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AptaNet as a deep learning 
approach for aptamer–protein 
interaction prediction
Neda Emami1 & Reza Ferdousi1,2*

Aptamers are short oligonucleotides (DNA/RNA) or peptide molecules that can selectively bind to 
their specific targets with high specificity and affinity. As a powerful new class of amino acid ligands, 
aptamers have high potentials in biosensing, therapeutic, and diagnostic fields. Here, we present 
AptaNet—a new deep neural network—to predict the aptamer–protein interaction pairs by integrating 
features derived from both aptamers and the target proteins. Aptamers were encoded by using 
two different strategies, including k-mer and reverse complement k-mer frequency. Amino acid 
composition (AAC) and pseudo amino acid composition (PseAAC) were applied to represent target 
information using 24 physicochemical and conformational properties of the proteins. To handle the 
imbalance problem in the data, we applied a neighborhood cleaning algorithm. The predictor was 
constructed based on a deep neural network, and optimal features were selected using the random 
forest algorithm. As a result, 99.79% accuracy was achieved for the training dataset, and 91.38% 
accuracy was obtained for the testing dataset. AptaNet achieved high performance on our constructed 
aptamer-protein benchmark dataset. The results indicate that AptaNet can help identify novel 
aptamer–protein interacting pairs and build more-efficient insights into the relationship between 
aptamers and proteins. Our benchmark dataset and the source codes for AptaNet are available in: 
https​://githu​b.com/nedae​mami/AptaN​et.

In 1990, aptamers were first introduced in the last decade of the twentieth1–3. They are short single-stranded 
sequences (RNA/DNA) or peptides. Because of their spatial conformations, they are capable of binding to specific 
molecular targets with high specificity and affinity4. These biological targets can be a broad range of biomolecules 
(e.g., lipids5, viruses6, nucleic acids7, cytokines8, ions9, etc.).

Aptamers are analogous to antibodies, but they have more advantages that make them a better choice. First, 
the aptamers are more stable at high temperatures. Second, after selection, aptamers amplify easily by polymerase 
chain reactions to establish large amounts of molecules with high purity. Third, aptamers are screened by the 
in-vitro process using an artificial library instead of cell lines or animals. And finally, aptamers have a simple 
structure, so they could be easily modified by adding various functional groups10–12. Therefore, as a new class of 
amino acid ligands, aptamers are expected to have great potential in bio sensing, diagnostics, and therapeutic 
approaches.

Aptamers are selected and produced by an in-vitro process, called the systematic evolution of ligands by 
exponential enrichment (SELEX), which contains a repetitive cycle of selection and amplification3,13. The process 
of empirical SELEX is challenging, time-consuming, and often fails to enrich high-affinity aptamers14,15. So far, 
several efforts have been conducted to improve the production and selection of aptamers16. However, it is still 
necessary for to develop other computational methods to accelerate the process, save cost, and design more 
effective aptamers with high affinity and specificity.

According to the best of our knowledge, four computational methods have been developed so far in terms 
of predicting aptamer–protein interaction. For the first time, Li et al.17 proposed a predictor based on a random 
forest (RF) algorithm. They used nucleotide composition for encoding aptamers, and targets were encoded using 
AAC and PseAAC. Although their predictor had yielded favorable results, but it had an imbalance problem. 
Zhang and co-workers18 developed an ensemble classifier consisting of three RF sub-classifiers to deal with the 
imbalance problem. They used pseudo K-tuple nucleotide composition (PseKNC) to represent aptamers and 
discrete cosine transform, bigram position-specific scoring matrix, and disorder information used for target 
encoding. In another work for imbalanced data handling, in 2019, Yang et al.19 presented an ensemble classifier 
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with three support vector machine (SVM)s sub-classifiers. They used nucleic acid composition and PseKNC 
for aptamer encoding, and a sparse autoencoder was applied to represent the targets. And recently, Li et al.20 
developed a web server to predict protein–aptamer interactions using an integrated framework Adaboost and 
random forest and features derived from sequences of aptamers and proteins. Aptamers were represented by 
nucleotide composition, PseKNC, and normalized Moreau-Broto autocorrelation coefficient. However, proteins 
were characterized by AAC, PseAAC, grouped amino acid composition, C/T/D composition and sequence-
order-coupling number.

These four methods have been developed to generate interaction predictions and yielded good results, but 
there are several opportunities and requirements for enhancing this field. Since deep learning techniques have had 
a high performance in biological predictions21–24, and they have not yet been exploited as a predictor to predict 
aptamer–protein interactions (API). Therefore, in this paper, we present AptaNet (a first deep neural network 
predictor) to predict the API pairs by integrating features derived from both aptamers and the target proteins. 
Aptamers were encoded by using two different strategies includes k-mer and revck-mer frequency. AAC and 
PseAAC were applied to represent target information using 24 physicochemical and conformational properties 
of proteins. To handle the imbalance problem in our dataset, we applied neighborhood cleaning algorithm.

AptaNet achieved high performance on our constructed aptamer-protein benchmark dataset. The results 
indicate that AptaNet could help to identify novel aptamer–protein interacting pairs and build more-efficient 
biological insights into understanding the relationship between aptamers and proteins, which could benefit all 
aptamer scientists and researchers.

The rest of the paper is organized as follows: presentation of the predictor’s performance using cross-valida-
tion, discussion, conclusion, dataset description, statistical samples formulation, selection, and development of 
a deep neural network.

Results
The technical details of AptaNet are provided in the “Materials and Methods” section. In this section, the results 
of several evaluation experiments are presented.

The results of feature group effects.  We created four groups (1, 2, 3, and 4). Each group consists of 
eight feature groups to describe aptamers encoding by the K-mer (k = 3), K-mer (k = 4), RevcK-mer (k = 3), and 
RevcK-mer (k = 4) methods, respectively, with proteins that encoded by AAC and PseAAC. We used a total of 24 
properties (i.e., physicochemical, conformational, and energetic) of proteins. We added three groups of proper-
ties each time to the previous dataset, sequentially. The feature groups and their information have been reported 
in Table 1. We have performed four sets of experiments to investigate the feature group’s effectiveness. In these 
experiments, we changed the feature groups on different deep neural networks by applying a balancing method 
to analyze the effect of features and performance of different neural networks. The results of these experiments 
are reported in Table 2. It is noticeable that the best results are related to the balanced datasets.

Since the number of properties is high, we have briefly named every three groups of properties: A, B, C, D, 
E, F, G, and H. A: hydrophobicity, hydrophilicity, mass; B: polarity, molecular weight, melting point; C: transfer 
free energy, buriability, bulkiness; D: solvation free energy, relative mutability, residue volume; E: volume, amino 
acid distribution, hydration number; F: isoelectric point, compressibility, chromatographic index; G: unfolding 
entropy change, unfolding enthalpy, unfolding Gibbs free energy change; H: the power to beat the N terminal, 
C terminal, and middle of alpha-helix; and apt for aptamers. It should be noted that various combinations of 
these 24 properties were examined (e.g., hydrophobicity, hydrophilicity, mass; hydrophobicity, hydrophilicity, 
polarity; isoelectric point, compressibility, hydrophilicity, etc.), and finally, the best combinations were selected 
based on their results.

First, we evaluate the performance using feature group k-mer2 + A, next added A + B, A + B + C, and finally 
A + B + C + D + E + F + G + H, sequentially. We have generated the average results of each feature group and dif-
ferent combinations of these feature groups based on sequential forward selection.

Table 2 represents the average performance of two different neural networks on the 32 datasets during our 
experiments. We have generated the results of various combinations of the feature groups by adding them in a 
forward selection scheme by sorting them based on their spatial performance for different aptamer encoding 
methods. For k-mer = 4, the best results were achieved when 21 properties(i.e., hydrophobicity, hydrophilic-
ity, mass, polarity, molecular weight, melting point, transfer-free energy, buriability, bulkiness, solvation free 
energy, relative mutability, residue volume, volume, amino acid distribution, hydration number, isoelectric point, 
compressibility, chromatographic index, unfolding entropy change, unfolding enthalpy, and unfolding Gibbs 
free energy charge) were applied. In the second place, the combination of 15 properties (i.e., hydrophobicity, 
hydrophilicity, mass, polarity, molecular weight, melting point, transfer-free energy, buriability, bulkiness, solva-
tion free energy, relative mutability, residue volume, volume, amino acid distribution, and hydration number) 
had the highest performance.

For k-mer = 3, the best results were achieved when 18 properties (i.e., hydrophobicity, hydrophilicity, mass, 
polarity, molecular weight, melting point, transfer-free energy, buriability, bulkiness, solvation free energy, rela-
tive mutability, residue volume, volume, amino acid distribution, hydration number, isoelectric point, compress-
ibility, and chromatographic index) were applied. In the second place, the combination of 12 properties (i.e., 
hydrophobicity, hydrophilicity, mass, polarity, molecular weight, melting point, transfer-free energy, buriability, 
bulkiness, solvation free energy, relative mutability, and residue volume) had the highest performance.

