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Abstract: Sesquiterpene lactones (SLs) are abundant in plants and display a large spectrum of
bioactivities. The compound britannin (BRT), found in different Inula species, is a pseudoguaianolide-
type SL equipped with a typical and highly reactive α-methylene-γ-lactone moiety. The bioproperties
of BRT and related pseudoguaianolide SLs, including helenalin, gaillardin, bigelovin and others, have
been reviewed. Marked anticancer activities of BRT have been evidenced in vitro and in vivo with
different tumor models. Three main mechanisms are implicated: (i) interference with the NFκB/ROS
pathway, a mechanism common to many other SL monomers and dimers; (ii) blockade of the Keap1-
Nrf2 pathway, with a covalent binding to a cysteine residue of Keap1 via the reactive α-methylene
unit of BRT; (iii) a modulation of the c-Myc/HIF-1α signaling axis leading to a downregulation of
the PD-1/PD-L1 immune checkpoint and activation of cytotoxic T lymphocytes. The non-specific
reactivity of the α-methylene-γ-lactone moiety with the sulfhydryl groups of proteins is discussed.
Options to reduce or abolish this reactivity have been proposed. Emphasis is placed on the capacity
of BRT to modulate the tumor microenvironment and the immune-modulatory action of the natural
product. The present review recapitulates the anticancer effects of BRT, some central concerns with
SLs and discusses the implication of the PD1/PD-L1 checkpoint in its antitumor action.

Keywords: britannin; cancer; Inula species; NFκB; Nrf2; HIF-1α; PD-L1; sesquiterpene lactones

1. Introduction

Sesquiterpene lactones (SLs) represent a large class of natural products found in many
plant species. The compounds are characterized by the presence of an α-methylene-γ-
lactone moiety appended to a mono- or bi-cyclic system (Figure 1). The nature of the
structural backbone defines several sesquiterpene lactone subclasses bearing a germacra-
nolide, heliangolide, eudesmanolide, xanthanolide, elemonolide, guaianolide or pseudo-
guaianolide carbocylic skeleton [1]. They all contain a highly electrophilic α,β-unsaturated
carbonyl moiety which can react easily with biological nucleophiles, such as thiol-containing
molecules. They usually display prominent antioxidant and anti-inflammatory properties.
Many natural products in this large family have been considered for the treatment of
human diseases, including inflammatory diseases, metabolic syndrome, parasitic diseases
and cancers [2–4].
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In this class of natural products, the subgroup of pseudo-guaianolides (or pseudo-guaiacanes)
has been less investigated than other SLs. This subgroup includes the lead compound
helenalin being potently active but causing allergic reactions [5]. The subclass also in-
cludes analogues such as mexicanin I, damsin and neoambrosin [6–8]. Another important
member of the group is britannin (BRT in Figure 2), initially isolated from the plant
Inula britannica L. [9]. These compounds have been characterized as inhibitors of the tran-
scription factor NFκB, due to the targeting of a cysteine residue of the p65 subunit by the
α-methylene-γ-butyrolactone moiety [10,11]. However, the mechanism of action at the
origin of the anticancer properties of BRT is multifactorial, with several protein targets
implicated or at least proposed. The present review provides a survey of the anticancer
properties of BRT, with an analysis of the mechanism of action and targets for this inter-
esting SL natural product. The goal is to dissect the signaling pathways implicated in the
modulation of the tumor and its microenvironment, and to try to guide future drug design
in this chemical series.

Figure 2

BRT Inula species

• I. britannica L.
• I. aucheriana DC.
• I. japonica Thunb.

Traditional Medicine

Inflammatory diseases and 
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Figure 2. Chemical structure and conformation of britannin (BRT), isolated from the plant Inula britannica L. (photos accessi-
ble from https://identify.plantnet.org/fr/weurope/species/Inula%20britannica%20L./data, accessed on 25 September
2021). Each plant produces several yellow ray flowers, positioned on a long flower stalk. BRT can be isolated from other
Inula species, such as I. japonica, I. aucheriana, and I. oculus-christi.

2. Inula Species Producing BRT and Their Medicinal Uses

The plant genus Inula (Asteraceae) comprises more than 100 species distributed world-
wide (www.theplantlist.org, accessed on 25 September 2021). BRT was first isolated from
I. britannica L. in 1968 [9,12,13], but later the product was found in other Inula species [14],
such as I. aucheriana DC. [15] and I. japonica Thunb. [16,17]. I. britannica is an erect herb
about 50–75 cm tall, with lance-shaped leaves. Each plant produces many yellow ray
flowers, positioned on a long flower stalk (Figure 2). The plant is native to regions of
Europe and Asia. It was introduced in North America at the beginning of the XXth century.
BRT is one of the major natural products isolated from the medicinal plant I. japonica. This
plant, designated British yellowhead (or meadow fleabane), is known as Xuanfuhua in
traditional Chinese medicine (TCM) to treat sputum, and occasionally as a remedy for
nausea, vomiting, hiccups, and flatulence [18,19]. A few years ago, an ethanolic extract
of I. japonica was advanced to clinical trials in South Korea for the treatment of chronic
bronchitis and asthma [20]. The anti-asthmatic activity of Inulae flos extracts is linked to
the presence of BRT in the extract [21]. In Japan, I. britannica is used in Kampo medicine
to treat nausea, hiccups, and excessive sputum [22]. In Iranian folk medicine, the plant is
utilized in the treatment of arthritis and back pain [23].

