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Regulatory T-cells (Tregs) mediate their suppressive action by acting directly on conven-
tional T-cells (Tcons) or dendritic cells (DCs). One mechanism of Treg suppression is the 
increase of cyclic adenosine 3′,5′-monophosphate (cAMP) levels in target cells. Tregs 
utilize cAMP to control Tcon responses, such as proliferation and cytokine production. 
Tregs also exert their suppression on DCs, diminishing DC immunogenicity by down-
modulating the expression of costimulatory molecules and actin polymerization at the 
immunological synapse. The Treg-mediated usage of cAMP occurs through two major 
mechanisms. The first involves the Treg-mediated influx of cAMP in target cells through 
gap junctions. The second is the conversion of adenosine triphosphate into adenosine 
by the ectonucleases CD39 and CD73 present on the surface of Tregs. Adenosine then 
binds to receptors on the surface of target cells, leading to increased intracellular cAMP 
levels in these targets. Downstream, cAMP can activate the canonical protein kinase 
A  (PKA) pathway and the exchange protein activated by cyclic AMP (EPAC) non-ca-
nonical pathway. In this review, we discuss the most recent findings related to cAMP 
activation of PKA and EPAC, which are implicated in Treg homeostasis as well as the 
functional alterations induced by cAMP in cellular targets of Treg suppression.
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iNTRODUCTiON

Regulatory T-cells (Tregs), first described by Sakaguchi et al. in 1995 (1), are essential to maintain 
immune homeostasis and protection against autoimmunity. This CD4+ T-cell subset highly expresses 
IL-2 receptor alpha chain (CD25) and Forkhead box P3 (FOXP3), the central transcription factor 
for Treg development and function. Defects in the FOXP3 gene in both mice and humans lead to a 
fatal lymphoproliferative and autoimmune disease (2, 3).

Regulatory T-cells control immune activation by acting directly on conventional CD4+ and 
CD8+ conventional T cells (Tcons) and antigen-presenting cells, such as dendritic cells (DCs). 
Tregs preferentially localize to DC aggregates, subsequently preventing Tcon activation in vivo and 
in vitro (4, 5), suggesting DCs are the primary targets of Treg suppression (6, 7). Cyclic adenosine 
3′,5′-monophosphate (cAMP) was recognized in 2007 as being essential to Treg suppression (8). 
cAMP is a common intracellular second messenger found in various cell types, which was discovered 
in the year 1957 (9). It is generated after the initial binding of hormones, neurotransmitters, and 
other ligands to cell-surface receptors (10). cAMP activates the canonical protein kinase A (PKA) 
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FiGURe 1 | Comparison of cAMP metabolism and intracellular signaling pathway in Treg and Tcon subsets. (A) Tregs contain a high concentration of 
cAMP compared to Tcons as a consequence of their high cAMP anabolism. Tregs express mainly AC compared to Tcons, and AC catalyzes the conversion of ATP 
into cyclic adenosine monophosphate (cAMP). In addition, G protein-coupled receptors, such as A2A, are able to activate AC. In contrast to Tcons, Tregs exhibit low 
cAMP catabolism due to a low expression of PDEs, which decompose cAMP into AMP. The presence of FOXP3 in Tregs, but not in Tcons, suppresses PDE 
transcription, while it favors ICER and AC expression. The localization and expression of molecules, such as ICER/CREM (high expression and nuclear), NFAT (low 
expression and cytoplasmic) and EPAC (high expression), are associated with the maintenance of Treg phenotype and function. (B) Tcons contain low levels of 
cAMP due to their reduced AC but high PDE expression. In contrast to Treg, NFAT is active in the nucleus of Tcons. The low and cytoplasmic expression of ICER/
CREM and EPAC are also associated with cell cycle progression and active cytokine secretion in Tcons.
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pathway and the exchange protein activated by cyclic AMP 
(EPAC) non-canonical pathway (11, 12). In this review, we will 
discuss how cAMP regulates Tcon and DC function, as well as 
describing downstream PKA and EPAC intracellular pathways 
within Tregs, Tcons, and DCs.

eLevATeD cAMP CONCeNTRATiON iN 
TReGS iS DeTeRMiNeD BY ADeNYLYL 
CYCLASe AND PHOSPHODieSTeRASe 
eXPReSSiON

Intracellular cAMP levels are regulated by adenylyl cyclases 
(ACs) that catalyze the formation of cAMP and phosphodiester-
ases (PDEs), which hydrolyze cAMP to 5′-AMP. Overall, there 
are 11 PDEs and 10 AC families. ACs 3, 6, 7, and 9 are expressed 
in murine T cells (13, 14). PDEs 3, 4, 7, and 8 are expressed in 
human T-cells, with PDE4 being the most abundant (15–17). 
Importantly, the differential expression and activation of ACs and 
PDEs in Tregs and Tcons explain the high level of intracellular 
cAMP in murine and human Tregs compared to Tcons (8, 18, 19).