For the Revck-mer = 3, the best results were achieved when six properties (i.e., hydrophobicity, hydrophilicity, 
mass, polarity, molecular weight, and melting point) were applied. In the second place, the combination of three 
properties (i.e., hydrophobicity, hydrophilicity, and mass) had the highest performance.
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Group

Aptamer encoding Protein encoding

Dataset Total numberMethod Group name Number of feature Features Group name Number of feature

Group 1 Kmer (k = 3) Apt 84

hydrophobicity, 
hydrophilicity, mass A 50 Apt + A 134

polarity, molecular 
weight, melting 
point

B 50 Apt + A + B 184

transfer free energy, 
buriability, bulkiness C 50 Apt + A + B + C 234

solvation free 
energy, relative 
mutability, residue 
volume

D 50 Apt + A + B + C + D 384

volume, amino acid 
distribution, hydra-
tion number

E 50 Apt + A + B + C + D + E 334

isoelectric point, 
compressibility, 
chromatographic 
index

F 50 Apt + A + B + C + D + E + F 384

unfolding entropy 
change, unfolding 
enthalpy, unfolding 
Gibbs free energy 
charge

G 50 Apt + A + B + C + D + E + F + G 434

Power of N terminal 
of alphahelix, Power 
of C terminal of 
alphahelix, Power of 
best the middle of 
alphahelix

H 50 Apt + A + B + C + D + E + F 
+ G + H 484

Group 2 Kmer (k = 4) Apt 339

hydrophobicity, 
hydrophilicity, mass A 50 Apt + A 389

polarity, molecular 
weight, melting 
point

B 50 Apt + A + B 439

transfer free energy, 
buriability, bulkiness C 50 Apt + A + B + C 489

solvation free 
energy, relative 
mutability, residue 
volume

D 50 Apt + A + B + C + D 539

volume, amino acid 
distribution, hydra-
tion number

E 50 Apt + A + B + C + D + E 589

isoelectric point, 
compressibility, 
chromatographic 
index

F 50 Apt + A + B + C + D + E + F 639

unfolding entropy 
change, unfolding 
enthalpy, unfolding 
Gibbs free energy 
charge

G 50 Apt + A + B + C + D + E + F + G 689

Power of N terminal 
of alphahelix, Power 
of C terminal of 
alphahelix, Power of 
best the middle of 
alphahelix

H 50 Apt + A + B + C + D + E + F 
+ G + H 739

Continued
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For the Revck-mer = 4, the best results were achieved when 12 properties (i.e., hydrophobicity, hydrophilicity, 
mass, polarity, molecular weight, melting point, transfer-free energy, buriability, bulkiness, solvation free energy, 

Table 1.   Feature group description. Where Kmer (k = 3) is 3mer frequency, Kmer (k = 4) is 4mer frequency, 
Revckmer (k = 3) is reverse complement 3mer, and Revckmer frequency (k = 4) is reverse complement 4mer 
frequency for apt, which represents aptamer properties. And, Apt indicates aptamer properties.For protein 
properties: A indicates hydrophobicity, hydrophilicity, and mass; B indicates polarity, molecular weight, and 
melting point; C indicates transfer free energy, buriability, and bulkiness; D indicates solvation free energy, 
relative mutability, and residue volume; E indicates volume, amino acid distribution, and hydration number; F 
indicates isoelectric point, compressibility, and chromatographic index; G indicates unfolding entropy change, 
unfolding enthalpy and unfolding Gibbs free energy change; H indicates power to beat the N terminal, C 
terminal, and middle of the alpha helix.

Group

Aptamer encoding Protein encoding

Dataset Total numberMethod Group name Number of feature Features Group name Number of feature

Group 3 Revckmer (k = 3) Apt 44

hydrophobicity, 
hydrophilicity, mass A 50 Apt + A 94

polarity, molecular 
weight, melting 
point

B 50 Apt + A + B 144

transfer free energy, 
buriability, bulkiness C 50 Apt + A + B + C 194

solvation free 
energy, relative 
mutability, residue 
volume

D 50 Apt + A + B + C + D 244

volume, amino acid 
distribution, hydra-
tion number

E 50 Apt + A + B + C + D + E 294

isoelectric point, 
compressibility, 
chromatographic 
index

F 50 Apt + A + B + C + D + E + F 344

unfolding entropy 
change, unfolding 
enthalpy, unfolding 
Gibbs free energy 
charge

G 50 Apt + A + B + C + D + E + F + G 394

Power of N terminal 
of alphahelix, Power 
of C terminal of 
alphahelix, Power of 
best the middle of 
alphahelix

H 50 Apt + A + B + C + D + E + F 
+ G + H 444

Group 4 Revckmer (k = 4) Apt 179

hydrophobicity, 
hydrophilicity, mass A 50 Apt + A 229

polarity, molecular 
weight, melting 
point

B 50 Apt + A + B 279

transfer free energy, 
buriability, bulkiness C 50 Apt + A + B + C 329

solvation free 
energy, relative 
mutability, residue 
volume

D 50 Apt + A + B + C + D 379

volume, amino acid 
distribution, hydra-
tion number

E 50 Apt + A + B + C + D + E 429

isoelectric point, 
compressibility, 
chromatographic 
index

F 50 Apt + A + B + C + D + E +  479

unfolding entropy 
change, unfolding 
enthalpy, unfolding 
Gibbs free energy 
charge

G 50 Apt + A + B + C + D + E + F + G 529

Power of N terminal 
of alphahelix, Power 
of C terminal of 
alphahelix, Power of 
best the middle of 
alphahelix

H 50 Apt + A + B + C + D + E + F 
+ G + H 579
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relative mutability, and residue volume) were used. In the second place, the combination of 9 properties (i.e., 
hydrophobicity, hydrophilicity, mass, polarity, molecular weight, melting point, transfer-free energy, buriability, 
and bulkiness). had the highest performance.

Therefore, according to the results of 32 different datasets, four datasets were selected which had the best val-
ues in each group (i.e., Apt + A + B + C + D + E + F + G in group 1, Apt + A + B + C + D + E + F in group 2, Apt + A + B 
in group 3, and Apt + A + B + C + D in group 4).

The results of neural networks performances.  To test and select the appropriate deep neural network 
for our problem, we tested two deep neural networks: MLP and CNN. The experiment was performed once on 
the balance data and once on the imbalance data. For these experiments, we applied random under-sampling 
as the balancing method. Thirty-two different combinations were used as features that have been mentioned 
already. To set the neural networks: the number of batch sizes for MLP and CNN were 310 and 16, respectively. 

Table 2.   The average performances of two deep neural network classifiers on 32 different datasets, with and 
without the balancing method. Where Kmer 3 is 3mer frequency, Kmer 4 is 4mer frequency, Revckmer 3 is 
reverse complement 3mer, and Revckmer frequency 4 is reverse complement 4mer frequency for apt, which 
represents aptamer properties. For protein properties: A indicates hydrophobicity, hydrophilicity, and mass; 
B indicates polarity, molecular weight, and melting point; C indicates transfer free energy, buriability, and 
bulkiness; D indicates solvation free energy, relative mutability, and residue volume; E indicates volume, amino 
acid distribution, and hydration number; F indicates isoelectric point, compressibility, and chromatographic 
index; G indicates unfolding entropy change, unfolding enthalpy and unfolding Gibbs free energy change; H 
indicates power to beat the N terminal, C terminal, and middle of the alpha helix. MLP multi-layer perceptron; 
CNN convolutional neural network.

Dataset Feature combination

Deep neural 
networks
F1-score 
(imbalanced)

Deep neural 
networks
F1-score 
(balanced)

MLP CNN MLP CNN

Kmer (k = 3) + PseAAC​

Apt + A 0.8071 0.8197 0.8417 0.8577

Apt + A + B 0.7992 0.8624 0.8507 0.8416

Apt + A + B + C 0.8002 0.8420 0.8510 0.8465

Apt + A + B + C + D 0.7800 0.8409 0.8555 0.8553

Apt + A + B + C + D + E 0.7764 0.7406 0.8584 0.7983

Apt + A + B + C + D + E + F 0.7675 0.7618 0.8539 0.7829

Apt + A + B + C + D + E + F + G 0.7824 0.8043 0.8598 0.8456

Apt + A + B + C + D + E + F + G + H 0.7753 0.8455 0.8497 0.8105

Kmer (k = 4) + PseAAC​

Apt + A 0.8610 0.8542 0.8739 0.8630

Apt + A + B 0.8461 0.8551 0.8616 0.8720

Apt + A + B + C 0.8307 0.8608 0.8521 0.8220

Apt + A + B + C + D 0.8299 0.8347 0.8660 0.8184

Apt + A + B + C + D + E 0.7997 0.8086 0.8410 0.8379

Apt + A + B + C + D + E + F 0.7908 0.8389 0.8761 0.8354

Apt + A + B + C + D + E + F + G 0.8173 0.8257 0.8493 0.8038

Apt + A + B + C + D + E + F + G + H 0.8130 0.8228 0.8595 0.7939

Revckmer (k = 3) + PseAAC​

Apt + A 0.7689 0.8196 0.8215 0.8564

Apt + A + B 0.7562 0.8287 0.8183 0.8567

Apt + A + B + C 0.7596 0.8210 0.8119 0.8513

Apt + A + B + C + D 0.7411 0.8074 0.8265 0.8240

Apt + A + B + C + D + E 0.7532 0.8418 0.8203 0.8349

Apt + A + B + C + D + E + F 0.7302 0.8364 0.8256 0.8517

Apt + A + B + C + D + E + F + G 0.7321 0.7150 0.8192 0.7990

Apt + A + B + C + D + E + F + G + H 0.7347 0.8043 0.8246 0.8368

Revckmer (k = 4) + PseAAC​

Apt + A 0.7870 0.8524 0.8471 0.8559

Apt + A + B 0.8192 0.8125 0.8434 0.8416

Apt + A + B + C 0.8020 0.8566 0.8542 0.8537

Apt + A + B + C + D 0.7928 0.8560 0.8581 0.8501

Apt + A + B + C + D + E 0.7846 0.8278 0.8378 0.8317

Apt + A + B + C + D + E + F 0.7893 0.8325 0.8332 0.8168

Apt + A + B + C + D + E + F + G 0.7839 0.8288 0.8404 0.7995

Apt + A + B + C + D + E + F + G + H 0.7725 0.7971 0.8393 0.8195
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Additionally, the number of epochs was determined 200, rmsprop was also considered as an optimizer with its 
default values, and the activation function was sigmoid. The results regarding the F1-score were presented in 
Table 2.

In Table 2, the highest performance values achieved from MLP and CNN are highlighted. It is evident that 
MLP provides the highest values for 22 different feature group combinations. And CNN has achieved the high-
est values for ten datasets.

Except for three cases, including Apt + A, Apt + A + B, and Apt + A, MLP have the highest values in the three 
groups 1, 2, and 4. Also exception of Apt + A + B + C + D and Apt + A + B + C + D + E + F + G, CNN has the highest 
values in group 3. It can be deduced, that by decreasing the dimensionality of datasets CNN has better perfor-
mance. In the other words, MLP achieves better performance for datasets with more dimension. Therefore, we 
select MLP as out classifier.

The results of MLP with machine learning algorithms.  In this section, we compared the performance 
of AptaNet against some machine learning algorithms (shallow neural networks (SNN), k-nearest neighbor 
(KNN), RF, and SVM). All of algorithms were implemented in SKlearn library with the following parameters: 
Knn: n = 5, leaf size = 25, p = 2; RF: max depth = 3, n estimators = 10; SVM: degree = 3, c = 1, kernel = ’linear’, prob-
ability = True, cache size = 200; SNN: hidden layer = (3, 2); solver = ’lbfgs’, alpha = 0.0001. Which, all parameters 
were determined by different experiments. We performed a fivefold cross-validation strategy to evaluate the 
results of the test and training set. The average performance results are indicated in Table 3 and Fig. 1.

According to Table 3, the highest accuracy belongs to MLP for all datasets. Which among them, the best 
performance was obtained when kmer4_apt + A + B + C + D + E + F were applied.

