investigates whether semantic specificity in

spontaneous speech can predict the degree of cognitive decline

in older adults without a diagnosis of dementia. As mentioned

above, current screening methods for cognitive impairment

often require a visit with a clinician or trained examiner, poten-

tially including administration of a battery of neuropsycholo-

gical tests. This necessitates travel, access to medical care,

substantial time for evaluation, and specially trained medical

personnel. In addition, some screening tests have a restricted

set of stimuli and thus frequent repetition in a short time span

may artificially inflate scores. Together, these reasons encour-

age the development of additional methodologies for monitor-

ing an individual patient’s cognitive status over time.

The goal of the present work is not to combine language

features with scores from traditional assessments to better pre-

dict future neuropsychological scores. Instead, we hope to

demonstrate that lexical-semantic features of spontaneous

speech can serve as a proxy measure for clinical cognitive

screening instruments and thus could be administered in

between clinical visits or before a person thinks to be evaluated

the first time. Spontaneous speech can be collected in a parti-

cipant’s home, with minimal equipment and training, only a

small outlay of time (minutes rather than hours), and using a

much more varied set of materials to elicit responses from

participants. Spontaneous speech thus has potential as a tool

which can be collected with minimal burden on the participant.

In addition, the features discussed here are straightforward to

calculate automatically from transcribed speech. Thus, the

present work seeks to demonstrate a predictive relationship

between linguistic features and clinical cognitive status in older

adults, to ultimately demonstrate that speech could itself be a

useful diagnostic metric, opening the door to substantially

more frequent assessment and monitoring of at-risk people in

between clinical examinations. Additionally, understanding the

components of speech that are particularly informative of cog-

nitive status can help elucidate the organization of language in

the brain; in particular, demonstrating which characteristics

track with damage induced by neurodegeneration over time

can aid our understanding of how neurodegenerative conditions

progress.

Here, we make use of the known relationship between cog-

nitive status and speech production, except in the opposite

causal direction. Rather than studying how cognitive status

affects a particular linguistic characteristic, we investigate

whether we can use changes in linguistic characteristics to

predict changing cognitive status. In addition, in contrast to

much prior research which compared different individuals’

behaviors against each other to classify them as healthy or

impaired, we employ a within-subjects, longitudinal design,

and use a particular individual’s speech production at an initial

visit to predict their own cognitive status at that visit and also

one year in the future. This avoids confounds of between-

subjects differences in education level, socioeconomic status,

language proficiency, and so on.

There is some precedent for this automatic approach in prior

work, as several studies have collected spontaneous speech sam-

ples of participants with the ultimate goal of predicting partici-

pants’ cognitive scores. Kavé and Dassa47 found that the number

of complete words spoken, type-token ratio, average lexical fre-

quency, and the number of information units each individually

correlated with Mini-Mental State Exam (MMSE) scores in per-

sons with AD. Bucks and colleagues32 collected speech samples

from participants with AD and matched healthy controls via a

semi-structured interview session, and found differences

between AD and controls on several linguistic measures includ-

ing part-of-speech counts and vocabulary richness, and their

model classified participants (AD vs. control) with 87.5% accu-

racy. Ahmed and colleagues37 found significant differences in

spontaneous speech between healthy controls and people with

autopsy-confirmed AD and also between participants at different

stages of AD, on the proportion of pronouns and verbs produced,

and a composite semantic and information content measure.

Fraser et al.31 took a computational approach to distinguishing

participants with AD from healthy controls using spontaneous

speech from picture descriptions. They calculated 370 linguistic

features—lexical, semantic, information content, syntactic, and

acoustic—and used machine learning to classify AD versus con-

trols with up to 82% accuracy.