Extracts of I. britannica display a range of pharmacological effects, including antinoci-
ceptive [23], antimicrobial [24,25], anticonvulsant [26], antiviral [27], antiaging [28] and
hepatoprotective effects [29]. In most cases, these studies refer to aqueous and alcoholic

https://identify.plantnet.org/fr/weurope/species/Inula%20britannica%20L./data
www.theplantlist.org
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(mostly methanolic) extracts, which essentially contain a panoply of flavonoids and ter-
penoids. Sesquiterpene lactones are usually present in these extracts, including but not
limited to BRT [30–33]. In cases of water extraction, the extracts also include polysac-
charides contributing to the bioactivity, notably as antidiabetic agents [34]. However,
in most cases, the bioactivities are supported by sesquiterpenoid monomer and dimers,
largely represented in these extracts. Inula sesquiterpenoids are extremely diversified,
both structurally and functionally [13,17,35]. BRT is one of the many SLs isolated from
Inula species.

Extracts of I. britannica flowers can be used in cosmetic products [36] to take advantage
of the skin anti-inflammatory, antioxidant, antibacterial and anti-aging properties of the
extract [37–39]. A methanol extract of the dried flower of I. britannica L. has been shown to
suppress the expression of the tyrosinase enzyme implicated in melanin synthesis. Different
sesquiterpenes, such as britannilactone, have been implicated in this anti-melanogenic
activity [40]. The plant can be used to design depigmenting or skin-whitening products and
to treat hyper-pigmentary disorders [41,42]. Alternatively, the use of an I. britannica flower
petal extract fermented by a Lactobacillus species has been reported, leading to a product
with an enhanced skin whitening activity due to increased tyrosinase activity [43]. The
bioavailability of I. britannica can be significantly enhanced also upon fermentation with
probiotic Weissella cibaria D30, so as to reduce the toxicity and increase the anti-inflammatory
properties of the plant extract [44]. The applications of I. britannica extracts go beyond
medicine and cosmetics, with uses in the food industry. A cheddar cheese fortified with an
extract of I. britannica has been proposed. The plant extract served to increase the odor and
taste of the cheese, while providing an antioxidant supplement [45].

3. Discovery, Structural Characterization and Synthesis of BRT

As mentioned above, BRT was first isolated from a flowering sample of I. britannica
collected in the Muyunmum desert (Jambyl region, southern Kazakhstan) in 1968 by
Russian scientists [9]. The compound was identified as a sesquiterpene lactone and its
structure was elucidated a few years later by the same authors [12]. BRT is a of pseudo-
guaianolide, structurally similar to helenalin and mexicanin I. It is also structurally close to
ergolide, bigelovin and 2,3-dihydroaromaticin, which are other pseudo-guaianolide-type
sesquiterpene lactones found in I. britannica (Figure 3) [46–48]. The pseudoguaianolide
core has been shown to adopt a twisted boat conformation in the crystal structure [49] but
the tricyclic core of BRT itself appears relatively flat (Figure 2) [50].

The chemical synthesis of sesquiterpene lactones is feasible, although the multi-step
processes are generally complex and difficult. Synthetic schemes have been reported for
the germacranolide skeleton and specific SLs, such as parthenolide (from the medicinal
plant Tanacetum parthenium). Synthesis has also been reported for the guaianolide-type SLs
arglabin and thapsigargin [51] and for eremanthine [52,53]. The synthesis of pseudogua-
ianolide analogues has been described recently [54], and the synthesis of confertin and
helenalin have been described a long time ago [55–57]. The complete synthesis of other
pseudoguaianolides, such as aromatin, aromaticin, damsin, confertin and mexicanin I,
has been presented [58,59], but to our knowledge, the total synthesis of BRT has not been
reported. Only hemi-synthetic compounds have been described, such as functionalized
thio-analogues bearing a methyl mercaptoacetate substituent at position 13 [60].
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Britannin

Figure 3

Aromatin Aromaticin Dihydroaromaticin Helenalin

Bigelovin Gaillardin Ergolide

Mexicanin I

Cumanin

Confertin Damsin Ambrosin Neoambrosin Coronopilin

Figure 3. Structures of different pseudoguaianolide-type sesquiterpene lactones. The lactone ring can be cis- or trans-
annelated to the seven-membered ring via the 7,8-positions (as for BRT) or via the 6,7-positions (as for damsin, (neo)ambrosin,
and coronopilin). Pseudoguaianolides with a 15-methyl group on C-5 differ from pseudoguaianolides which have the
methyl group on C-4.

