

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.



Contents lists available at ScienceDirect

# **Medical Hypotheses**

journal homepage: www.elsevier.com/locate/mehy



## Letter to Editors

# Oral cancer and periodontal disease increase the risk of COVID 19? A mechanism mediated through furin and cathepsin overexpression



COVID-19 was first reported in Wuhan, China in December 2019 [1]. The infectious disease has spread rapidly and was upgraded by WHO to be a pandemic. It commonly presents as fever, dry cough, and dyspnea. In a minor proportion of patients as the disease progresses, it may lead to severe alveolar damage-causing respiratory distress, which can culminate in mortality [2]. The main route of human to human transmission has been suggested to occur by respiratory droplets released by the infected [3], which has necessitated social distancing. Despite numerous measures by health agencies the disease continues to afflict the human race. Understandably, the past couple of months have seen a surge in the number of articles published on SARS-corona virus-2. These articles largely consist of clinical case reports, molecular profiling of the virus, bio-informatic analysis, and hypothesis. Among the hypothesis, the focus has largely been on identifying high-risk group, decoding pathogenic pathways, and in formulating therapeutic strategies.

We present a hypothesis to recognize a potentially high-risk group and to strategize a prophylactic measure to reduce the risk of virus infection in the specific group.

# Hypothesis

Studies including bio-informatic analysis have shown the presence of angiotensin-converting enzyme 2 (ACE2) receptors in oral mucosa, including the tongue, buccal mucosa, and gingiva [4]. Similar to SARS-corona virus-1, even the SARS-corona virus-2 exhibits affinity towards ACE2 receptors [2]. Thus, oral mucosa could be a possible route for SARS-corona virus-2 infection. Oral mucosa in pathological states such as chronic periodontitis/oral cancer has shown to exhibit higher levels of osteopontin, which in turn can activate the p38 mitogen-activated protein kinase, stimulating nuclear factor-kappa B signaling and elevating the level of the protease furin [5–7]. In addition to furin, another

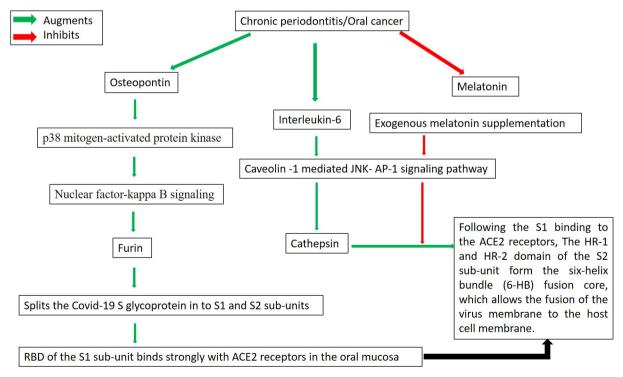



Fig. 1. Oral mucosa mediated SARS-corona virus-2 infection in oral cancer/periodontitis patients.

protease cathepsin L is also elevated in chronic periodontitis and oral cancer, which in turn could be a result of the interleukin 6 mediated activation of the caveolin-1 mediated JNK-AP-1 signaling pathway [8–10]. Both furin and cathepsin play a major role in enabling the SARS-corona virus-2 to infect the host cells as elaborated in the following steps:

- 1) Furin pre-cleaves the S glycoprotein of the SARS-corona virus-2 into S1 and S2 subunits [11,12].
- 2) Following the pre-cleavage of the S glycoprotein, the receptorbinding domain (RBD) of the S1 subunit attaches itself to the angiotensin-converting enzyme 2 (ACE2) present in the host cells [13].
- 3) Following binding of the S1 subunit to the ACE-2 receptors, the virus fuses with the host cell in two mechanisms: (a) endosomal fusion which is mediated by cysteine proteases cathepsin B/L and (b) plasma membrane fusion mediated by the serine protease TMPRSS2. The heptad repeat (HR) 1 and the HR2 of the S2 subunit form a sixhelix bundle (6-HB) fusion core. The formation of this core brings the cell membrane of the virus and the host close allowing cell fusion and infection [12,13].

Based on the above-mentioned data, it can be hypothesized that the increased protease levels in chronic periodontitis and oral cancer could potentially increase the risk of an oral mucosa mediated SARS-corona virus-2 infection (Fig. 1). In addition to increasing proteases, chronic periodontitis, and oral cancer patients have also reported having a low melatonin level [14,15]. Melatonin possesses anti-inflammatory, anti-oxidant properties [13]. Also, melatonin has shown to inhibit cathepsin L [16]. Thus, exogenous supplementation of the melatonin could aid in reducing the virus-induced inflammation, oxidative stress, and disrupting the cathepsin mediated fusion of virus and host cell.