The Present Approach

However, there are a number of limitations in these prior stud-

ies using automatic assessment of spontaneous speech as a

diagnostic measure of cognitive decline, which we address in

several important ways. First, we use linguistic features to

predict a cognitive score for all participants—both healthy and

impaired—in order to characterize individuals along the

continuous spectrum of cognitive decline. This is in contrast

to most existing work that only predicted outcomes for
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already-impaired participants (e.g., a study by Kavé & Dassa47)

and/or merely conducted a binary by-group classification to

discriminate patients from controls, rather than predicting the

degree of impairment (e.g., see studies by Fraser et al.,31 Bucks

et al.,32 Ahmed et al.,37 and Asgari et al.48). In the present work,

in line with the goal to be clinically relevant, we use linguistic

features to assess participants at various stages of impairment

(or lack thereof) and predict their neuropsychological score

along a continuous scale rather than simply binning partici-

pants into the “impaired” or “unimpaired” group. This strategy

would allow for a clinician to follow a participant’s progression

via his/her speech production and monitor cognitive decline as

it occurs.

Second, in line with the goal of longitudinal screening and

monitoring of cognitive function across a community, all lin-

guistic features were calculated automatically rather than

manually counted or annotated. The only component that was

not automated was the speech transcription. (As automatic

speech recognition technology improves, even manual tran-

scription will become less necessary.)

Third, some previous studies (e.g., study by Kavé &

Dassa47) investigated the relationship between disease status

and each linguistic feature separately. However, this may miss

important relationships between multiple linguistic features

that jointly have predictive power of cognitive status, and thus

we use a combination of linguistic features as predictors.

Fourth, we restricted the set of linguistic predictor variables

to those which are theoretically and experimentally motivated

and are human-interpretable (in contrast to, e.g., a study by

Fraser et al.31). An automated cognitive assessment system

meant to be used in conjunction with a clinician’s assessment

should be human-explainable to allow clinicians to understand

the behavior which drove the automatic assessment.

Finally, we use the Modified Mini-Mental State Exam

(3MS) rather than the MMSE as the cognitive screening test.

The 3MS increases the score range compared to the MMSE,

allowing for greater sensitivity to impairment by including

items that test a broader range of cognitive functions. The

3MS has been shown to be better at identifying dementia than

the MMSE—both higher sensitivity (detecting true positives)

and also higher specificity (detecting true negatives), and is

more internally consistent.49,50

Methods

Participants

Thirty-nine older adults living in a senior living community

participated in the experiment. Inclusion criteria were chosen

to produce a range of cognitive dysfunction, while excluding

persons with speech deficits due to nondegenerative condi-

tions. Specifically, the following inclusion criteria were used

(ascertained by participant self-report): 60 to 90 years of age,

English was their primary (or only) language, and no history of

neurological disorders other than MCI or “early dementia”

(e.g., no stroke or traumatic brain injury), no history of

developmental or severe psychiatric disorder (e.g., schizophre-

nia, intellectual disability), no alcohol or other substance abuse,

and no advanced medical condition (e.g., current cancer, heart

failure, end-stage renal disease, liver failure, etc). The average

age of the participant sample was 81.2 years, was 69% female,

and all participants had at least a high school-level education

(see Table 1 for more detailed demographic information). At

the time of enrollment, 5.1% of participants self-reported a

diagnosis of MCI.

Thirty participants of the initial cohort additionally com-

pleted a second session approximately one year later (mean

interval: 1.1 years, range: 0.99-1.2 years). The nine participants

lost to follow-up did not differ from those who returned for the

second session in demographic (age, gender, and education) or

medical (MCI, hypertension, type 2 diabetes, depression, and

family history of dementia) characteristics or in 3MS test per-

formance at baseline (all P > .05). All participants were treated

in accordance with the guidelines for ethical treatment of

human subjects and provided written informed consent,

approved by the Kent State University Institutional Review

Board (study # 17-330).

Assessment

The duration of each testing session was approximately 75

minutes, including 3 minutes for the picture description task

and 8 to 10 minutes for the expository speech task (described in

more detail in the following section). Participants were admi-

nistered an identical neuropsychological battery in a fixed

order at both study visits under the supervision of a licensed

clinical neuropsychologist. Specific clinical tests included the

3MS,51 Hopkins Verbal Learning Test,52 Complex Figure

Test,53,54 Digit Span,55 Trail Making Test A and B,56 Frontal

Assessment Battery,57 Controlled Oral Word Association

Test,58 Animal Naming,58 and Boston Naming Test—Short

Form.59 The present analyses focus on the 3MS, a brief

Table 1. Demographic Characteristics of the Participant Cohort at
Session 1 and Session 2.