Similar to its expression in murine Tregs, AC7 is expressed 
in resting and activated human Tregs (20). Activation of AC7 
downstream of IL-2 signaling plays an important role in pro-
moting high cAMP levels in resting Tregs (18). However, since 
CD25 expression is upregulated in Tcons following activation, 
preferential IL-2-mediated AC7 activation is not sufficient to 
explain the increased cAMP levels present in activated Tregs 
compared to activated Tcons. Elevated expression of AC9 has 
also been shown to be important for cAMP accumulation in 
murine Tregs (13) (Figure  1A), which is regulated in part by 
microRNA miR-142-3p targeting of AC9 mRNA expression. 

Although FOXP3  downregulates miR-142-3p to keep the AC9/
cAMP pathway active in Tregs (13), miR-142-3p is elevated in 
other CD4+ subsets, keeping AC9 inactive and thus cAMP levels 
low. Additionally, an isoform of PDE (PDE3b) is one of the most 
FOXP3-repressed genes in murine Treg (21), resulting in low 
cAMP degradation and subsequent elevation of cAMP levels in 
Tregs (Figure  1A). Further demonstrating the involvement of 
FOXP3 in cAMP regulation, T cells programed to be Tregs, but 
that did not express functional FOXP3 protein due to a frame-shift 
mutation, had substantially lower intracellular cAMP levels than 
FOXP3-expressing Tregs (22). However, we recently reported 
that neonatal human Tregs have lower expression of FOXP3, 
but higher intracellular cAMP levels compared to adult Tregs, 
suggesting that cAMP levels may also be regulated in a FOXP3-
independent manner (23). Several mechanisms may explain this 
profile exhibited by human neonatal Tregs, and neonatal plasma 
contains high adenosine concentrations due to a low degradation 
rate (24, 25). In addition, the adenosine receptors in neonatal 
mononuclear cells seem to be more sensitive than those in adults, 
leading to higher intracellular cAMP (24, 25).

TReGS iNCReASe cAMP LeveLS iN 
TARGeT CeLLS THROUGH cAMP iNFLUX 
AND ADeNOSiNe PRODUCTiON

The ability of Tregs to generate and accumulate high levels of 
cAMP gives them the capacity to transfer it through gap junctions 
(GJ) into target cells (8, 19, 26, 27). These channels allow intercel-
lular exchange of ions, metabolites, and other molecules between 
adjacent cells (28). GJ are formed by two opposing hemichannels 
from each cell, called connexons, which are made of six proteins 
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called connexins (Cx) (28). Tregs and Tcons both express Cx31.1, 
Cx32, Cx43, Cx45, and Cx46, and their expression increases after 
activation (8).

An additional mechanism to increase cAMP in the target cell 
involves the ecto-5′-nucleotidases CD39 and CD73 expressed on 
the surface of Tregs, which cleave extracellular adenosine triphos-
phate (ATP) into adenosine (29, 30). The binding of adenosine to 
its G protein-coupled receptors (GPCRs) on target cells leads to 
the stimulatory G protein alpha subunit (Gsα) directly activating 
ACs and generating cAMP (31–33).

Extracellular ATP, which is a hallmark of inflammation 
(34, 35), is first degraded to AMP by CD39, which CD73 converts 
into adenosine (36). CD39 and CD73 are coexpressed on the 
surface of murine Tregs (29, 37). In contrast to murine Tregs, very 
few (<5%) human CD39+ Tregs appear to express CD73 on their 
surface (38–41). However, there is high intracellular expression 
of CD73 in human Tregs, which seems to be readily shed from 
their surface, potentially explaining the low surface expression of 
CD73 on human Tregs (39). Furthermore, human Tregs produce 
exosomes that carry CD39 and CD73 and are able to hydrolyze 
ATP (42–44).

Adenosine binds to several receptors (A1, A2A, A2B, and A3) that 
are expressed on various cells, including T cells and APCs. High 
affinity A2A appears to be the main receptor involved in mediating 
adenosine-dependent Treg suppressive function (39). Binding of 
adenosine to A2A on target cells, such as T cells and APCs, activates 
AC, leading to cAMP accumulation (33, 45). The A2A receptor is 
also expressed by resting and activated Tregs (30) and treatment 
for Tregs by adenosine analogs increased their cAMP levels (46) 
(Figure  1A). A2A stimulation not only expanded FOXP3+ Treg 
cells but also increased their suppressive function (46, 47). The 
fact that Tregs produce and respond to adenosine thus suggests 
that adenosine might act as an autocrine factor to optimize Treg 
anti-inflammatory function, as proposed by Ernst et al. (48).