4. Anticancer Properties

The capacity of BRT to inhibit cancer cell proliferation has been demonstrated with
cell lines derived from onco-hematological malignancies and solid tumors. The compound
dose-dependently inhibits cell proliferation and triggered apoptosis of the breast cancer cell
lines MCF-7 and MDA-MB-468 cells in vitro, through the activation of the mitochondrial
apoptotic pathway. The intrinsic potency of the compound is not spectacular (IC50 = 9.6 and
6.8 µM, for MCF-7 and MDA-MB-468 cells, respectively) but BRT proved to be an efficient
activator of reactive oxygen species (ROS) contributing to apoptosis [61]. In fact, another
study indicated that the compound could reduce proliferation and trigger apoptosis of
cancer cells of different origin with a roughly similar efficacy. The calculated IC50 values
ranged from 2.3 to 5.9 µg/mL (6.3 to 16.1 µM) with MCF-7 and Madin–Darby bovine
kidney (MDBK) cells, respectively, and intermediate values with other cell lines [15].

BRT reduces proliferation and triggers apoptosis of liver cancer cells, with the same
efficacy as observed with breast cancer cells and with a comparable ROS-regulated mech-
anism (IC50 = 6.9 µM with HepG2 cells after 48 h of BRT treatment). Interestingly, the
compound was found to induce both apoptosis and autophagy of HepG2 cells and, im-
portantly, to reduce tumor growth in vivo. A daily intraperitoneal treatment of mice
bearing HepG2 tumors with BRT at 7.5, 15 and 30 mg/kg reduced the tumor growth in
a dose-dependent manner [62]. More recently, the antitumoral activity of BRT against
hepatocellular carcinoma in vivo has been confirmed using BEL-7402 cells which are more
sensitive to BRT compared to HepG2 cells. BRT inhibited the migration of the tumor cells,
and bioluminescence imaging revealed that the compound markedly reduced the size of
tumors in mice [63].

The pro-apoptotic functions of BRT have been evidenced with other types of cancers,
including pancreatic cancer [64,65], gastric cancer [66] and colon cancer [67] (Figure 4). In
each case, BRT demonstrated a robust capacity to reduce tumor cell proliferation and to
induce apoptosis in vitro and to inhibit tumor growth in vivo. With HCT116 colon cancer
cells, BRT revealed a prominent activity in vivo, completely abolishing tumor growth in
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mice when the compound was administered at the dose of 15 mg/kg every 3 days for about
one month. A spectacular tumor growth inhibition, without apparent toxicity, was observed
in mice [67]. The compound is well tolerated. In an acute toxicity test, the calculated low
lethal dose 50% (LD50) value was 117.6 mg/kg, whereas a firm antitumor activity was
observed upon repeated treatment with BRT at 5 and 10 mg/kg, in mice bearing PANC-1
pancreatic tumors [65]. In onco-hematology, the effect of BRT has been little investigated
thus far. However, a recent study highlighted the capacity of the compound to reduce the
proliferation of acute lymphoblastic leukemia (ALL)-derived MOLT-4 cells and to produce
a synergistic effect with the tubulin-binding drug vincristine in vitro [68]. A similar effect
has been observed with the related sesquiterpene lactones gaillardin and ergolide which
also exert marked antileukemic effects in ALL cell lines [69,70]. The antileukemic action of
BRT deserves further studies.
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Figure 4. Anticancer activity of BRT in xenograft mice models of solid tumors. The compound was
found to reduce tumor growth when administered (intraperitoneally) at the dose of 5–30 mg/kg
(active doses), well inferior to the toxic dose (LD50) determined in an acute toxicity study (derived
from [65]). The contribution of NFκB inhibition and immune regulation to the anticancer action of
action of BRT is highlighted. Inhibition of p65 nuclear expression and up-regulation of interleukin-2
(IL-2) coupled to down-regulation of IL-10 expression have been evidenced in BGC-823 gastric
tumors [66]. BRT-induced immune response plays a marked role in the antitumor action.