Characteristic Session 1 (N ¼ 39) Session 2 (N ¼ 30)

Age: mean + SD (range) 81.2 + 6.0
(68 to 90)

81.1 + 5.8
(70 to 91)

Gender 12 male; 27 female 11 male; 19 female
Education: mean (range) 16.6 years (12 to 21) 16.6 years (12 to 21)
3MS raw score:

mean + SD (range)
94.6 + 7.6

(61 to 100)
94.0 + 11.3

(48 to 100)
3MS t score:

mean + SD (range)
56.7 + 9.4

(19 to 73)
52.1 + 21.9

(�40 to 65)
Ppts impaired on 3MS 5.1% 3.4%
Ppts diagnosed with MCI 5.1% 3.4%
Ppts with hypertension 52.5% 58.6%
Ppts with type 2 diabetes 10.3% 20.6%
Ppts with depression 7.7% 10.3%
Ppts with family history

of dementia
30.8% 37.9%

Abbreviations: MCI, mild cognitive impairment; 3MS, Modified Mini-Mental
State Exam; SD, standard deviation.
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measure of global cognitive abilities which assesses attention,

memory, executive function, and language, providing a score

of cognitive status51 with high reliability and validity.60,61 Raw

scores were used for primary analyses (range from 0-100), with

higher scores reflecting better cognitive function. Normative

values adjusting for age and education62 were used to help

characterize the sample, with performances falling more than

1.5 standard deviations below the mean identified as being

impaired.

Speech Tasks

Each visit consisted of several tasks to elicit open-ended,

monologue speech from participants. During Session 1, parti-

cipants were shown three pictures (separately) and asked to

describe what was happening. The first picture was the Cookie

Theft from the Boston Diagnostic Aphasia Exam.29 The other

pictures were similar types of scenes, depicting a man changing

a lightbulb63 and a kitten in a tree64. Participants then com-

pleted two expository speech tasks. First, they listed the four

most important people in their lives and discussed the person in

the second position. Second, participants described a place that

was meaningful to them. Participants spoke for approximately

3 minutes for each picture description and 8 to 10 minutes for

each expository task.

During Session 2, participants described the same Cookie

Theft picture, then discussed another important person in their

life. Finally, they looked through a picture book of the fairy tale

Cinderella (with the words removed) to remember the story and

then retold the story from memory (following study by Saffran

et al.65; see also study by MacWhinney et al.66). (Note that in

the present work, we do not analyze the speech collected at

Session 2, only neuropsychological test scores.)

We included multiple speech tasks because some may be

better able to elicit certain linguistic features, which in turn

could be differentially indicative of cognitive status.15,25 Pic-

ture descriptions, although somewhat artificial, elicit sponta-

neous speech describing a standardized input and thus may

facilitate cross-participant comparisons. For example, a picture

in which specific concepts are extremely salient may provide a

starker contrast between healthy and impaired speakers by

highlighting the differences in noun and determiner production.

In contrast, expository speech tasks may elicit longer and more

emotionally invested responses, and more closely resemble

speech production “in the wild.” For example, an expository

task may reduce the topic constraints and allow for a wider

range of speaking time across participants and thus better cap-

ture between-participant variability in total words produced,

lexical frequency, and lexical diversity.

Sixteen lexical and semantic features which are known to be

affected in persons with dementia or cognitive decline were

selected from prior literature investigating linguistic changes

in people with these disorders. As dementia more strongly

affects lexical access, particularly in early stages of the disease

(as discussed in the Introduction), these features mostly com-

prise linguistic metrics of semantic specificity and memory.

We use “semantic specificity” to mean the degree to which

speakers use more precise, specific, and content-heavy words,

as opposed to vaguer or more general words. For example,

using a noun (“Mary”) is more specific than using a pronoun

(“she”); using a lower-frequency, more precise word

(“poodle”) is more specific than a higher-frequency, vaguer

word (“dog” or “animal”); and using a definite article (“the

house”) is more specific than an indefinite article (“a house”)

as it refers to a particular entity as opposed to any object of that

type. All features were calculated automatically from the tran-

scriptions. Part-of-speech tags were computed using the Natu-

ral Language Toolkit (NLTK; version 3.2.167) in Python

(version 2.7.17) and the Penn Treebank tagset.68 Lexical fre-

quency was calculated using the Switchboard and Fisher cor-

pora, a collection of spoken telephone conversations jointly

containing 24 million words and 1,975 hours of speech.69-71

The linguistic features that were calculated for each sponta-

neous speech task at each visit are listed in Table 2, along with

a description of the feature.