THe ROLe OF cAMP iN TReG CONTROL 
OF TCON PROLiFeRATiON AND 
CYTOKiNe PRODUCTiON

Pharmacological inhibition of PDE3 and PDE4 increases cAMP 
levels in Tregs and leads to their enhanced suppression of Tcons, 
both in vivo and in vitro (49, 50). Conversely, treatment for human 
Tregs with interferon-α before activation decreased intracellular 
cAMP through PDE4 activation, which led to a loss of Treg sup-
pression (51). Tregs were shown to inhibit in vitro activation of 
Tcons by using the mechanisms, as described previously, e.g., by 
transferring cAMP through GJ (8, 30) and via CD39-mediated 
generation of adenosine. We have shown that Tregs limit in vitro 
HIV infection in Tcons using these same two mechanisms (40).

The relevance of CD39 expression as a mechanism of suppres-
sion was also shown in Tregs from CD39-null mice, which failed 
to suppress CD4+CD25− cell proliferation (30). In addition, in a 
murine melanoma model, the adenosine generated by the increased 
frequency of CD39+ Tregs was associated with the suppression of 
T-cell effector functions (52). Similarly, human CD39+ Tregs sup-
pressed IL-2 and IL-17 expression and proliferation of activated 
Tcons more efficiently than their CD39− counterparts (53–55).

THe ROLe OF cAMP iN TReG  
CONTROL OF DC FUNCTiON

Regulatory T-cells also use cAMP to downregulate the expression 
of several costimulatory molecules on DCs, such as CD40, CD80, 
CD86, and CD83 (23, 26, 27, 29, 56–58), while upregulating the 
expression of several inhibitory molecules (B7-H, B7-H3, and 
B7-DC) (26, 29, 56). In contrast, cAMP did not modify cytokine 
production by DCs (26). Again, both mechanisms (cAMP influx 
and adenosine) appear to be active in this suppression (29, 56, 58).

TReGS CONTROL DC–TCON 
iNTeRACTiONS THROUGH  
cAMP-DePeNDeNT MeCHANiSMS

The duration of contact between Tcons and antigen-loaded 
DCs are shortened in the presence of Tregs (7), indicating an 
early effect of Tregs on the induction of immune responses. 
Additionally, Tregs are more mobile than Tcons in vitro and out-
compete the latter in aggregating around DCs (5). Tregs were also 
found to form long-lasting conjugates with islet antigen-bearing 
DCs, which lost the capacity to effectively present antigens (4). 
Confirming the idea that DCs are the primary targets of Treg 
suppression, the amount of cAMP transferred from Tregs to DCs 
was significantly higher than that transferred from Tregs to Tcons 
in in vitro cocultures with DC–Tcon–Treg (56). In concordance 
with this, we have recently shown that cAMP, together with 
CTLA-4 and TGF-β, are essential for adult Tregs to suppress the 
formation of DC–Tcon aggregates (23). We have also shown that 
the influx of cAMP by adult Tregs suppresses actin polymeriza-
tion at the interface of DCs and Tcons (23, 57). Importantly, due 
to the role of the immunological synapse in the transmission of 
HIV particles from DCs to Tcons, we showed that Tregs could 
blunt this transmission by cAMP-dependent mechanisms (57).

Interestingly, Ring et al. showed that Tregs specifically directed 
the migration of DCs toward them (58) and that adenosine 
played a major role in this phenomenon because CD39− Tregs 
were unable to attract DCs (58). These data are consistent with 
the fact that cAMP could stimulate DC chemotaxis by increasing 
the expression of the lymph node-homing chemokines CCL19 
and CCL21 (59). Taken together, these data suggest that Tregs use 
cAMP at multiple levels to prevent Tcon activation by DCs, they 
not only keep the DCs in an immature state but they also attract 
them away from Tcons.