5. Mechanism of Action
5.1. Interference with the NFκB Pathway

The nuclear factor-κB (NFκB) family of transcription factors is a master regulator
of immune functions. The dysregulated activation of this pathway contributes to the
pathogenesis of multiple diseases, including autoimmune and inflammatory diseases, and
cancers [71–73]. BRT affects the NFκB pathway, notably via an induced up-regulation of
proteins p50 and p65, and down-regulation of phospho-p65, as shown in PANC-1 pan-
creatic cancer cells [64]. Most likely, BRT reacts with Cys-38 residue of NFκB p65 subunit,
as observed with other SLs. This NFκB pathway is frequently activated in pancreatic
cancers [74], and the suppression of phospho-p65 contributes to the anti-inflammatory
and antiproliferative action. Decreasing phospho-p65 is also a means to augment the
efficacy of chemotherapy [75]. Inhibition of phospho-p65 protein expression by BRT has
been confirmed using BEL 7402 and HepG2 hepatocellular carcinoma cells [63]. The BRT-
induced modulation of the NFκB pathway is linked to immune response. In mice, BRT
was found to increase the blood level of interleukin-2 (IL-2) acting as a T-cell growth factor
(IL-2 can induce growth and differentiation of NK and B cells, CD4+ and CD8+ T cells),
and to decrease the level of IL-10 which inhibits IL-2 production and inactivates CD4+

T cells. BRT seems to enhance the immune response, via the opposite regulation of IL-2
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(up) and IL-10 (down), thereby inhibiting tumor escape and progression (Figure 4) [66].
The modulation of the NFκB pathway contributes to the anti-inflammatory action of BRT,
notably via inhibition of different inflammatory mediators (nitric oxide, prostaglandin E2)
and induction of anti-inflammatory signals (inducible NO synthase, cyclooxygenase-2) in
lipopolysaccharide-stimulated macrophages [76,77]. This NFκB-dependent mechanism
of BRT is common to several pseudoguaianolides, including helenalin, bigelovin and er-
golide [78–81] and to dimeric sesquiterpene lactones, such as japonicone A [82]. However,
it has also been shown that the biological effects of these SLs are not only due to NFκB
inhibition but must be coupled to other mechanisms, such those described below [83].

5.2. Blockade of the Keap1-Nrf2 Pathway

The mode of action of BRT is multifactorial. One of the prime pathways regulated
by BRT is the Keap1-Nrf2 pathway which is the main protective response to oxidative
and electrophilic stresses. BRT is a potent inducer of the transcription factor Nrf2 (nuclear
factor erythroid 2-related factor 2) and does so via a direct binding to a conserved cysteine
residue (Cys-151) of Keap1 (Kelch-like ECH-associated protein-1) (Figure 5). Keap1 is a
homodimeric protein which orchestrates a complex transcriptional program in responses
to a variety of oxidative stress conditions [84]. Under normal conditions, Keap1 traps
Nrf2 in the cytoplasm and promotes its degradation by the 26S proteasome. Because of
Keap1 binding, BRT inhibits Keap1-mediated ubiquitination of Nrf2 and triggers activa-
tion of Nrf2 [85]. Keap1 is part of an E3 ubiquitin ligase and normally targets Nrf2 for
ubiquitination and proteasome-dependent degradation. Covalent modification of Keap1
at Cys-151 produces a conformational change in Keap1, which induces the dissociation
of the Keap1–ubiquitin ligase complex [86,87]. Cys-151 is one of the three major cysteine
sensors of Keap1 in stress response [88]. This cysteine residue, being particularly reac-
tive [89], is exploited by diverse natural products to modulate the function of Keap1, such
as curcumin [90,91], the alkaloid (+)-clausenamide [92], 4β-hydroxywithanolide E [93],
artemisin derivatives [94] and other products [95–98]. A covalent binding of the penta-
cyclic oleanane triterpenoids to Cys-151 in the BTB domain of human Keap1 has been
demonstrated. The crystal structures of the complex between Keap1 and the oleanic acid
derivative CDDO [99] and TX64014 [100] have been fully characterized. A similar structure
has been solved with BRT (Figure 4) [85]. This Cys-151 residue could be viewed as the
Achilles’ heel of Keap1, targeted by BRT and other reactive molecules. This is the main
molecular basis of the antioxidant action of BRT.

In the presence of BRT, NRF2 can escape ubiquitination. Then, it can accumulate
within the cell and translocate to the nucleus, where it promotes its antioxidant transcrip-
tion program. The Keap1–Nrf2 pathway is implicated in multiple human diseases, as a
regulator of oxidative stress [101]. Nrf2 inhibitors are searched for because the protein is fre-
quently aberrantly activated in cancer cells. Both inhibitors and activators are investigated:
inhibitors for direct action on cancer cells, and inducers to provide a protective action,
protecting from cell damages induced with conventional chemotherapeutic anticancer
agents [102]. Induction of the Nrf2 protective pathway by BRT is interesting, not only
to protect from chemotherapy-induced cell damages, but also in other pathologies, for
example in the frame of tissue injury after cerebral ischemia [85].