Audio Recording

Speech samples were recorded using a Shure SM10A head-

mounted, directional (cardioid) microphone. This setup isolates

the participant’s speech and ensures that the recorded audio has

a high signal-to-noise ratio, excluding extraneous background

noise such as other people speaking, environmental sounds, or

static. Recordings were manually transcribed and time-stamped

off-line by trained transcribers who were blind to the partici-

pant’s cognitive status, and checked by a second transcriber.

Results

Prediction of Clinical Scores From Same-Session Linguistic
Features

The first step in building a system to automatically assess cog-

nitive decline is to determine the strength of the relationship

between linguistic features and clinical scores measured at the

same time point. To address this question, a multiple linear

regression was conducted using the set of 16 linguistic features

as predictors and 3MS score as outcome variable (see Note 1).

The two types of speech tasks (picture description and expo-

sitory speech) were analyzed separately. For the picture

description task, each participant’s set of feature values was

averaged across the three pictures to reduce the influence of

any one picture. Similarly, a participant’s set of feature values

for the two expository speech tasks was averaged.

For the picture description task, the set of linguistic predic-

tors was correlated with cognitive score, explaining 42% of the

variance in 3MS and providing a significantly better fit than the

null, intercept-only model (adjusted R ¼ 0.65, F16,22 ¼ 2.75,

P ¼ .01). As an exploratory measure to investigate the rela-

tionship between each linguistic feature and 3MS score, sepa-

rate simple regressions were calculated between each linguistic

feature and 3MS; statistically significant results are discussed
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in the text and all individual-feature results are presented in

Appendix A. All individual-feature Ps were corrected for mul-

tiple comparisons using the Benjamini-Hochberg method.75

A few of the individual linguistic features were significantly

correlated with the same-visit 3MS score. Average lexical

frequency was negatively correlated with 3MS, meaning that

participants with poorer cognitive function produced higher-

frequency (more common, “easier”) words (R ¼ �0.55, F1,37

¼ 15.91, P¼ .005). The use of definite articles and determiners

were each positively correlated with cognitive score, such that

participants with a higher 3MS (less impaired) produced a

higher proportion of definite articles and determiners in their

speech (definite articles: R ¼ 0.50, F1,37 ¼ 12.07, P ¼ .01;

determiners: R ¼ 0.44, F1,37 ¼ 8.63, P ¼ .03). Finally, the

number of nouns produced as a proportion of total words was

also positively correlated with cognitive score (R ¼ 0.41, F1,37

¼ 7.60, P ¼ .04).

For the expository speech task, the complete set of linguistic

predictors was again significantly correlated with 3MS,

explaining 51% of the variance in 3MS and providing a signif-

icantly better fit than the null, intercept-only model (adjusted

R ¼ 0.72, F16,22 ¼ 3.49, P ¼ .004). Of the individual features,

only average lexical frequency was correlated with 3MS score,

again showing a negative relationship such that more impaired

participants, with a lower 3MS, produced higher-frequency

words (R ¼ �0.53, F1,37 ¼ 14.20, P ¼ .009). Figure 1A pre-

sents the results from the multiple regression.

There were two participants with low 3MS scores relative to

the larger group. When there are a small number of outliers, the

best fit line can be skewed toward those outliers to reduce the

overall error, producing a relatively high R2 value even though

it does a poorer job of explaining the variance of the majority of

data points. Therefore, the regression was repeated with these

two cases excluded (retaining participants with a 3MS score

greater than 80). Findings were similar, as lexical-semantic

features of participants’ speech still explained a significant

amount of the variance in the concurrent 3MS scores (speech

from picture descriptions: adjusted R ¼ 0.63, F16,20 ¼ 2.46,

P ¼ .03; speech from expository tasks: adjusted R ¼ 0.59,

F16,20 ¼ 2.17, P ¼ .05).