In second place among the machine learning algorithms, RF has the highest accuracy for all four datasets. The 
best performance was obtained using kmer4_apt + A + B + C + D + E + F, which could be due to RF as an ensemble 
classifier consisting of multiple decision trees. Since RF has less overfitting to a particular dataset, accuracy was 
better than other machine learning algorithms. Therefore, according to four different datasets’ accuracy values, 
kmer4_apt + A + B + C + D + E + F was selected as a dataset for our model (See Supplementary Table S1).

Table 3.   The average performances of our model with four machine learning algorithms on four different 
datasets. Where Kmer 3 is 3mer frequency, Kmer 4 is 4mer frequency, Revckmer 3 is reverse complement 
3mer, and Revckmer frequency 4 is reverse complement 4mer frequency for aptamer properties. For protein 
properties: A indicates hydrophobicity, hydrophilicity, and mass; B indicates polarity, molecular weight, and 
melting point; C indicates transfer free energy, buriability, and bulkiness; D indicates solvation free energy, 
relative mutability, and residue volume; E indicates volume, amino acid distribution, and hydration number; F 
indicates isoelectric point, compressibility, and chromatographic index.

Datasets Methods Accuracy Precision F1 Score
Matthews’s 
correlation coefficient Specificity Sensitivity

Kmer 
3 + A + B + C + D + E + F

Shallow neural 
network 0.625 0.374 0.175 0.019 0.894 0.118

K nearest neighbor 0.589 0.381 0.199 0.002 0.864 0.137

Random forest 0.739 0.397 0.242 0.13 0.914 0.181

Support vector 
machine 0.546 0.39 0.065 − 0.022 0.954 0.036

Multilayer perceptron 0.872 0.861 0.854 0.741 0.89 0.849

Kmer 
4 + A + B + C + D + E + F

Shallow neural 
network 0.687 0.382 0.272 0.101 0.868 0.212

K nearest neighbor 0.601 0.38 0.2 0.011 0.871 0.136

Random forest 0.795 0.396 0.291 0.196 0.918 0.24

Support vector 
machine 0.548 0.39 0.058 − 0.02 0.96 0.032

Multilayer perceptron 0.886 0.881 0.869 0.77 0.906 0.861

Revckmer_3 + A + B

Shallow neural 
network 0.561 0.388 0.146 − 0.018 0.892 0.095

K nearest neighbor 0.578 0.391 0.194 − 0.001 0.868 0.13

Random forest 0.732 0.398 0.259 0.136 0.901 0.203

Support vector 
machine 0.529 0.4 0.043 − 0.022 0.97 0.021

Multilayer perceptron 0.831 0.821 0.809 0.576 0.948 0.558

Revck-
mer_4 + A + B + C + D

Shallow neural 
network 0.674 0.386 0.252 0.085 0.873 0.192

K nearest neighbor 0.557 0.387 0.203 − 0.019 0.846 0.139

Random forest 0.77 0.397 0.284 0.175 0.909 0.23

Support vector 
machine 0.5 0.4 0.036 − 0.029 0.971 0.019

Multilayer perceptron 0.86 0.847 0.845 0.718 0.874 0.843
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Figure 1.   The comparison of the prediction performance of our model and four machine learning algorithms 
on four different datasets. Where Kmer 3 is 3mer frequency, Kmer 4 is 4mer frequency, Revckmer 3 is reverse 
complement 3mer, and Revckmer frequency 4 is reverse complement 4mer frequency for aptamer properties. 
For protein properties: A indicates hydrophobicity, hydrophilicity, and mass; B indicates polarity, molecular 
weight, and melting point; C indicates transfer free energy, buriability, and bulkiness; D indicates solvation free 
energy, relative mutability, and residue volume; E indicates volume, amino acid distribution, and hydration 
number; F indicates isoelectric point, compressibility, and chromatographic index. (I) is results of k nearest 
neighbor algorithm; (II) is results of random forest algorithm; (III) is results of support vector machine 
algorithm; (IV) is results shallow neural network algorithm and (V) is results of our model. The power of 
predictors is calculated based on four metrics, including accuracy, precision, recall, and F1score.
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Among the machine learning algorithms, the lowest performance was achieved for SVM algorithm when 
aptamer features were combined with 12 properties of protein properties.

The lowest performance among datasets was achieved when aptamer features were combined with six protein 
properties (i.e., hydrophobicity, hydrophilicity, mass, polarity, molecular weight, melting point).

The results of the MLP optimization and feature selection.  Since MLP had the highest perfor-
mance among other deep learning and machine learning methods, MLP was selected as our predictor model. To 
improve our model’s performance, we implemented it by selecting the most optimal parameters with different 
experiments and the final model named AptaNet. We optimized our model with different values for the learning 
rate, batch size, and epochs. Learning rate = 0.00014, batch size = 5000, and epochs = 260 were the final settings 
of the presented model.

Also, we applied RF strategy for feature selection and ranking features. The optimal number of features was 
set to 193 by several experiments on RF parameters and different numbers of features. The 193 optimal features 
were selected according to the nature of our dataset and parameters of the RF strategy. The parameters were 
set based on our several feature selection experiments. We set estimators = 300 and max depth = 9 based on our 
feature selection experiments (See Supplementary Table S2).

Figure 2 describes the feature’s importance in ranking values.
As shown in Fig. 2, 193 optimal features obtained from RF strategy could be classified into eight terms: k-mer 

aptamer frequency, protein composition A, protein composition B, and protein composition F.
In the first place, k-mer aptamer frequency ranks the first; making up approximately 73%. In other words, a 

considerable part of the optimal features belongs to aptamer features. The k-mer aptamer frequency implies that 
using k-mer is a key factor for API in this study.

In the second place, there is feature composition B. As follows, in the third place, there is feature composi-
tion C. In the fourth place, another effective trait is feature composition A, composition D, and E, in which their 
counts are nearly equal. This finding means that the impact of using these three feature composition is the same. 
And in the last place, there is feature composition F.

According to Fig. 3, the ROC value for AptaNet was 0.914 before feature selection and 0.948 after feature 
selection.

Moreover, the results of testing and training of AptaNet before and after applying feature selection are pre-
sented in Tables 4 and 5, respectively. All results of the AptaNet were higher after applying the feature selection 
technique.

Additionally, Fig. 4 illustrates the model accuracy and loss of AptaNet for epoch = 260 and batch size = 5000.

Discussion
One of the most important challenges in the field of aptamer–target interaction is that the aptamers’ special 
databases(DBs) are scarce. To the best of our knowledge, there are four DBs about aptamer–target interaction, 
containing Aptamer Database25, RiboaptDB26, Aptamer Base27, and Aptagen (https​://www.aptag​en.com/). Which 

Figure 2.   Distributions of the 193 optimal features. Where group A represents hydrophilicity and mass; 
group B represents polarity, molecular weight, and melting point; group C represents transfer free energy, 
buriability, and bulkiness; group D represent solvation free energy, relative mutability, and residue volume; 
group E represent volume, amino acid distribution, and hydration number; group F represent isoelectric point, 
compressibility and chromatographic index for protein properties.

https://www.aptagen.com/
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Figure 3.   Receiver operating characteristic (ROC) curves of AptaNet before and after the feature selection on 
our benchmark dataset. Where (A) depicts the prediction performance of AptaNet before using feature selection 
and (B) illustrates the prediction performance of AptaNet after using feature selection. FP False Positive rate, TP 
True Positive rate.

Table 4.   The overall results of AptaNet before feature selection. Where Kmer 4 is 4mer frequency for aptamer 
properties. For protein properties: A indicates hydrophobicity, hydrophilicity, and mass; B indicates polarity, 
molecular weight, and melting point; C indicates transfer free energy, buriability, and bulkiness; D indicates 
solvation free energy, relative mutability, and residue volume; E indicates volume, amino acid distribution, and 
hydration number; F indicates isoelectric point, compressibility, and chromatographic index.

Dataset Accuracy Precision F1-score Matthews’s correlation coefficient Specificity Sensitivity

Kmer 4 + A + B + C + D + E + F 
(train) 0.998 0.998 0.998 0.997 0.999 0.998

Kmer 4 + A + B + C + D + E + F (test) 0.892 0.883 0.877 0.782 0.908 0.873

Table 5.   The overall results of AptaNet after feature selection. Where Kmer 4 is 4mer frequency for aptamer 
properties. For protein properties: A indicates hydrophobicity, hydrophilicity, and mass; B indicates polarity, 
molecular weight, and melting point; C indicates transfer free energy, buriability, and bulkiness; D indicates 
solvation free energy, relative mutability, and residue volume; E indicates volume, amino acid distribution, and 
hydration number; F indicates isoelectric point, compressibility and chromatographic index.

Dataset Accuracy Precision F1-score Matthews’s correlation coefficient Specificity Sensitivity

Kmer 4 + A + B + C + D + E + F 
(train) 0.997 0.997 0.997 0.995 0.995 0.999

Kmer 4 + A + B + C + D + E + F (test) 0.913 0.909 0.899 0.824 0.931 0.89

Figure 4.   Model accuracy and loss of AptaNet on our benchmark dataset. Where (A) is model accuracy, and 
(B) is model loss of AptaNet.
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among them, Aptamer Database and RiboaptDB no longer exist. Therefore, in this study, to have a complete 
dataset of API pairs, for the first time, in addition to Freebase, we also used Aptagen data, which are generated 
by independent studies. Aptagen provides useful information about aptamer type, target type, and experimental 
conditions.

Kmer frequency method has been widely used in many bioinformatics studies28–30 and has had successful 
results. The basic idea behind this method is that the encoding of each item is based on its interaction with its 
context. If we consider each sequence as a sentence and each K-mer as a word, we can extend this method to 
encode aptamer and protein sequences. Thus, Because of the simplicity, considering almost more sequence 
information compared to other methods available for encoding nucleotide sequences, we have used this method 
for encoding aptamer sequences.

One of the main problems in AAC strategy is losing the information of protein sequences. To overcome this 
restriction that can be affected on prediction performances, we have used PseAAC method. In the previous 
studies related to protein interaction prediction PseAAC method has been widely used and has had successful 
outcomes31–37. Therefore, we applied this strategy to representing protein target sequences in this study.

In several previous studies, it is proved that the physicochemical properties (e.g., hydrophilicity, hydrophobic-
ity, average accessible surface area, and polarity) and biochemical contacts (e.g., residue contacts, atom contacts, 
salt bridges, and hydrogen bonds) play an essential and constructive role in protein interactions38–44. Thus, we 
have used 32 structural-based and sequence-based properties from protein sequences. However, in the previous 
studies related to aptamer–target interaction, this large volume of features has not been used.