5.3. Modulation of c-Myc/HIF-1α Signaling Axis

Beyond its antioxidant effect, BRT also functions via the regulation of cell cycle
progression in cancer cells. In MOLT-4 cells, BRT was found to prevent the S-phase cell
cycle transition through the up-regulation of proteins p21 (cip1) and p27 (kip1) which are
the two main cyclin-dependent kinase (CDK) inhibitors [68]. In MCF-7 and MDA-MB-468
breast cancer cells, BRT was found to reduce expression of cyclin D1 and CDK4 proteins,
leading to arrest of the cell cycle in the G1-phase [61]. In HCT116 colon cancer cells, BRT
inhibited the expression of cyclin D1 and erythropoietin [67]. In this later case, the mode of
action invoked is a blocking of the interaction between the hypoxia-inducible factor 1 alpha
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(HIF-1α) and c-Myc, which resulted in blocking the activation of their downstream targets.
It is known that these two transcription factors, c-Myc and HIF-1α, cooperate to promote
cancer cell growth and progression [103–106]. In fact, HIF-1α induces cell cycle arrest by
functionally counteracting Myc [107]. At this level, the mode of action of BRT (Figure 6) is
reminiscent of that of the quassinoid brusatol, which is also an inhibitor of Nrf2 and c-Myc,
which increases HIF-1α degradation to induce cell death of cancer cells [108]. Similar
effects have been reported with other natural products, such as triptolide [109]. The exact
molecular target of BRT remains to be determined. Inhibition may occur through a direct
targeting of HIF-1α or via an upstream target within the mTOR/4E-BP1 signaling pathway
which controls HIF-1α protein synthesis [67]. A similar action has been invoked with the
dietary monoterpene perillyl alcohol, for example [110].
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Figure 5. Modulation of the Keap1–Nrf2 pathway by BRT. (a) Molecular model of the BTB domain of
Keap1 (PDB code: 4CXI) to show the position of residue Cys-151 interacting with Arg-92 to stabilize
the protein. (b) Model of BRT covalently bound to the Cys-151 residue of Keap 1 (PDB code: 5GIT).
(c) Nrf2–Keap1 signaling cascade blocked by BRT. Covalent binding of BRT to Cys-151 of Keap 1 leads
to activation of Nrf2 (which thus escapes ubiquitination and proteasome-dependent degradation),
phosphorylation and nuclear translocation, and then activation of the transcription of antioxidant
target genes.

In cells, energy metabolism is regulated by the activity of several transcription factors,
among which is the triad of c-Myc, HIF-1 and p53, essential to control glycolysis [111]. The
interaction between HIF-1α and c-Myc is key to the adaptation of cancer cells to the hypoxic
microenvironment and the malignant progression [112,113]. The two proteins collaborate
to enhance the cancer cell’s metabolic needs through increased uptake of glucose and its
conversion to lactate [105]. BRT has the capacity to inhibit the expression of both HIF-1α
and Myc, as well as the crosstalk between the two proteins. This effect contributes to
shaping the immune response because these two key actors are known to coordinate T cell
metabolic reprogramming [114].

BRT also negatively regulates downstream targets, such as the immune checkpoint
protein PD-L1 (programmed cell death-ligand 1) that is frequently overexpressed in tu-
mor cells. PD-L1 is largely implicated in the escape of tumor cells to T-cell killing, and
contributes to promote tumor cell survival, migration and proliferation. BRT has been
found to markedly inhibit the expression and protein synthesis of PD-L1 in various types
of cancer cells, via HIF-1α/c-Myc [67]. Both PD-L1 and HIF-1α play major roles in tumor
immune evasion. Notably, HIF-1α induces expression of a variety of immunosuppressive
molecules and contributes to the regulation of PD-L1 expression on cancer cells [115]. The
co-overexpression of PD-L1 and HIF-1α in tumor tissues, for example in hepatocellular
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carcinoma tissue, is associated with a high risk of recurrence or metastasis [116]. Thus,
interfering with the HIF-1α/PD-L1 axis with BRT can be an efficient way to restore an
immuno-sensitivity and to facilitate the action of cytotoxic (CD8+) T cells.

Biomedicines 2021, 9, x FOR PEER REVIEW 8 of 18 
 

signaling pathway which controls HIF-1α protein synthesis [67]. A similar action has been 
invoked with the dietary monoterpene perillyl alcohol, for example [110]. 

 
Figure 6. Modulation of the cMyc-HIF1α pathway by BRT. The compound downregulates expres-
sion of both cMyc and HIF1α, presumably via an interference with upstream effectors, such as 
mTOR and Rs/RAF. BRT also inhibits the direct interaction between cMyc and HIF1α. These differ-
ent actions lead to a reduction in expression of specific proteins, including PD-L1, of which mem-
brane expression is massively attenuated by BRT. These effects lead to inhibition of angiogenesis 
and cancer cell proliferation (adapted from [67]). 