TReG-MeDiATeD SUPPReSSiON OF 
TCONS AND DCs BY DiFFeReNT 
iNTRACeLLULAR PATHwAYS 
DOwNSTReAM OF cAMP

PKA and ePAC intracellular  
Signaling Pathways
Once inside the cell, cAMP triggers various downstream pathways, 
mainly the canonical PKA and the non-canonical EPAC pathway. 
PKA contains an evolutionarily conserved cAMP-binding domain 
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(CBD) that acts as a sensor of intracellular cAMP levels (11). 
cAMP binding to CBD on the PKA regulatory subunit induces 
its activation and releases the catalytic subunit. Downstream 
of PKA dissociation, several signaling pathways are regulated 
(activated or inactivated) by the catalytic subunit of PKA through 
phosphorylation. For example, cAMP response element binding 
protein (CREB) is phosphorylated at serine133 by PKA, leading 
to the complex formation of CREB with CSK (CBP) (60, 61). This 
complex binds to cAMP responsive elements in the promoter 
regions of genes such as cAMP response element modulator 
(CREM). CREM regulates multiple transcriptional activators or 
inhibitors in T cells. Increased cellular cAMP levels enhance the 
expression of an isoform of CREM, named the inducible cAMP 
early repressor (ICER). cAMP promotes ICER translocation from 
the cytoplasm to the nucleus (62). This translocation is crucial for 
ICER action because ICER binds activator protein-1 (AP-1) and 
nuclear factor of activated T-cells (NFAT) in the nucleus. These 
nuclear interactions between ICER and NFAT/AP-1 mediate 
ICER transcriptional regulation of many genes involved either in 
cell cycle control or cytokine secretion (63, 64).

Cyclic adenosine 3′,5′-monophosphate can also activate 
the non-canonical EPAC pathway. EPAC proteins (EPAC1 and 
EPAC2) contain a CBD that is homologous to the one contained 
within PKA. cAMP binding to EPAC proteins activates the Ras 
superfamily small GTPases RAP-1 and RAP-2 by promoting the 
exchange of GDP for GTP (11). Depending on the cell type, EPAC 
and PKA may act independently or synergistically or oppose each 
other in regulating specific cellular functions (11).

Activation of cAMP–PKA and cAMP–ePAC 
Control the Phenotype and Suppressive 
Activity of Tregs
Several authors have shown that the cAMP–PKA pathway in 
Tregs differs from that in Tcons. Although the expression of 
PKA is similar in Tregs and Tcons (12), other molecules, such 
as ICER/CREM, are markedly more expressed in Tregs than in 
Tcons (65). In addition, ICER/CREM is mainly localized in the 
nucleus in Tregs (Figure  1A) (65). This particular phenotype 
in Tregs may be explained by the presence of FOXP3, as forced 
expression of FOXP3 in murine Tcons induced constitutive 
expression of ICER/CREM (66). cAMP signaling and the pres-
ence of ICER in the nucleus seems to be important to blunt Treg 
cytokine production (19). However, deletion of ICER did not 
alter the number or function of murine Tregs (12). In contrast 
to ICER/CREM, NFATc1 is primarily localized in the cytoplasm 
of Tregs (65, 67, 68) (Figure 1A). Decreasing cAMP increased 
induction and nuclear translocation of NFATc1 in human Tregs, 
leading to increased Treg proliferation and blunted suppression 
(19). cAMP/PKA signaling in Tregs also modulates the expres-
sion of other functionally important molecules, such as CTLA-4 
(69). Furthermore, PKA/CREB activation promotes the TGFβ-
mediated generation of Tregs from naive Tcons and contributes 
to the maintenance of FOXP3 expression in these induced Tregs 
both in vitro and in vivo (69–71).

Murine Tregs express 10-fold more EPAC1 than naive and 
activated Tcons (12) (Figure 1A). In contrast to ICER, EPAC1 

is critical for Treg-mediated suppression as genetic deletion of 
EPAC1 attenuated their suppression of Tcons (72). Furthermore, 
RAP-1 seems to be more activated in human Tregs compared to 
Tcons (73). Transgenic mice with a constitutively active RAP-1 
have increased Treg frequency, and their Tregs are more sup-
pressive (74, 75). These data suggest a feedback cycle in Tregs 
(particularly in peripheral Tregs), whereby sustained and elevated 
levels of cAMP and FOXP3 expression intensify each other, help-
ing Tregs maintain their phenotype and functionality.

Tregs induce PKA and ePAC  
Activation in Tcons
Interestingly, the intracellular signaling pathways downstream of 
cAMP appear to differ between target cells. Tregs redundantly 
induce the activation of PKA and EPAC in Tcons. The role of 
PKA in blunting Tcon proliferation was demonstrated through 
the use of cAMP analogs that bind PKA (76), long before Tregs 
were discovered to use this pathway to blunt Tcon activation. 
Downstream of PKA, ICER/CREM is normally localized in the 
cytoplasm of Tcons (Figure 1B). These molecules translocate and 
accumulate within the nucleus of Tcons in presence of Tregs, blunt-
ing IL-2 synthesis (65) (Figure 2). However, ICER−/− Tcons were 
still significantly suppressed by wild-type Tregs, suggesting that 
EPAC may also contribute to Treg suppression (12). Confirming 
this hypothesis, EPAC1−/− Tcons were poorly suppressed by Tregs 
(72). Taken together, these data suggest that Tregs induce both 
PKA and EPAC activation in Tcons, and these mechanisms could 
work cooperatively to suppress Tcon activation.