In this study, we have used the NCL strategy to overcome the imbalanced dataset problem. According to 
Table 2, in the experimental results obtained from the two neural networks (MLP and CNN), the results on 
the test dataset were significantly improved after applying the NCL method. Since the NCL technique not only 
focuses on data reduction but also focuses on cleaning data. NCL reduces the majority class by eliminating low-
quality data using Edited Nearest Neighbor (ENN) rules. Moreover, ENN removes classified data that are classi-
fied incorrectly. Therefore, the data cleaning process is intended for both majority and minority class samples45,46. 
Consequently, according to46–50, NCL as an under-sampling method has superior outcomes compared to other 
common over-sampling methods.

As a subfield of machine learning approaches, deep learning methods have been shown to exhibit unprec-
edented performance in various areas of biological prediction51–61. We described a novel deep neural network 
model in the present study, termed AptaNet, for predicting API.

We compared the MLP and CNN performances on the 32 different datasets to develop our prediction model. 
The performance of each network and algorithm was determined by assessing how they could correctly predict 
whether the aptamers were interacting with a specific target or not.

According to Table 2, MLP had superior outcomes compared to CNN. According to62–68, MLP networks have 
been more efficient in text processing problems. In this study, since API data were similar to text data, MLP 
networks had higher performance. Moreover, CNNs have had better outcomes in classification image data69–74.

Next, we compared MLP against some machine learning algorithms. Among the applied machine learning 
algorithms, the SVM algorithm achieved the lowest performance when aptamer features were combined with 
12 protein properties. The lowest performance of the SVM algorithm in the prediction of API may be attributed 
to the following shortcomings.

According to75–78, First, the SVM algorithm generally has not a convenient performance for large data sets. 
Second, in cases where the dataset has noises (target classes are overlapping), the SVM classifier will under-
perform. Third, SVM is not suitable when the number of the training data sample is lower than the number 
of features for each data point. And finally, since the SVM algorithm works by placing data points, there is no 
probabilistic explanation for the classification above and below the hyperplane classification.

The previous three studies have compared machine learning approaches (e.g., SVM and RF) to build their 
predictor. However, in the present study, the performance of two neural networks and four different machine 
learning algorithms (SNN, SVM, KNN, and RF) was compared and selected based on the best predictor of API.

It is essential to define which properties of the aptamer and protein determine their potential for interaction. 
The lowest performance among datasets was achieved when aptamer features were combined with six protein 
properties (i.e., hydrophobicity, hydrophilicity, mass, polarity, molecular weight, melting point). According to 
the79–86, energetic and conformational properties have essential effects on protein interactions. Therefore, only 
the presence of features which are depending on the physicochemical properties and absence of energy and 
conformational properties could be the reason for low performance.

According to Fig. 2, the k-mer aptamer frequency implies that the k-mer usage is an essential factor for APIs. 
This finding is justified by the previous studies87–92 which proved k-mer frequency plays an important role in 
interaction related to riboswitch, DNA, RNA, ncRNA, lncRNA, etc. This may be due to aptamers in this study 
were considered as the type of RNA and DNA.

In the second place, there is feature composition B. As follows, in the third place, there is feature composi-
tion C. In the fourth place, other effective traits are feature composition A, composition D, and E, in which their 
counts are nearly remaining equal. This finding means that the impact of using these three feature composition 
is the same. And in the last place, there is feature composition F. Since our study targets are proteins, according 
to previous studies on protein interaction and protein complexes17,93–99, it is shown that physicochemical prop-
erties (e.g., hydrophobicity, hydrophilicity, mass, volume, etc.) are the main factors which affected on protein 
interaction. For example, according to100, high molecular weight provides strong protein binding affinity. It has 
also been shown that aptamers are sensitive protein binding based on the local environment polarity at different 
modification sites101. However, the effect of the melting point on protein binding is also indicated102.

In this study, we applied RF strategy for feature selection and ranking features. The optimal number of fea-
tures was set to 193 by several experiments on RF parameters and different numbers of optimal features. The 
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193 optimal features were selected according to the nature of our dataset and the optimized parameters, which 
we set to RF strategy. The parameters were set based on our several feature selection experiments.

Roc curves have been broadly used in machine learning and deep learning approaches for performance 
evaluation86,103–106. Therefore, as a popular method for performance evaluation, the ROC curve was utilized in 
our experiments. Which, ROC instead of considering only the numerical AUC values could be a better strategy 
in this study.

An oscillation in loss and accuracy in our model can be because of the nature of our dataset. It means that 
the number of API data (which are the result of laboratory results) that are recorded in freebase and aptagen 
databases is low (only 850). Since deep learning methods require large volumes of data, therefore, in this study, we 
see oscillation in loss and accuracy. Indeed, in the future, with more laboratory experiments on API, the amount 
of API data will be increased, and consequently, the results of deep learning models on them will be better.

Conclusion
In this study, we have presented AptaNet, a novel deep learning method for predicting API. AptaNet is unique 
in its exploitation of sequence-based features for aptamers along with the physicochemical and conformational 
properties for targets to predict API. It also uses a balancing technique and a deep neural network. We have 
performed extensive experiments to analyze and test AptaNet performance. Experimental evaluations show 
that, on our 32 benchmark datasets, AptaNet has superior performance compared to other methods examined 
in this study in terms of accuracy. Moreover, AptaNet has shown to be able to provide biological insights into 
understanding API’s nature, which can be helpful for all aptamer scientists and researchers.

There is still a lot of room for improvement in this field. The study mentioned above focuses on target pro-
teins, but there are other types of targets, such as compounds. Due to the important role of aptamers in various 
biological processes, further research is needed to focus on the aptamer’s interactions with other types of targets. 
Additionally, due to the large number of properties of aptamers and proteins that can affect the API, further 
investigations are required to use other features of aptamers and proteins that have been recommended in the 
literature. Since the existence of an accessible web-server is required in this field, and given the successful results 
of AptaNet, other extensive efforts are required to provide a powerful web server based on the predicting method 
presented in this article in the future. Research on aptamer–target interaction prediction is likely to continue for 
the next years with deep learning approaches and unprecedented feature extraction strategies for aptamers and 
targets. Consequently, it leads to new opportunities and challenges in this scope.

Materials and methods
This section provides detailed information of the datasets, feature extraction methods, balancing strategy, two 
types of examined deep neural networks, feature selection method, and evaluation metrics used in this study. 
All the methods were implemented in python language using Python 3.6 version. Keras and Scikit-learn library 
of python was used to implement deep learning methods and the machine learning algorithms, respectively. 
All experiments were conducted in a Google collaboratory notebook environment. Also, each experiment was 
carried out five times, and the average of the results was reported. Figure 5 shows the training module of our 
proposed neural network, AptaNet. The training dataset of AptaNet includes both interacting (positive) and non-
interacting (negative) aptamer-protein pairs. For each sample of the aptamer-protein pairs, aptamer sequences 
were obtained from Aptagen107 and aptamer free base108 databases.

Similarly, protein sequences are obtained from Swissprot109 based on their protein-id. Next, a balancing 
strategy was applied to prevent the unbalancing problem. Then, feature extraction methods used these data to 
generate k-mer and Revck-mer for aptamers features and AAC and PseAAC for protein features. After that, by 
applying a feature selection method, important features were ranked and selected. Finally, obtained features in 
this step were fed to AptaNet, which learns the model for predicting API.

We perform several kinds of experiments. In particular, we performed four different sets of experiments: 
First, we investigated the effectiveness of the different feature groups, as mentioned in Table 1. We investigated 
the dataset effectiveness by considering the performance of multi-layer perceptron (MLP) and convolutional 
neural network (CNN) neural networks on the 32 different datasets. Secondly, we compared the performance of 
the two deep neural networks used in our research. Subsequently, we compared our model against some machine 
learning algorithms. Finally, we investigate the result of the feature selection method and AptaNet. In Fig. 6, the 
overall workflow for our methodology is graphically demonstrated.

Data collection.  To prepare our dataset, we obtained known API from two different databases: Aptagen and 
Aptamer Base. Aptagen contains 554 entries of interactions, which among them a total number of 477 are aptam-
ers of RNA/DNA interacting and 241 target proteins. Freebase consists of 1638 interaction entries which 1381 of 
them are aptamers of DNA/RNA and 211 target proteins. For the proteins, since the identifiers of target proteins 
are presented in aptagen and Aptamer Base, like Aspartame, Caffeine, Colicin E3, etc., therefore, we prepared 
their sequences by searching in UniProtKB/Swiss-Prot based on the best name matches. For Aptagen, in 477 
aptamers, there is 269 interaction with the 241 protein targets. Therefore, the 269 pairs of APIs are considered as 
positive samples. And for Aptamer Base in 1381 aptamers, only 725 interaction with 164 proteins was exist, so 
the 725 API are assumed as positive samples. To remove duplicate APIs between two databases, we unified the 
IDs of aptamers and the proteins. Thus, 850 APIs with 452 proteins target were obtained. Since all collected APIs 
are considered as positive instances and negative APIs are not determined in the databases listed. Therefore, 
negative instances of APIs were generated by a random pairs of aptamers and proteins, so that they did not any 
overlap with the positive instances. Finally, the total number of instances were 3404, which contain 850 positive 
and 2554 negative instances.
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Balancing the dataset.  Generally, in classification problems, learning methods assume that the number 
of samples in each class is almost equal110. However, in most real conditions, the class distribution is not similar 
because the number of representations of some classes is much more than the others. As a result, it can restrict 
the learning model’s performance since they will be biased towards the majority class. Therefore, in this study, 
we used neighborhood cleaning to deal with such incompatibility (NCL). NCL is categorized into the groups of 
under-sampling strategy111. NCL was first introduced by Laurikkala112 for balancing dataset by removing some 
instances from the majority class randomly to reduce the size of the majority class with/ or without replacement.

NCL procedure.  Suppose we have an imbalanced dataset where O is a majority class, and C is a minority 
class. So, NCL, by using Wilson’s edited nearest neighbor rule (ENN)113, identified noisy data (A1) and reduced 
O by removing A1 in O. In other words, ENN removes instances that differ from at least two of their three near-
est neighbors. Furthermore, NCL is intensifying size reduction by removing the three nearest neighbors that 
misclassify instances of C. Figure 7 describes the NCL algorithm.