In cells, energy metabolism is regulated by the activity of several transcription fac-
tors, among which is the triad of c-Myc, HIF-1 and p53, essential to control glycolysis 
[111]. The interaction between HIF-1α and c-Myc is key to the adaptation of cancer cells 
to the hypoxic microenvironment and the malignant progression [112,113]. The two pro-
teins collaborate to enhance the cancer cell’s metabolic needs through increased uptake of 
glucose and its conversion to lactate [105]. BRT has the capacity to inhibit the expression 
of both HIF-1α and Myc, as well as the crosstalk between the two proteins. This effect 
contributes to shaping the immune response because these two key actors are known to 
coordinate T cell metabolic reprogramming [114]. 

BRT also negatively regulates downstream targets, such as the immune checkpoint 
protein PD-L1 (programmed cell death-ligand 1) that is frequently overexpressed in tu-
mor cells. PD-L1 is largely implicated in the escape of tumor cells to T-cell killing, and 
contributes to promote tumor cell survival, migration and proliferation. BRT has been 
found to markedly inhibit the expression and protein synthesis of PD-L1 in various types 
of cancer cells, via HIF-1α/c-Myc [67]. Both PD-L1 and HIF-1α play major roles in tumor 
immune evasion. Notably, HIF-1α induces expression of a variety of immunosuppressive 
molecules and contributes to the regulation of PD-L1 expression on cancer cells [115]. The 
co-overexpression of PD-L1 and HIF-1α in tumor tissues, for example in hepatocellular 
carcinoma tissue, is associated with a high risk of recurrence or metastasis [116]. Thus, 
interfering with the HIF-1α/PD-L1 axis with BRT can be an efficient way to restore an 
immuno-sensitivity and to facilitate the action of cytotoxic (CD8+) T cells. 

This is an important discovery, because PD-L1 is a co-inhibitory molecule often ex-
pressed on tumor cells and considered a prime target in oncology. PD-L1-targeted mono-
clonal antibodies are largely used to treat solid tumors. The use of small molecules regu-
lating PD-L1 expression can be extremely useful to design chemo-immunotherapy 

Figure 6. Modulation of the cMyc-HIF1α pathway by BRT. The compound downregulates expression
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expression is massively attenuated by BRT. These effects lead to inhibition of angiogenesis and cancer
cell proliferation (adapted from [67]).

This is an important discovery, because PD-L1 is a co-inhibitory molecule often expressed
on tumor cells and considered a prime target in oncology. PD-L1-targeted monoclonal
antibodies are largely used to treat solid tumors. The use of small molecules regulating PD-L1
expression can be extremely useful to design chemo-immunotherapy combinations [117].
Zhang and co-workers have shown that BRT has the capacity to down-regulate PD-L1
expression in various cancer cell types (HeLa, Hep3B, HCT116, A549), and they suggested that
the compound could directly bind to PD-L1, on the basis of a molecular docking analysis [67].
Our own in silico analysis has confirmed that the binding of BRT to monomeric PD-L1 is
conceivable. BRT can bind to a cavity of PD-L1, centered on residue Ile-64, positioning its
lactone unit toward residue Gln-83 and the carbonyl of the 2-acetyl group interacts with
Lys-89 residue (Figure 7). It is unclear at present if the effect of BRT on PD-L1 is due to a direct
effect (protein-binding) and/or an indirect effect, via the suppression of the crosstalk between
HIF-1α and Myc by BRT. Nevertheless, the downregulation of PD-L1 by BRT is an essential
contributor to the anticancer action of this sesquiterpene lactone.

5.4. Modulation of Other Signaling Pathways

BRT operates via multi-target and multi-pathway mechanisms. One of the signaling
routes implicated in the mechanism of action of BRT is the AMP-activated protein kinase
(AMPK) pathway. BRT has been found to activate AMPK in liver cancer cells and to induce
apoptosis and autophagy. The process is associated with the production of reactive oxygen
species (ROS) promoted by BRT in hepatic cancer cells [62]. Increased ROS generation is
necessary to trigger activation of the mitochondrial apoptotic pathway by BRT in breast
and pancreatic cancer cells [64,118]. The ROS-dependent mechanism is also central to the
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anticancer action of gaillardin and bigelovin [119–121]. In addition, the compound BRT
modulates the AKT-FOXO1 signaling axis in human pancreatic cancer cells, decreasing
the level of phospho-AKT and inducing nuclear accumulation of the transcription factor
FOXO1 in AsPC-1 and Panc-1 pancreatic cancer cells [64].
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These different mechanisms or pathways modulated by BRT are interconnected. ROS-
modulating drugs can effectively regulate PD-L1 expression on cancer cells [122] and NFκB
regulates PD-L1 expression in cancer [123,124]. The transcription factor NFkB functions
as an essential regulator of the immune response, and cell proliferation and transforma-
tion [125]. Other natural products are capable of down-regulating PD-L1 via inhibition
of NFkB, such as ginsenoside Rk1, oleanic acid, hesperidin and sesamin [126–129]. The
NFkB and PD-1/PD-L1 axes provide a link between inflammation and cancer. Obvi-
ously, BRT targets multiple pathways and the combined action contributes to its marked
antitumor action.