Prediction of Future Clinical Scores From Earlier Linguistic
Features

The second goal of the present work was to determine whether

linguistic features predict future cognitive status. To that end,

we assessed whether a multiple linear regression using the set

of 16 linguistic features calculated on Session 1 speech could

predict within-participant Session 2 3MS scores.

The Session 1 linguistic features accounted for some of the

variance of future cognitive status for both speech tasks,

although the expository task’s linguistic features did a better

job of future 3MS prediction compared to the picture descrip-

tion’s linguistic features. The set of linguistic features calcu-

lated on the Session 1 expository tasks explained 56% of the

variance in Session 2 3MS and provided a significantly better

fit than the null, intercept-only model (adjusted R¼ 0.75, F16,13

¼ 3.35, P ¼ .02), but the set of linguistic features derived

from the Session 1 picture description tasks only explained

29% of the variance in Session 2 3MS (adjusted R ¼ 0.54,

Table 2. Linguistic Features Calculated for Each Spontaneous Speech Task at Each Visit.

Feature name Description

Total number of
words

Overall count of all phonological entities spoken; including real words, nonwords, and partial words2,6,7,26,35,36,72

Filler words Count of filled pauses (e.g., “uh,” “um,” “hmm”), as a percentage of total word count15,73

Empty words Count of empty words (e.g., “thing,” “place,” “stuff”), as a percentage of total word count6,7,9,26,30,43

Lexical frequency Mean of the log of the frequency of all real words spoken5,20,31

Type-token ratio Ratio of unique words (types) to total words (tokens) spoken, used as a measure of vocabulary size and lexical diversity;
higher values means the speaker produced a more varied vocabulary7,32,33,35,36

Honoré’s statistic Measure of lexical richness/diversity based on the number of words produced exactly once; higher values mean more
diverse speech. It is calculated as: (100 * log(tokens)) / (1 � V1/types), where V1 is the number of words spoken exactly
once32

Brunet’s index Measure of lexical richness (i.e., degree of variation in vocabulary), which is less biased by text length, calculated from the
total number of words produced (tokens) and the number of unique words (types); lower values mean richer speech. It
is calculated as: tokens ^ types ^ (�0.165)32,74

Speech rate Count of total words divided by total elapsed time of the speech (in words per second)13,15,41–43

Filler rate Count of filler words divided by total elapsed time of the speech (in words per second)45

Definite articles Count of uses of “the,” as a percentage of total word count8,40

Indefinites articles Count of uses of “a” and “an,” as a percentage of total word count40

Pronouns Count of pronouns, as a percentage of total word count2,7,15,20,32,39

Nouns Count of nouns, as a percentage of total word count6,8,20

Verbs Count of verbs, as a percentage of total word count2,6,22,38

Determiners Count of determiners, as a percentage of total word count15

Content words All words that are not function words (as defined by the list of stop words in NLTK), as a percentage of total word
count20,47
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F16,13 ¼ 1.73, P ¼ .16). Notably, the Session 1 expository

speech tasks explained a similar amount of variance in Session

2 clinical scores as they did for Session 1 scores (in fact, even

slightly more variance), suggesting that expository speech

tasks may provide an enduring window into both current and

future cognitive status (see Figure 1B for the results from the

multiple regression).

Similar to the relationship with concurrent cognitive status,

average lexical frequency was negatively correlated with cog-

nitive status a year into the future (speech from picture descrip-

tions: R ¼ �0.51, F1,28 ¼ 9.95, P ¼ .06; speech from

expository tasks: R ¼ �0.57, F1,28 ¼ 13.58, P ¼ .02). The

production of definite articles showed a positive trend with

future cognitive status, such that producing more definite arti-

cles today correlated with higher cognitive score one year later,

but only in the picture description task (speech from picture

descriptions: R ¼ 0.47, F1,28 ¼ 8.09, P ¼ .07). The production

of nouns, filler words, and the rate of filler word production all

showed a positive trend with future cognitive status as well, but

only for the expository speech tasks (nouns: R ¼ 0.43, F1,28 ¼
6.21, P ¼ .08; filler words: R ¼ 0.44, F1,28 ¼ 6.74, P ¼ .08;

filler rate: R ¼ 0.42, F1,28 ¼ 6.10, P ¼ .08).