Feature construction.  In this study, Kmer frequency and Reverse compliment k-mer (k = 2, 3) were 
adopted separately to encode the aptamer sequences. The amino acid composition and pseudo-amino acid com-
position were employed to encode the protein sequences.

K‑mer frequency.  Since, T-(Thymine) in DNA is similar to U-(uracil) in RNA therefore, we converted each 
RNA to DNA sequences by replacing U to T. K-mers are subsequences of length k (A, T, C, and G) to represent 
the DNAs sequence. Suppose n is the number of possible monomers (A, C, G, and T) so, a total possible k-mers 
will be nk. (See Fig. 5A) In this study, k = 3, 4 were adopted for each aptamer, and as a result, each aptamer was 
encoded into an 84-dimension for k = 3 and 339-dimension for k = 4 numerical vector.

Reverse compliment k‑mer.  The reverse complement of a DNA sequence is organized by replacing T and 
A, exchanging G and C, and reversing the letters. (See Fig. 5B) As an example, if k = 2 so there are 16 basic k-mers 
in total, but by reverse compliment k-mers, there are ten different k-mers. Therefore, the total possible number 
of reverse complement k-mer will be calculated as follows:

We set (k = 3, 4) for each aptamer, and as a result, each aptamer was encoded into a 44-dimensional vector 
for k = 3 and a 179-dimensional vector for k = 4. In this study, to generate characteristics of aptamers, we used a 
powerful python package known as RepDNA114.

(1)
{

22k−1(k = 1, 3, 5, ...)

22k−1 + 2k−1(k = 2, 4, 6, ...)

Figure 5.   A schematic overview of the training module of AptaNet. For a given sequence (A) Shows K-mer 
frequency strategy for aptamer encoding; (B) depicts Reverse compliment k-mer strategy for aptamer encoding 
and (C) Displays Pseudo-Amino Acid Composition strategy for protein encoding. The figure is drawn by using 
of Microsoft PowerPoint 2016 that is available in https​://www.offic​e.com/.

https://www.office.com/
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Figure 6.   Flowchart of performed methodology to find the best dataset and predictor for potential 
aptamer-protein prediction. Where feature group 1 contained k-mer (k = 3) frequency for aptamers and 
24 physicochemical and conformational properties of proteins sequences; group 2 involved k-mer (k = 4) 
frequency for aptamers and 24 physicochemical and conformational properties of proteins sequences, group 3 
comprised Revckmer (k = 3) frequency for aptamers and 24 physicochemical and conformational properties of 
proteins sequences and group 4 included Revckmer (k = 4) frequency for aptamers and 24 physicochemical and 
conformational properties of proteins sequences. NCL neighborhood cleaning, MLP multi-layer perceptron, 
CNN convolutional neural network, KNN k nearest neighbor, SNN neural network, SVM support vector 
machine and RF random forest. The figure is drawn by using of Microsoft PowerPoint 2016 that is available in 
https​://www.offic​e.com/.

Figure 7.   The Neighborhood Cleaning Algorithm. The figure is drawn by using of Microsoft PowerPoint 2016 
that is available in https​://www.offic​e.com/.

https://www.office.com/
https://www.office.com/
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Amino acid composition (AAC).  AAC is a kind of protein sequence feature based on protein attributes, 
like folding types, secondary structure, domain, subcellular location, etc. AAC calculates the frequency of each 
amino acid in a protein sequence. For a protein sequence with N amino acid residues, the frequencies of each 
residue could be considered as follows:

N(t) is the number of amino acid type t.

Pseudo‑amino acid composition (PAAC).  Chou first introduced this group of descriptors for the pre-
diction of protein subcellular properties115. (See Fig. 5C) PseAAC has been used as an effective feature extraction 
method in several biological problems31–37. The PseAAC method can be demonstrated as defined below:

Given a protein chain P with N amino acid residues:

The protein sequence order effect can be demonstrated by a set of separate correlation factors, as follows:

where θ1, θ2, …, θλ are called the 1-tier, 2-tier, and λ-th tier correlation factors, respectively. The correlation 
function can be shown by:

where H1(Ri), H2(Ri), and M(Ri) are, some properties (e.g., physicochemical, conformational, and energetic) 
value for the amino acid Ri; and also H1(Rj), H2(Rj), and M(Rj) are the corresponding values of the amino acid 
Rj. Notably, each property values are transformed from the original values based on the following equation:

where H1 (i), H2 (i), and M (i) are the original property values for the amino acids. Therefore, for a protein 
sequence P, the PseAAC can be illustrated by a vector with (20 + �)—Dimensional as:

T is the transpose operator.

where for the mentioned protein sequence P, fi shows the occurrence frequencies of the 20 amino acids, and θj 
shows j-th tier sequence correlation factor that is calculated based on Eq. (2), and ω shows the weight factor of 
the sequence order effect. We set ω = 0.05. According to the above description, the first 20 components in Eq. (5) 
shows the amino acid composition effect, and the other remaining components (20 + 1 to 20 + λ) show the effect 
of sequence order. So, the whole of 20 + λ components will be PseAAC. We set λ = 30.

In this study, we used 24 physicochemical and biochemical (i.e., hydrophobicity, hydrophilicity, mass, polar-
ity, molecular weight, melting point, transfer-free energy, buriability, bulkiness, solvation free energy, relative 
mutability, residue volume, volume, amino acid distribution, hydration number, isoelectric point, compressibility, 
chromatographic index, unfolding entropy change, unfolding enthalpy, unfolding Gibbs free energy change, 
power to beat the N terminal, C terminal and middle of alpha helix) properties of amino acids. The 24 properties 
were retrieved from116,117 which could be found in Supplementary Table S3.

(2)f (t) =
N(t)

N
, tǫ

(3)P = R1R2R3 . . .RN

(4)







































θ1 = 1
L−1

�L−1
i=1 �(Ri ,Ri+1)

θ2 = 1
L−2

�L−2
i=1 �(Ri ,Ri+2)

θ3 = 1
L−3

�L−3
i=1 �(Ri ,Ri+3)

.

.

.

θ� = 1
L−�

�L−�

i=1 �
�

Ri ,Ri+�

�

, (� < L)

(5)�
(

Ri ,Rj
)

=
1

3

{

[

H1

(

Rj
)

−H1(Ri)
]2 +

[

H2

(

Rj
)

−H2(Ri)
]2 +

[

M
(

Rj
)

−M(Ri)
]2
}

(6)































































H1(i) =
H0
1 (i)−

�20
i=1

H0
1
(i)

20
�

�

�

�

�20
i=1

�

H0
1
(i)−

�20
i=1

H0
1
(i)

20

�

20

H2(i) =
H0
2 (i)−

�20
i=1

H0
2
(i)

20
�

�

�

�

�20
i=1

�

H0
2
(i)−

�20
i=1

H0
2
(i)

20

�

20

M(i) =
M0(i)−

�20
i=1

M0(i)
20

�

�20
i=1

�

M0(i)−
�20

i=1
M0(i)
20

�

20

(7)[V1,V2, . . . ,V20,V21, . . . ,V20+�]
T

(8)Xu =







fu
�20

i=1 fi+ω
�

�

j=1 θj
, (1 ≤ u ≤ 20)

ωθu−20
�20

i=1 fi+ω
�

�

j=1 θj
, (20+ 1 ≤ u ≤ 20+ �)



15

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6074  | https://doi.org/10.1038/s41598-021-85629-0

www.nature.com/scientificreports/

Also, in our study, to generate characteristics of proteins, we used a python package known as iFeature118.

Description of deep neural network model.  Multi‑layer perceptron (MLP).  We have selected the 
MLP as our classification model. A seven-layer neuron network was performed in the fully connected layer to 
generate the final prediction of interaction between aptamer and protein. The number of layers we selected here 
was depended on the various tests among the seven different layers (i.e., 3, 4, 5, 6, 7, 8, and 9) and the comparison 
of their outcomes. Finally, the best outcomes were obtained when the seven-layer network was applied.

All the neuron units in each layer (layer i) were connected to its previous layer (i − 1), and outcomes produced 
by using non-linear transformation function f as follows:

where H represents the number of hidden neurons, w and b are the weights and bias of neuron j, which sum-
marize all the hidden units. After each fully-connected layer, the network performed an activation function 
named rectified linear unit (Relu).

Relu is a non-linear function that can extract hidden patterns in the data and reduce gradient vanishing. The 
Dropout was applied in order to avoid overfitting behind every fully connected layer. The outcome in the last 
layer was obtained using the sigmoid function as follows:

To train the network, we minimized the objective function for loss minimization. We used a function named 
binary cross-entropy cost function C, as follows:

where C is the output of the loss function called the binary cross-entropy cost function. Furthermore, x indicates 
the training sample index, and t represents the index of different labels, y indicates the true value of sample x, 
which can be 0 or 1. And a is the predicted output of the network for 0 or 1 value given input sample x. When 
the predicted outputs are close to the true values, the value of C will get less. Since the cross-entropy is a non-
negative function, so to get the best prediction, the function must minimize.

Comparison with machine learning algorithms.  To compare our model and some machine learning 
algorithms, we compared the performance of AptaNet against some machine learning algorithms. We selected 
five machine learning algorithms, namely, SNN, KNN, RF, and SVM. We performed fivefold cross-validation to 
evaluate the performance of the test and training set.

Feature selection.  In order to prevent overfitting and select the most important features, we used the RF 
algorithm. RF is one of the robust machine learning algorithms created by Loe Breiman119. RF is an ensemble 
learning containing multiple decision trees. Each of the decision trees is created based on a random extraction of 
the instances and the features. Since each tree does not check all features and instances, so, it can be concluded 
that trees are de-correlated, and therefore the possibility of their over-fitting is less.

RF selects important features by ranking all features based on the improvement of the node purity. The node’s 
probability is the number of instances that reach the node, divided by the whole number of instances. Therefore, 
the importance of the features has a direct relation with the high value of the probability. We chose forests con-
taining nine trees based on our feature selection experiments.

Performance evaluation.  In this study, we used fivefold cross-validation to evaluate the performance of 
our model. During this procedure, the whole dataset is evenly and randomly divided into five folds which four 
folds are used for training and one for testing. This method was repeated five times, and each instance was tested 
just once. In order of evaluation of the predictor performance, the prediction accuracy, f1_macro, precision, 
specificity, sensitivity (recall), and matthews’s correlation coefficient were computed as below:

(9)oj =

(

H
∑

i=1

wioi + bi

)

(10)ReLU(x) =
{

x, x ≥ 0

0, x < 0
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1

n

∑
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[
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where TP, FP, TN, and FN represent true positive, false positive, true negative, and false negative, respectively.