### **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

### References

- Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet 2020;395:470–3. https://doi.org/10.1016/S0140-6736(20) 20185-0
- [2] Zhou P, Lou Yang X, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020;579:270–3. https://doi.org/10.1038/s41586-020-2012-7.
- [3] Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY, et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA J Am Med Assoc 2020. https://doi.org/10.1001/jama.2020.3227.
- [4] Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression of ACE2

- receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 2020;12:8. https://doi.org/10.1038/s41368-020-0074-x.
- [5] Sharma CG, Pradeep AR. Plasma and crevicular fluid osteopontin levels in periodontal health and disease. J Periodontal Res 2007;42:450–5. https://doi.org/10. 1111/j.1600-0765.2007.00968.x.
- [6] Jeyasivanesan D, Mohamed S, Pandiar D, Basheer S. Immunohistochemical analysis of osteopontin expression in oral squamous cell carcinoma. Indian J Dent Res 2019;30:539. https://doi.org/10.4103/ijdr.IJDR\_474\_17.
- [7] Kumar V, Behera R, Lohite K, Karnik S, Kundu GC. p38 kinase is crucial for osteopontin-induced furin expression that supports cervical cancer progression. Cancer Res 2010;70:10381–91. https://doi.org/10.1158/0008-5472.CAN-10-1470.
- [8] Trabandt A, Müller-Ladner U, Kriegsmann J, Gay RE, Gay S. Expression of proteolytic cathepsins B, D, and L in periodontal gingival fibroblasts and tissues. Lab Invest 1995;73:205–12.
- [9] Macabeo-Ong M, Shiboski CH, Silverman S, Ginzinger DG, Dekker N, Wong DTW, et al. Quantitative analysis of cathepsin L mRNA and protein expression during oral cancer progression. Oral Oncol 2003;39:638–47. https://doi.org/10.1016/S1368-8375(03)00034-4
- [10] Yamaguchi T, Naruishi K, Arai H, Nishimura F, Takashiba S. IL-6/sIL-6R enhances cathepsin pathway in human gingival caveolin-1-mediated JNK-AP-1 B and L production via fibroblasts. Ultrastruct Pathol 1998;22:369–76. https://doi.org/10. 1002/jcp.21517.
- [11] Lin B, Zhong M, Gao H, Wu K, Liu M, Liu C, et al. Significant expression of FURIN and ACE2 on oral epithelial cells may facilitate the efficiency of 2019-nCov entry. BioRxiv 2020. https://doi.org/10.1101/2020.04.18.047951.
- [12] Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(271–280):e8https://doi.org/10.1016/j.cell.2020.02.052.
- [13] Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res 2020. https://doi.org/10.1038/s41422-020-0305-x.
- [14] Srinath R, Acharya ABTS. Salivary and gingival crevicular fluid melatonin in periodontal health and disease. J Periodontol 2010;81:277–83. https://doi.org/10. 1902/jop.2009.090327.
- [15] Stanciu AE, Zamfir-Chiru-Anton A, Stanciu MM, Stoian AP, Jinga V, Nitipir C, et al. Clinical significance of serum melatonin in predicting the severity of oral squamous cell carcinoma. Oncol Lett 2020;19:1537–43. https://doi.org/10.3892/ol.2019. 11215
- [16] Witek B, Ochwanowska E, Kolataj A, Slewa A, Stanislawska I. Effect of melatonin administration on activities of some lysosomal enzymes in the mouse. Neuro Endocrinol Lett 2001;22:181–5.

Thodur Madapusi Balaji<sup>a</sup>, Saranya Varadarajan<sup>b</sup>, U.S. Vishal Rao<sup>c</sup>, A. Thirumal Raj<sup>b</sup>, Shankaragouda Patil<sup>d</sup>, Gururaj Arakeri<sup>c</sup>, Peter A. Brennan<sup>e</sup>

<sup>a</sup> Department of Dentistry, Bharathirajaa Hospital, and Research Institute, Chennai, India

<sup>b</sup> Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India

> <sup>c</sup> Department of Head and Neck Oncology, HCG Cancer Hospital, Bangaluru, Karnataka, India

 <sup>d</sup> Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
<sup>e</sup> Department of Oral & Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth, UK

E-mail address: dr.ravipatil@gmail.com (S. Patil).

<sup>\*</sup> Corresponding author.