6. Thiol Reactivity

The α-methylene-γ-lactone moiety of these molecules is a reactive entity, capable
of Michael-type addition with biological nucleophiles, in particular with the sulfhydryl
groups of proteins [4] (Figure 8). BRT has been shown to bind covalently to a cysteine
residue (Cys-151) of Keap1 [85], and helenalin shows a high reactivity toward specific thiol-
containing proteins, such as the p65 subunit of NFκB [10,11]. Helenalin potently inhibits
human telomerase, an enzyme activated in most cancer cells [130,131]. The inhibition
has been attributed to alkylation of cystein-445 residue of telomerase [132]. A pulchellin
derivative designated P13 (2-desoxy-4β-propylcarbamate-pulchellin, Figure 8) was found
to bind covalently to cytsein-452 of Janus kinase 2 (JAK2), a key kinase implicated in
STAT3 signaling [133]. The same mechanism of JAK2 covalent inactivation has been
advanced for bigelovin [134]. The pseudoguaianolide 2-desoxy-4-epi-pulchellin, isolated
from Carpesium faberi and C. abrotanoides, also presents a reactive group and functions as
an anticancer STAT3 inhibitor [135]. The anticancer activity of other types of sesquiterpene
lactones equipped with an α-methylene-γ-lactone group has been shown to rely on their
thiol reactivity. This is the case, for examples, for vernolide-A and vernodaline from
Vernonia species [136] and parthenolide from Tanacetum parthenium [137,138]. This latter
compound, parthenolide, has the ability to modify the redox state of critical exposed
(exofacial) thiol groups of proteins [139]. Therefore, the bioactivity of SL compounds
cannot be attributed to the modification of a unique target. Their mechanism of action
has been qualified as being polytargeted, leading to a multidirectional activity [5]. This
multimodal action confers potent anticancer activities to helenalin, but also enhances the
risk of unwanted toxicity.

Helenalin can cause allergic reactions [140,141]. The allergenic potential of these
sesquiterpene lactones is a concern, strongly limiting their development as drugs to treat
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human diseases [142–144]. However, chemical efforts are deployed to reduce this limiting
factor. New compounds with the exomethylene unit replaced with a non-reactive group
have been made. Some of these compounds, more water-soluble than natural SLs, have
been found to maintain a high level of STAT3 inhibition and marked cytotoxic effects toward
cancer cells [135]. Another option to tune the electrophilicity of the α-methylene-γ-lactone
is to replace this unit with a less reactive α-methylene-γ-lactam (Figure 8), as performed
recently with parthenolide derivatives with the objective to mute the nonspecific thiol
reactivities. In this case, the chemical nature of the group on the lactam nitrogen greatly
impacted the reactivity of the α-methylene–γ-lactams toward a model thiol compound
(cysteamine). α-Methylene–γ-lactam guaianolides maintaining an inhibitory activity to-
ward NFκB were identified, but there is positive correlation between the thiol reactivity
of the compounds and their NFκB inhibitory activity [145]. Another option consists of
removing the exomethylene unit, replacing it with a less- or non-reactive group. This is
the case for the parthenolide derivative ACT001 (Figure 8). This water-soluble compound
(dimethylaminomicheliolide) exhibits a higher plasma stability than parthenolide and was
found to target glioma stem-like cells through regulation of the protein AEBP1 (adipocyte
enhancer binding protein 1) [146]. It has revealed interesting anti-neuroinflammatory
properties, attenuating microglial activation in a mouse model of Parkinson’s disease [147].
It is also an NFkB inhibitor, potentially useful for the treatment of idiopathic pulmonary
fibrosis [148]. The same type of modifications of the exomethylene unit could be applied to
the BRT skeleton.
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7. Discussion