Received: 26 September 2020; Accepted: 3 March 2021

References
	 1.	 Robertson, D. L. & Joyce, G. F. Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344, 

467–468. https​://doi.org/10.1038/34446​7a0 (1990).
	 2.	 Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822. https​://

doi.org/10.1038/34681​8a0 (1990).
	 3.	 Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA poly-

merase. Science 249, 505–510 (1990).
	 4.	 Iliuk, A. B., Hu, L. & Tao, W. A. Aptamer in bioanalytical applications. Anal. Chem. 83, 4440–4452. https​://doi.org/10.1021/

ac201​057w (2011).
	 5.	 Ashrafuzzaman, M. Aptamers as both drugs and drug-carriers. Biomed. Res. Int. 2014, 697923. https​://doi.org/10.1155/2014/69792​

3 (2014).
	 6.	 Binning, J. M. et al. Development of RNA aptamers targeting Ebola virus VP35. Biochemistry 52, 8406–8419. https​://doi.

org/10.1021/bi400​704d (2013).
	 7.	 Jaax, M. E. et al. Complex formation with nucleic acids and aptamers alters the antigenic properties of platelet factor 4. Blood 

122, 272–281. https​://doi.org/10.1182/blood​-2013-01-47896​6 (2013).
	 8.	 Wang, P. et al. Aptamers as therapeutics in cardiovascular diseases. Curr. Med. Chem. 18, 4169–4174 (2011).
	 9.	 Tŏpala, T. et al. New sulfonamide complexes with essential metal ions [Cu(II), Co(II), Ni(II) and Zn(II)]. Effect of the geometry 

and the metal ion on DNA binding and nuclease activity. BSA protein interaction. J. Inorg. Biochem. 202, 110823 (2020).
	 10.	 Zhu, Q., Liu, G. & Kai, M. DNA aptamers in the diagnosis and treatment of human diseases. Molecules 20, 20979–20997. https​

://doi.org/10.3390/molec​ules2​01219​739 (2015).
	 11.	 Gonzalez, V. M., Martin, M. E., Fernandez, G. & Garcia-Sacristan, A. Use of aptamers as diagnostics tools and antiviral agents 

for human viruses. Pharmaceuticals https​://doi.org/10.3390/ph904​0078 (2016).
	 12.	 Passariello, M., Camorani, S., Vetrei, C., Cerchia, L. & De Lorenzo, C. Novel human bispecific aptamer-antibody conjugates for 

efficient cancer cell killing. Cancers https​://doi.org/10.3390/cance​rs110​91268​ (2019).
	 13.	 Tian, H., Duan, N., Wu, S. & Wang, Z. Selection and application of ssDNA aptamers against spermine based on Capture-SELEX. 

Anal. Chim. Acta 1081, 168–175. https​://doi.org/10.1016/j.aca.2019.07.031 (2019).
	 14.	 Flamme, M., McKenzie, L. K., Sarac, I. & Hollenstein, M. Chemical methods for the modification of RNA. Methods 161, 64–82. 

https​://doi.org/10.1016/j.ymeth​.2019.03.018 (2019).
	 15.	 Zhu, C., Yang, G., Ghulam, M., Li, L. & Qu, F. Evolution of multi-functional capillary electrophoresis for high-efficiency selection 

of aptamers. Biotechnol. Adv. 107, 432. https​://doi.org/10.1016/j.biote​chadv​.2019.10743​2 (2019).
	 16.	 Emami, N., Pakchin, P. S. & Ferdousi, R. Computational predictive approaches for interaction and structure of aptamers. J. Theor. 

Biol. 497, 110268 (2020).
	 17.	 Li, B. Q. et al. Prediction of aptamer-target interacting pairs with pseudo-amino acid composition. PLoS ONE 9, e86729. https​

://doi.org/10.1371/journ​al.pone.00867​29 (2014).
	 18.	 Zhang, L., Zhang, C., Gao, R., Yang, R. & Song, Q. Prediction of aptamer-protein interacting pairs using an ensemble classifier 

in combination with various protein sequence attributes. BMC Bioinform. 17, 225. https​://doi.org/10.1186/s1285​9-016-1087-5 
(2016).

	 19.	 Yang, Q., Jia, C. & Li, T. Prediction of aptamer-protein interacting pairs based on sparse autoencoder feature extraction and an 
ensemble classifier. Math. Biosci. 311, 103–108. https​://doi.org/10.1016/j.mbs.2019.01.009 (2019).

	 20.	 Li, J., Ma, X., Li, X. & Gu, J. PPAI: A web server for predicting protein-aptamer interactions. BMC Bioinform. 21, 1–15 (2020).
	 21.	 Wang, Y., Cao, Z., Zeng, D., Wang, X. & Wang, Q. Using deep learning to predict the hand-foot-and-mouth disease of enterovirus 

A71 subtype in Beijing from 2011 to 2018. Sci. Rep. 10, 1–10 (2020).
	 22.	 Beknazarov, N., Jin, S. & Poptsova, M. Deep learning approach for predicting functional Z-DNA regions using omics data. Sci. 

Rep. 10, 1–15 (2020).
	 23.	 Gao, M., Zhou, H. & Skolnick, J. DESTINI: A deep-learning approach to contact-driven protein structure prediction. Sci. Rep. 

9, 1–13 (2019).
	 24.	 El-Attar, N. E., Hassan, M. K., Alghamdi, O. A. & Awad, W. A. Deep learning model for classification and bioactivity prediction 

of essential oil-producing plants from Egypt. Sci. Rep. 10, 1–10 (2020).
	 25.	 Lee, J. F., Hesselberth, J. R., Meyers, L. A. & Ellington, A. D. Aptamer database. Nucleic Acids Res. 32, D95–D100 (2004).
	 26.	 Thodima, V., Pirooznia, M. & Deng, Y. BMC Bioinformatics 1–6 (BioMed Central, 2020).
	 27.	 Cruz-Toledo, J. et al. Aptamer base: A collaborative knowledge base to describe aptamers and SELEX experiments. Database 

2012 (2012).
	 28.	 Khatun, M. S., Hasan, M. M., Shoombuatong, W. & Kurata, H. ProIn-Fuse: Improved and robust prediction of proinflammatory 

peptides by fusing of multiple feature representations. J. Comput. Aided Mol. Des. 34, 1229–1236 (2020).
	 29.	 Hasan, M. M. et al. Meta-i6mA: An interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by 

exploiting informative features in an integrative machine-learning framework. Brief. Bioinform. (2020).

(15)F1score =
Precision× Sensitivity

Precision+ Sensitivity

(16)Sensitivity =
TP

TP + FN

(17)Specificity =
TN

TN + FP

(18)Matthews′sCorrelationCoefficient =
(TP × TN)− (FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

https://doi.org/10.1038/344467a0
https://doi.org/10.1038/346818a0
https://doi.org/10.1038/346818a0
https://doi.org/10.1021/ac201057w
https://doi.org/10.1021/ac201057w
https://doi.org/10.1155/2014/697923
https://doi.org/10.1155/2014/697923
https://doi.org/10.1021/bi400704d
https://doi.org/10.1021/bi400704d
https://doi.org/10.1182/blood-2013-01-478966
https://doi.org/10.3390/molecules201219739
https://doi.org/10.3390/molecules201219739
https://doi.org/10.3390/ph9040078
https://doi.org/10.3390/cancers11091268
https://doi.org/10.1016/j.aca.2019.07.031
https://doi.org/10.1016/j.ymeth.2019.03.018
https://doi.org/10.1016/j.biotechadv.2019.107432
https://doi.org/10.1371/journal.pone.0086729
https://doi.org/10.1371/journal.pone.0086729
https://doi.org/10.1186/s12859-016-1087-5
https://doi.org/10.1016/j.mbs.2019.01.009


17

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6074  | https://doi.org/10.1038/s41598-021-85629-0

www.nature.com/scientificreports/

	 30.	 Hasan, M. M., Manavalan, B., Khatun, M. S. & Kurata, H. i4mC-ROSE, a bioinformatics tool for the identification of DNA 
N4-methylcytosine sites in the Rosaceae genome. Int. J. Biol. Macromol. 157, 752–758 (2020).

	 31.	 Bakhtiarizadeh, M. R., Rahimi, M., Mohammadi-Sangcheshmeh, A., Shariati, J. V. & Salami, S. A. PrESOgenesis: A two-layer 
multi-label predictor for identifying fertility-related proteins using support vector machine and pseudo amino acid composition 
approach. Sci. Rep. 8, 9025. https​://doi.org/10.1038/s4159​8-018-27338​-9 (2018).

	 32.	 Mei, J. & Zhao, J. Prediction of HIV-1 and HIV-2 proteins by using Chou’s pseudo amino acid compositions and different clas-
sifiers. Sci. Rep. 8, 2359. https​://doi.org/10.1038/s4159​8-018-20819​-x (2018).

	 33.	 Ariaeenejad, S. et al. A computational method for prediction of xylanase enzymes activity in strains of Bacillus subtilis based on 
pseudo amino acid composition features. PLoS ONE 13, e0205796. https​://doi.org/10.1371/journ​al.pone.02057​96 (2018).

	 34.	 Xiao, X., Cheng, X., Chen, G., Mao, Q. & Chou, K. C. pLoc_bal-mVirus: predict subcellular localization of multi-label virus 
proteins by Chou’s general PseAAC and IHTS treatment to balance training dataset. Med. Chem. 15, 496–509. https​://doi.
org/10.2174/15734​06415​66618​12171​14710​ (2019).

	 35.	 Jia, J., Li, X., Qiu, W., Xiao, X. & Chou, K. C. iPPI-PseAAC(CGR): Identify protein-protein interactions by incorporating chaos 
game representation into PseAAC. J. Theor. Biol. 460, 195–203. https​://doi.org/10.1016/j.jtbi.2018.10.021 (2019).

	 36.	 Ju, Z. & Wang, S. Y. Prediction of citrullination sites by incorporating k-spaced amino acid pairs into Chou’s general pseudo 
amino acid composition. Gene 664, 78–83. https​://doi.org/10.1016/j.gene.2018.04.055 (2018).

	 37.	 Yu, B. et al. Prediction of protein structural class for low-similarity sequences using Chou’s pseudo amino acid composition and 
wavelet denoising. J. Mol. Graph. Model. 76, 260–273. https​://doi.org/10.1016/j.jmgm.2017.07.012 (2017).