Discussion

The goal of the present work was to investigate whether spon-

taneous speech could be used as a marker of cognitive function

in older adults. To do so, we automatically calculated a set of

lexical-semantic features known to be impaired in persons with

AD and other dementias and used them to predict concurrent

and future performance on the 3MS. The linguistic features had

good predictive power of the clinical scores, explaining up to

51% of the variance of the speaker’s current cognitive score,

and up to 56% of the variance of the speaker’s cognitive score a

year in the future.

Consistent with expectations, the individual linguistic fea-

tures which were the most relevant to predicting cognitive test

performance were those related to the loss of semantic speci-

ficity: More impaired participants produced words with higher

average lexical frequency and a lower proportion of definite

articles, determiners, and nouns. The higher-frequency words

produced by more impaired participants may reflect reduced

vocabulary due to word-finding difficulty. Similarly, decreased

use of definite articles has been suggested to indicate dimin-

ished declarative memory,40 a hallmark of AD.

An interesting possibility arising from the present work is

that some types of spontaneous speech elicitation tasks may

be better-suited than others for prediction of cognitive func-

tion. In the current work, both speech tasks (picture descrip-

tion and personal expositories) showed high predictive

abilities for concurrent 3MS scores (42% and 51%, respec-

tively, both statistically significant). In contrast, only speech

from the expository task was able to predict 3MS scores at

12-month follow-up (29% and 56%, respectively, with only

the expository task statistically significant). As Sajjadi and

colleagues15 note, a picture description task is much more

highly structured and constrained than is an open-ended expo-

sitory question (see also study by Boschi et al.25). As a result,

picture descriptions are likely better-suited to elicit nouns

referring to the particular items shown in the picture, and

definite articles to signal that a particular woman or sink or

cookie jar is being referenced, and thus may more starkly

show deficits on those metrics as speakers replace nouns with

pronouns or related but incorrect nouns, or definite articles

with indefinite articles or no determiner at all. In contrast, the

expository task offers more flexibility in topic, content, and

word choice, and thus may elicit a more accurate distribution

Figure 1. Actual (clinically-observed) 3MS scores plotted against predicted 3MS scores. Predicted scores were derived using the full set of 16
linguistic predictors, calculated on the expository speech tasks. Each dot represents one participant. A, Linguistic features calculated on speech
from Session 1 were used as predictors for the Session 1 3MS outcome variable. B, Linguistic features calculated on speech from Session 1 were
used as predictors for the Session 2 3MS outcome variable. 3MS indicates Modified Mini-Mental State Exam.
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of that speaker’s range of lexical frequency and syntactic

abilities. As a result, an expository interview may be a better

method for assessing a participant’s spontaneity or lack

thereof15 and thus have better predictive ability of future cog-

nitive status. Relatedly, producing a picture description likely

imposes lower load on the cognitive abilities which are

affected in MCI and AD (e.g., working memory, executive

function, and episodic memory76,77) than do more open-ended

narrative speech tasks. As a result, the expository task may be

more sensitive to early-stage impairment as it is more taxing

to the relevant cognitive systems. In future work with a larger

participant sample and a longer time horizon, it will be impor-

tant to continue to explore the relative predictive ability of

these different speech elicitation tasks.

A related consideration for future work is that different

linguistic features may be correlated with cognitive test perfor-

mance at different stages of decline. For example, past work

suggests that in early stages of AD, lexical access is particu-

larly impaired, but in more advanced stages, syntactic produc-

tion begins to show impairment as well.35,37,46 One potential

application of this pattern is quantifying and monitoring these

changes within individuals over time from preclinical through-

out multiple disease stages, and using different linguistic fea-

tures or tasks for people at different stages of the disease, as

some features may be more predictive in separating healthy

speakers from people with early-stage dementia, while others

might be more predictive for placing speakers along the cog-

nitive status continuum at the more impaired end. This

approach would help with early detection but also inform the

effectiveness of interventions and the need for additional ser-

vices in persons with dementia (e.g., assisted living and guar-

dianship). Studies with larger samples and longer follow-up

intervals are needed to help examine this possibility, particu-

larly those that perform comprehensive assessments to docu-

ment clinical status.