BRT is one of the many bioactive natural products, with antioxidant, anti-inflammatory
and anticancer properties isolated from Inula species. More than 100 compounds have
been isolated thus far [20,149,150]. BRT is certainly one of the most active compounds
found in I. britannica L. There are important structural and functional similarities among
pseudoguaianolide-type sesquiterpenes. BRT is structurally close to ergolide, bigelovin and
helenalin, and all these compounds present marked antitumor activities. These different
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compounds all modulate the NFkB pathway and trigger ROS-mediated apoptosis of cancer
cells. However, there are also mechanistic differences between these natural products. BRT
targets (i) the NFkB-ROS pathway, (ii) the Keap1-Nrf2 pathway, (iii) the HIF1α/PD-L1
pathway and possibly other components of the cell machinery, such as AMPK (Figure 9).
Recently, helenalin was found to target thioredoxin reductase-1 (TrxR1) in human prostate
cancer cells, suppressing TrxR1 expression in these cells [151]. This mechanism could well
be utilized also by other pseudoguaianolides such as BRT, in parallel to other mechanisms.
There are perhaps too many mechanisms for these reactive compounds. The multiplicity
of points of action, the so-called multitargeted activity, can be beneficial to modulate
the activity of difficult-to-drug target proteins (or unexplored targets), and to combat
aggressive cancers with generally multiple altered signaling pathways. However, it can
also be a potential source of unwanted toxicities, especially with highly reactive compounds
such as SLs. The α-methylene-γ-lactone moiety of these compounds can lead to non-specific
thiol reactivities with a variety of proteins. The α-methylene-γ-lactone is a photochemical
group possibly implicated, if not directly responsible for, skin damages induced by some
SLs compounds, such as chronic actinic dermatitis [152]. The minimal α-methylene-γ-
lactone unit, corresponding in fact to the natural product tulipalin A (Figure 8), is a well-
known allergen with immunotoxic properties [153]. As mentioned above, there are options
to reduce or to abolish this non-specific reactivity, via the modification/suppression of
α-methylene-γ-lactone unit.
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Figure 9. A schematic illustration of the anticancer mechanism of BRT. The reactive α-methylene unit
of the compound plays a major role in inhibition of NFκB and activation of Keap1/Nrf2 signaling.
In addition, the compound induces a down-regulation of the membrane ligand PD-L1 expressed
on cancer cells, thereby blocking the PD-1/PD-L1 immune checkpoint and activating cytotoxic
T lymphocytes. Down-regulation of PD-L1 by BRT can occur directly via binding to PD-L1 and
indirectly via repression of the cMyc/HIF1α signaling route. Collectively, the effects lead to inhibition
of cancer cell proliferation and angiogenesis.

The immuno-modulatory capacity of BRT is a new and key element of its mechanism
of action, which heightens the interest of the compound. Modulation of the tumor microen-
vironment is an essential component of a global antitumor action. BRT stabilizes T cells and
enhances their ability to kill tumor cells [67]. At first sight, the ability of BRT to promote
T-cell functions could be a little surprising because a few years ago, the related product
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helenalin has been shown to suppress immune functions of activated CD4+ T cells [154].
However, it makes sense when considering that the related compound ACT001 (without
an α-methylene) can also reduce PD-L1 expression in cancer cells [155]. ACT001 downreg-
ulates PD-L1 expression in glioblastoma cells through inhibition of the phosphorylation of
the transcriptional regulator STAT3, leading to the inhibition of PD-L1 transcription [155].
The invoked mechanism is distinct from that reported with BRT, which inhibits PD-L1
expression through the blockade of the HIF1α–Myc interaction, and possibly via a direct
binding to PD-L1 as well [67]. Whatever the exact molecular mechanism, the two com-
pounds induce a similar down-regulation of PD-L1 expressed on cancer cells and enhance
the activity of cytotoxic T lymphocytes. This property confers to the compounds the ability
to modulate the tumor microenvironment.

8. Conclusions

BRT is a sesquiterpene lactones known for more than fifty years, initially considered
as an anti-inflammatory and antioxidant agent and later characterized as an anticancer
compound. It is a complex, reactive molecule susceptible to forming adducts with free thiol
group in proteins, but this non-specific reactivity can be (and probably should be) controlled
upon removal or modification of the exomethylene unit of BRT. The compound reduces
cancer cells proliferation, survival and migration through multiple signaling pathways,
notably via modulation of the NFκB, Keap1/Nrf2 and HIF1α pathways. In addition,
an immunomodulatory function of BRT has been discovered recently. BRT functions as
a PD-L1 inhibitor, acting directly and/or indirectly on PD-L1, to reduce its expression,
and thereby inhibiting cancer cell proliferation and angiogenesis (Figure 9) [67]. This
discovery calls for the analysis of other similar SLs as potential PD-L1 regulators. The
time has come to reconsider the use of sesquiterpene lactones for the treatment of cancer,
taking into account their under-studied immunomodulatory functions, in addition to
their well-established antioxidant, anti-inflammatory and anti-proliferative effects. The
capacity of BRT to regulate T cell activity calls for a deeper investigation into the capacity
of (exomethylene-modified) SLs to remodel the tumor microenvironment and promote an
effective anticancer immune response.
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