	 38.	 Saghapour, E. & Sehhati, M. Physicochemical position-dependent properties in the protein secondary structures. Iran. Biomed. 
J. 23, 253 (2019).

	 39.	 Ma, X., Guo, J. & Sun, X. DNABP: Identification of DNA-binding proteins based on feature selection using a random forest and 
predicting binding residues. PLoS ONE 11, e0167354 (2016).

	 40.	 Gleeson, M. P., Hersey, A., Montanari, D. & Overington, J. Probing the links between in vitro potency, ADMET and physico-
chemical parameters. Nat. Rev. Drug Discov. 10, 197–208 (2011).

	 41.	 Macalino, S. J. Y. et al. Evolution of in silico strategies for protein-protein interaction drug discovery. Molecules 23, 1963 (2018).
	 42.	 Ding, Y., Tang, J. & Guo, F. Predicting protein-protein interactions via multivariate mutual information of protein sequences. 

BMC Bioinform. 17, 398 (2016).
	 43.	 Ding, Y., Tang, J. & Guo, F. Identification of protein–protein interactions via a novel matrix-based sequence representation model 

with amino acid contact information. Int. J. Mol. Sci. 17, 1623 (2016).
	 44.	 Guo, F. et al. Identifying protein-protein interface via a novel multi-scale local sequence and structural representation. BMC 

Bioinform. 20, 1–11 (2019).
	 45.	 Agustianto, K. & Destarianto, P. in 2019 International Conference on Computer Science, Information Technology, and Electrical 

Engineering (ICOMITEE). 86–89 (IEEE).
	 46.	 Faris, H. Neighborhood cleaning rules and particle swarm optimization for predicting customer churn behavior in telecom 

industry. Int. J. Adv. Sci. Technol. 68, 11–22 (2014).
	 47.	 Suman, S., Laddhad, K. & Deshmukh, U. Methods for handling highly skewed datasets. Part I-October 3 (2005).
	 48.	 Bach, M., Werner, A. & Palt, M. The proposal of undersampling method for learning from imbalanced datasets. Procedia Comput. 

Sci. 159, 125–134 (2019).
	 49.	 Sun, Y. & Liu, F. in 2016 2nd IEEE International Conference on Computer and Communications (ICCC). 1157–1161 (IEEE).
	 50.	 Rekha, G., Reddy, V. K. & Tyagi, A. K. CIRUS: Critical instances removal based under-sampling: A solution for class imbalance 

problem. Int. J. Hybrid Intell. Syst. 16, 55–66 (2020).
	 51.	 Choi, J., Park, S. & Ahn, J. RefDNN: A reference drug based neural network for more accurate prediction of anticancer drug 

resistance. Sci. Rep. 10, 1–11 (2020).
	 52.	 Jha, D. et al. Elemnet: Deep learning the chemistry of materials from only elemental composition. Sci. Rep. 8, 1–13 (2018).
	 53.	 Rifaioglu, A. S., Doğan, T., Martin, M. J., Cetin-Atalay, R. & Atalay, V. DEEPred: Automated protein function prediction with 

multi-task feed-forward deep neural networks. Sci. Rep. 9, 1–16 (2019).
	 54.	 Pan, X. & Shen, H.-B. Predicting RNA–protein binding sites and motifs through combining local and global deep convolutional 

neural networks. Bioinform. 34, 3427–3436 (2018).
	 55.	 Lo, C. & Marculescu, R. MetaNN: Accurate classification of host phenotypes from metagenomic data using neural networks. 

BMC Bioinform. 20, 314 (2019).
	 56.	 Peng, C., Han, S., Zhang, H. & Li, Y. RPITER: A hierarchical deep learning framework for ncRNA–protein interaction predic-

tion. Int. J. Mol. Sci. 20, 1070 (2019).
	 57.	 Lam, J. H. et al. A deep learning framework to predict binding preference of RNA constituents on protein surface. Nat. Commun. 

10, 1–13 (2019).
	 58.	 Tian, K., Shao, M., Wang, Y., Guan, J. & Zhou, S. Boosting compound-protein interaction prediction by deep learning. Methods 

110, 64–72 (2016).
	 59.	 Hashemifar, S., Neyshabur, B., Khan, A. A. & Xu, J. Predicting protein–protein interactions through sequence-based deep learn-

ing. Bioinformatics 34, i802–i810 (2018).
	 60.	 Guo, Y. & Chen, X. A deep learning framework for improving protein interaction prediction using sequence properties. bioRxiv 

13, 843755 (2019).
	 61.	 Xie, Z., Deng, X. & Shu, K. Prediction of protein–protein interaction sites using convolutional neural network and improved 

data sets. Int. J. Mol. Sci. 21, 467 (2020).
	 62.	 Hirwani, A. & Gonnade, S. Character recognition using multi-layer perceptron. Int. J. Comput. Sci. Inf. Technol. 5, 558–661 

(2014).
	 63.	 He, H., Zhao, J. & Sun, G. Prediction of MoRFs in protein sequences with MLPs based on sequence properties and evolution 

information. Entropy 21, 635 (2019).
	 64.	 Feng, S., Zhao, C. & Fu, P. A deep neural network based hierarchical multi-label classification method. Rev. Sci. Instrum. 91, 

024103 (2020).
	 65.	 Lin, Z., Lanchantin, J. & Qi, Y. MUST-CNN: A multi-layer shift-and-stitch deep convolutional architecture for sequence-based 

protein structure prediction. http://arxiv​.org/abs/1605.03004​ (2016).
	 66.	 Kushwaha, S. K. & Shakya, M. in 2009 International Conference on Advances in Recent Technologies in Communication and 

Computing. 465–467 (IEEE).
	 67.	 Xie, Y., Jin, P., Gong, M., Zhang, C. & Yu, B. Multi-task network representation learning. Front. Neurosci. 14, 1–1. https​://doi.

org/10.3389/fnins​.2020.00001​ (2020).
	 68.	 Wang, Z. et al. Optimized multi-layer perceptrons for molecular classification and diagnosis using genomic data. Bioinformatics 

22, 755–761 (2006).
	 69.	 Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. European Conference on Computer Vision 525–542 (Springer, 2019).
	 70.	 Zhang, Y.-D. et al. Image based fruit category classification by 13-layer deep convolutional neural network and data augmenta-

tion. Multimed. Tools Appl. 78, 3613–3632 (2019).
	 71.	 Rutter, E. M., Lagergren, J. H. & Flores, K. B. Domain Adaptation and Representation Transfer and Medical Image Learning with 

Less Labels and Imperfect Data 190–198 (Springer, 2019).

https://doi.org/10.1038/s41598-018-27338-9
https://doi.org/10.1038/s41598-018-20819-x
https://doi.org/10.1371/journal.pone.0205796
https://doi.org/10.2174/1573406415666181217114710
https://doi.org/10.2174/1573406415666181217114710
https://doi.org/10.1016/j.jtbi.2018.10.021
https://doi.org/10.1016/j.gene.2018.04.055
https://doi.org/10.1016/j.jmgm.2017.07.012
http://arxiv.org/abs/1605.03004
https://doi.org/10.3389/fnins.2020.00001
https://doi.org/10.3389/fnins.2020.00001


18

Vol:.(1234567890)

Scientific Reports |         (2021) 11:6074  | https://doi.org/10.1038/s41598-021-85629-0

www.nature.com/scientificreports/

	 72.	 Kang, M.-S. et al. Accuracy improvement of quantification information using super-resolution with convolutional neural network 
for microscopy images. Biomed. Signal Process. Control 58, 101846 (2020).

	 73.	 Ghose, S., Singh, N. & Singh, P. in 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Conflu‑
ence). 511–517 (IEEE).

	 74.	 Tan, C. et al. DeepBrainSeg: Automated brain region segmentation for micro-optical images with a convolutional neural network. 
Front. Neurosci. 14, 1 (2020).

	 75.	 Karamizadeh, S., Abdullah, S. M., Halimi, M., Shayan, J. & javad Rajabi, M. in 2014 international conference on computer, com‑
munications, and control technology (I4CT). 63–65 (IEEE).

	 76.	 Hou, Q., Lv, M., Zhen, L. & Jing, L. Support vector machine with hypergraph-based pairwise constraints. Springerplus 5, 1651–
1651. https​://doi.org/10.1186/s4006​4-016-3315-x (2016).

	 77.	 Chou, J.-S., Cheng, M.-Y., Wu, Y.-W. & Pham, A.-D. Optimizing parameters of support vector machine using fast messy genetic 
algorithm for dispute classification. Expert Syst. Appl. 41, 3955–3964 (2014).

	 78.	 Deka, P. C. Support vector machine applications in the field of hydrology: A review. Appl. Soft Comput. 19, 372–386 (2014).
	 79.	 Kortemme, T. & Baker, D. Computational design of protein–protein interactions. Curr. Opin. Chem. Biol. 8, 91–97 (2004).
	 80.	 Verkhivker, G., Appelt, K., Freer, S. & Villafranca, J. Empirical free energy calculations of ligand-protein crystallographic com-

plexes. I. Knowledge-based ligand-protein interaction potentials applied to the prediction of human immunodeficiency virus 
1 protease binding affinity. Protein Eng. Des. Select. 8, 677–691 (1995).

	 81.	 Lockless, S. W. & Ranganathan, R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286, 
295–299 (1999).

	 82.	 Darnell, S. J., Page, D. & Mitchell, J. C. An automated decision-tree approach to predicting protein interaction hot spots. Proteins 
Struct. Funct. Bioinform. 68, 813–823 (2007).

	 83.	 Mattice, W. L., Riser, J. M. & Clark, D. S. Conformational properties of the complexes formed by proteins and sodium dodecyl 
sulfate. Biochemistry 15, 4264–4272 (1976).

	 84.	 Das, K. P., Petrash, J. M. & Surewicz, W. K. Conformational properties of substrate proteins bound to a molecular chaperone-
crystallin. J. Biol. Chem. 271, 10449–10452 (1996).

	 85.	 Vaccaro, A. M. et al. pH-dependent conformational properties of saposins and their interactions with phospholipid membranes. 
J. Biol. Chem. 270, 30576–30580 (1995).

	 86.	 Tsai, C.-J., Ma, B. & Nussinov, R. Protein–protein interaction networks: how can a hub protein bind so many different partners?. 
Trends Biochem. Sci. 34, 594–600 (2009).

	 87.	 Guillen-Ramirez, H. A. & Martinez-Perez, I. M. Classification of riboswitch sequences using k-mer frequencies. Biosystems 174, 
63–76. https​://doi.org/10.1016/j.biosy​stems​.2018.09.001 (2018).