Identifying which features of spontaneous speech are pre-

dictive of neuropsychological status could also further our

understanding of how different diseases affect the organiza-

tion of linguistic knowledge in the brain. To that end, it is

possible that different profiles of speech deficits may corre-

spond to specific neurodegenerative disorders. Future

between-subject group studies comparing healthy controls

to patients with well-characterized clinical conditions—such

as those which informed the selection of the linguistic features

used here—could reveal which linguistic features are

impacted by which neurodegenerative disorders and at what

stages of disease progression. For example, persons with var-

ious forms of frontotemporal dementia and chronic traumatic

encephalopathy exhibit early changes in spontaneous

speech78,79 that could likely be detected using similar speech

analyses. Similarly, future work should also examine the

association between spontaneous speech indices and findings

from advanced neuroimaging. As an example, the present

work shows that average lexical frequency is a strong indica-

tor of future cognitive status among relatively unimpaired

older adults. A future study clarifying the extent to which this

relationship is attributable to global or selective atrophy (e.g.,

the hippocampus), cerebrovascular disease, or amyloid

deposition80,81 would provide important insight into the

underlying neurological processes for speech production in

older adults and clarify the predictive value of spontaneous

speech for future neurological outcomes.

In addition to these scientific benefits, the present meth-

odology has the potential to be applied in concert with

existing clinical methods to increase screening frequency

and improve monitoring of individuals at risk for cognitive

decline. Unlike the administration of a traditional cognitive

screening test, it is possible to collect speech data on a

monthly or even weekly basis with little participant bur-

den.82 Spontaneous speech could be assessed in an ongoing

manner and utilized as an early-warning system: If the clin-

ical score predicted on the basis of a person’s linguistic

features drops below a threshold, their doctor or family

members could be notified, allowing the person to undergo

formal, clinical assessment. Moreover, speech deficits are

associated with numerous poor outcomes across a range of

neurological conditions, including reduced or impaired

activities of daily living, greater depression, and poorer

quality of life.83-88 Early detection and monitoring of speech

may lead to improved outcomes across these domains. In

particular, loss of language and communication abilities by

patients with MCI and AD is especially challenging for

family members. In fact, communication loss is the most

frequently generated response from family members when

asked about difficulties in caring for impaired relatives,

even outweighing the need to perform the activities of daily

living for their relative.16 The ability to objectively quantify

this breakdown via frequent, automated analyses, and use

that quantification to inform both clinical care and strategies

used by family members may ultimately help to ease care-

giver burden.

The present research demonstrates an initial proof-of-

concept that open-ended narrative speech can be collected

and, after transcription, be analyzed entirely automatically

with significant explanatory power of the speaker’s present

and future cognitive status. Further research must be con-

ducted with a larger sample size to validate the predictive

ability of the present linguistic features and to expand the

automated analyses to transcription as well. This approach

may lead to earlier detection and intervention for conditions

like AD, MCI, and other dementias, potentially influencing

their trajectory.
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Note

1. There were not enough participants and data points to allow for

feature selection on an isolated training set to be applied to a test

set, and thus, as we had a priori expectations of a possible relation-

ship between each of the linguistic variables and cognitive status,

we opted to include the entire set of 16 linguistic features together

as predictors. There is substantial collinearity between some of the

linguistic predictors. However, this works against the strength of

the correlation result, as it means that more predictors may have

been included in the correlation than are needed to explain the

explainable variance. The statistical measure used, adjusted R2,

penalizes for each additional predictor. Therefore, including more

collinear predictors means that the reported correlation values

likely underrepresent the amount of variance that is explained by

the predictors. Additionally, the collinearity between predictors

means that the b values in the multiple regression are not necessa-

rily meaningful indicators of each predictor’s contribution to the

outcome variable, and thus we opted to additionally compute indi-

vidual regressions between each linguistic predictor variable and

the outcome variable.
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