Tregs induce ePAC Activation in DCs
Exchange protein activated by cyclic AMP proteins regulate 
many mechanisms in APCs, such as integrin-dependent cell 
adhesion, polarization, chemotaxis, and phagocytosis (77, 78). 
Therefore, not surprisingly, triggering the cAMP–EPAC1 axis 
through Treg-derived adenosine activated RAP-1–GTP and 
increased DC migration (58). Tregs were also able to induce a 
re-localization of RAP-1 to the membrane of DCs, from its cyto-
plasmic localization when DCs are not in contact with Tregs (58) 
(Figure 2B). By contrast, Tregs do not prevent CREB activation 
in DCs, suggesting that Treg-mediated DC suppression is not 
PKA dependent (58). Similarly, cAMP does not inhibit the PKA/
CREB-dependent production of inflammatory chemokines 
CCL3 and CCL4 by DCs (79). In addition, PKA activation by 
cAMP analogs induces maturation of human DCs, as evidenced 
by the increased surface expression of MHC class II, costimula-
tory molecules, and CD83 by treated DCs (80). These studies 
thus suggest that increased cAMP levels in DCs due to contact 
with Tregs is suppressive; however, PKA and EPAC appear to 
mediate opposing effects in DC.

The mechanisms that explain these cell-specific differential 
effects are still unclear. Interestingly, although pharmacological 
cAMP analogs that directly bind PKA are active in DCs, EPAC 
activity in DC appears to suppress PKA activation (80), which 
could thus explain why cAMP is globally suppressive in DCs. 
Second, the cellular effect of cAMP may also vary depending 
on the relative cellular abundance/distribution of EPAC and 
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FiGURe 2 | cAMP intracellular signaling pathways in target cells of Treg suppression. Activation of AC induced by adenosine interaction with its receptor 
(A2A) and/or influx of cAMP through gap junctions (GJ) increases cAMP concentration in Treg target cells. (A) cAMP-mediated suppression by Treg decreases 
effector responses (cytokine production and proliferation) in Tcon by PKA and EPAC. PKA activation in Tcon results in the translocation of ICER/CREM into the 
nucleus inhibiting NFATc1-driven transcription. Downstream signaling in the EPAC pathway includes the activation of the small GTPase RAP-1, promoting the 
exchange of GDP for GTP. (B) In DCs, the suppression of costimulatory molecules expression, actin polymerization, and DC–Tcon interaction downstream of cAMP 
seems to be due to EPAC activation. Intermediate and final molecules downstream of PKA and RAP-1, respectively, are still unknown.
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PKA and/or the amount of cAMP injected by Tregs in the target 
cells (56, 81). Finally, EPAC and PKA have opposite regulatory 
effects on downstream targets such as PKB (81). Activation of 
EPAC leads to a phosphatidylinositol 3-kinase-dependent PKB 
activation, whereas stimulation of PKA inhibits PKB activity (81). 
Future experiments are required to evaluate what controls cAMP 
downstream pathways in a cell-specific context.

CONCLUSiON

It is now accepted that the cAMP-dependent intracellular signal-
ing induced by Tregs in target cells is much more complex than 
initially assumed, and the classic PKA pathway is only part of 
the story. Although both human and murine Tregs mediate sup-
pression indistinctly by cAMP influx and/or the CD39/adenosine 
pathway, the downstream pathways differ in Tcons and DCs. On 
the one hand, Treg suppression of Tcon cytokine production 
and proliferation requires the integration of EPAC and PKA 
in a cooperative manner. On the other hand, the suppression 
of DC function seems to be mainly mediated by EPAC, with a 
paradoxical opposite effect of PKA. Although our knowledge 

of the EPAC pathway in DCs has greatly progressed in the past 
years, much remains to be discovered. In particular, we still lack 
a full understanding of the physiological role of EPAC and RAP 
isoforms, of the mechanisms of PKA inactivation, and of the 
effector molecules downstream of RAP-1. A cautious dissection 
of the individual role and comparative contribution of EPAC and 
PKA within the overall cAMP signaling in various models will 
continue to be an important goal for upcoming investigations. 
This could lead to the development of targeted approaches fine-
tuning Treg suppression for therapeutic applications.
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