	 88.	 Zeng, C. & Hamada, M. Identifying sequence features that drive ribosomal association for lncRNA. BMC Genom. 19, 906. https​
://doi.org/10.1186/s1286​4-018-5275-8 (2018).

	 89.	 Wen, J. et al. A classification model for lncRNA and mRNA based on k-mers and a convolutional neural network. BMC Bioinform. 
20, 469. https​://doi.org/10.1186/s1285​9-019-3039-3 (2019).

	 90.	 Cheng, S. et al. DM-RPIs: Predicting ncRNA-protein interactions using stacked ensembling strategy. Comput. Biol. Chem. 83, 
107088. https​://doi.org/10.1016/j.compb​iolch​em.2019.10708​8 (2019).

	 91.	 Wekesa, J. S., Luan, Y., Chen, M. & Meng, J. A Hybrid prediction method for plant lncRNA–protein interaction. Cells https​://
doi.org/10.3390/cells​80605​21 (2019).

	 92.	 Kirk, J. M. et al. Functional classification of long non-coding RNAs by k-mer content. Nat. Genet. 50, 1474–1482. https​://doi.
org/10.1038/s4158​8-018-0207-8 (2018).

	 93.	 Yousef, A. & Charkari, N. M. A novel method based on physicochemical properties of amino acids and one class classification 
algorithm for disease gene identification. J. Biomed. Inform. 56, 300–306. https​://doi.org/10.1016/j.jbi.2015.06.018 (2015).

	 94.	 Sęczyk, Ł, Świeca, M., Kapusta, I. & Gawlik-Dziki, U. Protein–phenolic interactions as a factor affecting the physicochemical 
properties of white bean proteins. Molecules 24, 408. https​://doi.org/10.3390/molec​ules2​40304​08 (2019).

	 95.	 Tran, K. T. et al. A comparative assessment study of known small-molecule Keap1-Nrf2 protein–protein interaction inhibitors: 
Chemical synthesis, binding properties, and cellular activity. J. Med. Chem. 62, 8028–8052. https​://doi.org/10.1021/acs.jmedc​
hem.9b007​23 (2019).

	 96.	 Lazar, T., Guharoy, M., Schad, E. & Tompa, P. Unique physicochemical patterns of residues in protein–protein interfaces. J. 
Chem. Inf. Model. 58, 2164–2173. https​://doi.org/10.1021/acs.jcim.8b002​70 (2018).

	 97.	 Li, G. & Zhu, F. Physicochemical properties of quinoa flour as affected by starch interactions. Food Chem. 221, 1560–1568. https​
://doi.org/10.1016/j.foodc​hem.2016.10.137 (2017).

	 98.	 Xiang, N., Lyu, Y., Zhu, X., Bhunia, A. K. & Narsimhan, G. Effect of physicochemical properties of peptides from soy protein 
on their antimicrobial activity. Peptides 94, 10–18. https​://doi.org/10.1016/j.pepti​des.2017.05.010 (2017).

	 99.	 Guo, F., Li, S. C., Du, P. & Wang, L. Probabilistic models for capturing more physicochemical properties on protein-protein 
interface. J. Chem. Inf. Model. 54, 1798–1809. https​://doi.org/10.1021/ci500​2372 (2014).

	100.	 Paengkoum, P. et al. Molecular weight, protein binding affinity and methane mitigation of condensed tannins from mangosteen-
peel (Garcinia mangostana L). Asian-Austral. J. Anim. Sci. 28, 1442–1448. https​://doi.org/10.5713/ajas.13.0834 (2015).

	101.	 Seelam Prabhakar, P. et al. Impact of the position of the chemically modified 5-furyl-2’-deoxyuridine nucleoside on the throm-
bin DNA aptamer-protein complex: structural insights into aptamer response from MD simulations. Molecules https​://doi.
org/10.3390/molec​ules2​41629​08 (2019).

	102.	 Rupesh, K. R., Smith, A. & Boehmer, P. E. Ligand induced stabilization of the melting temperature of the HSV-1 single-strand 
DNA binding protein using the thermal shift assay. Biochem. Biophys. Res. Commun. 454, 604–608. https​://doi.org/10.1016/j.
bbrc.2014.10.145 (2014).

	103.	 Zhu, R., Li, G., Liu, J.-X., Dai, L.-Y. & Guo, Y. ACCBN: Ant-colony-clustering-based bipartite network method for predicting 
long non-coding RNA–protein interactions. BMC Bioinform. 20, 16 (2019).

	104.	 Zhan, Z.-H., Jia, L.-N., Zhou, Y., Li, L.-P. & Yi, H.-C. BGFE: A deep learning model for ncRNA-protein interaction predictions 
based on improved sequence information. Int. J. Mol. Sci. 20, 978 (2019).

	105.	 Sumonja, N., Gemovic, B., Veljkovic, N. & Perovic, V. Automated feature engineering improves prediction of protein–protein 
interactions. Amino Acids 51, 1187–1200 (2019).

	106.	 Xie, G., Wu, C., Sun, Y., Fan, Z. & Liu, J. Lpi-ibnra: Long non-coding rna-protein interaction prediction based on improved 
bipartite network recommender algorithm. Front. Genet. 10, 343 (2019).

	107.	 https​://www.aptag​en.com/.
	108.	 Cruz-Toledo, J. et al. Aptamer Base: A collaborative knowledge base to describe aptamers and SELEX experiments. Database 

https​://doi.org/10.1093/datab​ase/bas00​6 (2012).
	109.	 https​://www.unipr​ot.org/unipr​ot/.
	110.	 Ali, A., Shamsuddin, S. M. & Ralescu, A. L. Classification with class imbalance problem: A review. Int. J. Adv. Soft CompuT. Appl 

7, 176–204 (2015).
	111.	 Liu, X.-Y., Wu, J. & Zhou, Z.-H. Exploratory undersampling for class-imbalance learning. IEEE Trans. Syst. Man Cybern. B 39, 

539–550 (2008).
	112.	 Laurikkala, J. Conference on Artificial Intelligence in Medicine in Europe 63–66 (Springer, 2019).

https://doi.org/10.1186/s40064-016-3315-x
https://doi.org/10.1016/j.biosystems.2018.09.001
https://doi.org/10.1186/s12864-018-5275-8
https://doi.org/10.1186/s12864-018-5275-8
https://doi.org/10.1186/s12859-019-3039-3
https://doi.org/10.1016/j.compbiolchem.2019.107088
https://doi.org/10.3390/cells8060521
https://doi.org/10.3390/cells8060521
https://doi.org/10.1038/s41588-018-0207-8
https://doi.org/10.1038/s41588-018-0207-8
https://doi.org/10.1016/j.jbi.2015.06.018
https://doi.org/10.3390/molecules24030408
https://doi.org/10.1021/acs.jmedchem.9b00723
https://doi.org/10.1021/acs.jmedchem.9b00723
https://doi.org/10.1021/acs.jcim.8b00270
https://doi.org/10.1016/j.foodchem.2016.10.137
https://doi.org/10.1016/j.foodchem.2016.10.137
https://doi.org/10.1016/j.peptides.2017.05.010
https://doi.org/10.1021/ci5002372
https://doi.org/10.5713/ajas.13.0834
https://doi.org/10.3390/molecules24162908
https://doi.org/10.3390/molecules24162908
https://doi.org/10.1016/j.bbrc.2014.10.145
https://doi.org/10.1016/j.bbrc.2014.10.145
https://www.aptagen.com/
https://doi.org/10.1093/database/bas006
https://www.uniprot.org/uniprot/


19

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6074  | https://doi.org/10.1038/s41598-021-85629-0

www.nature.com/scientificreports/

	113.	 Wilson, D. L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 
(1972).

	114.	 Liu, B., Liu, F., Fang, L., Wang, X. & Chou, K. C. repDNA: A Python package to generate various modes of feature vectors for DNA 
sequences by incorporating user-defined physicochemical properties and sequence-order effects. Bioinformatics 31, 1307–1309. 
https​://doi.org/10.1093/bioin​forma​tics/btu82​0 (2015).

	115.	 Ding, Y. S., Zhang, T. L. & Chou, K. C. Prediction of protein structure classes with pseudo amino acid composition and fuzzy 
support vector machine network. Protein Pept. Lett. 14, 811–815. https​://doi.org/10.2174/09298​66077​81483​778 (2007).

	116.	 Kawashima, S. et al. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res. 36, D202-205. https​://doi.
org/10.1093/nar/gkm99​8 (2008).

	117.	 Gromiha, M. M. A statistical model for predicting protein folding rates from amino acid sequence with structural class informa-
tion. J. Chem. Inf. Model. 45, 494–501. https​://doi.org/10.1021/ci049​757q (2005).

	118.	 Chen, Z. et al. iFeature: A Python package and web server for features extraction and selection from protein and peptide 
sequences. Bioinformatics 34, 2499–2502. https​://doi.org/10.1093/bioin​forma​tics/bty14​0 (2018).

	119.	 Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

Acknowledgements
This research was a part of an MSc thesis approved and funded by Tabriz University of Medical Sciences.

Author contributions
All authors contributed to writing manuscript text, building datasets, implementing neural networks and machine 
learning algorithms, analyzing data and predictors, and reviewing the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https​://doi.
org/10.1038/s4159​8-021-85629​-0.

Correspondence and requests for materials should be addressed to R.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

© The Author(s) 2021

https://doi.org/10.1093/bioinformatics/btu820
https://doi.org/10.2174/092986607781483778
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1093/nar/gkm998
https://doi.org/10.1021/ci049757q
https://doi.org/10.1093/bioinformatics/bty140
https://doi.org/10.1038/s41598-021-85629-0
https://doi.org/10.1038/s41598-021-85629-0
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	AptaNet as a deep learning approach for aptamer–protein interaction prediction
	Results
	The results of feature group effects. 
	The results of neural networks performances. 
	The results of MLP with machine learning algorithms. 
	The results of the MLP optimization and feature selection. 

	Discussion
	Conclusion
	Materials and methods
	Data collection. 
	Balancing the dataset. 
	NCL procedure. 
	Feature construction. 
	K-mer frequency. 
	Reverse compliment k-mer. 
	Amino acid composition (AAC). 
	Pseudo-amino acid composition (PAAC). 
	Description of deep neural network model. 
	Multi-layer perceptron (MLP). 

	Comparison with machine learning algorithms. 
	Feature selection. 
	Performance evaluation. 

	References
	Acknowledgements


