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Abstract
Introduction: Several	previous	studies	have	demonstrated	that	cancer	chemotherapy	
is	associated	with	brain	injury	and	cognitive	dysfunction.	However,	evidence	suggests	
that	cancer	pathogenesis	alone	may	play	a	role,	even	in	non-	CNS	cancers.
Methods: Using	 a	multimodal	 neuroimaging	 approach,	we	measured	 structural	 and	
functional	connectome	topology	as	well	as	functional	network	dynamics	in	newly	di-
agnosed	patients	with	breast	cancer.	Our	study	involved	a	novel,	pretreatment	assess-
ment	that	occurred	prior	to	the	initiation	of	any	cancer	therapies,	 including	surgery	
with	 anesthesia.	 We	 enrolled	 74	 patients	 with	 breast	 cancer	 age	 29–65	 and	 50	
frequency-	matched	 healthy	 female	 controls	who	 underwent	 anatomic	 and	 resting-	
state	functional	MRI	as	well	as	cognitive	testing.
Results: Compared	 to	 controls,	 patients	 with	 breast	 cancer	 demonstrated	 signifi-
cantly	 lower	 functional	 network	 dynamics	 (p	=	.046)	 and	 cognitive	 functioning	
(p	<	.02,	corrected).	The	breast	cancer	group	also	showed	subtle	alterations	in	struc-
tural	local	clustering	and	functional	local	clustering	(p	<	.05,	uncorrected)	as	well	as	
significantly	increased	correlation	between	structural	global	clustering	and	functional	
global	 clustering	 compared	 to	 controls	 (p	=	.03).	 This	 hyper-	correlation	 between	
structural	and	functional	topologies	was	significantly	associated	with	cognitive	dys-
function	(p	=	.005).
Conclusions: Our	findings	could	not	be	accounted	for	by	psychological	distress	and	
suggest	that	non-	CNS	cancer	may	directly	and/or	indirectly	affect	the	brain	via	mech-
anisms	such	as	tumor-	induced	neurogenesis,	inflammation,	and/or	vascular	changes,	
for	example.	Our	results	also	have	broader	implications	concerning	the	importance	of	
the	balance	between	structural	and	functional	connectome	properties	as	a	potential	
biomarker	of	general	neurologic	deficit.
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1  | INTRODUCTION

Cancer	and/or	its	therapies	appear	to	be	associated	with	brain	injury	
that	results	in	cognitive	impairment.	Several	cross-	sectional	and	lon-
gitudinal	studies	have	demonstrated	abnormalities	in	brain	structure	
and	function,	particularly	 in	chemotherapy-	treated	patients	and	sur-
vivors	 (D’Agata	 et	al.,	 2013;	 Deprez	 et	al.,	 2014;	 Jung	 et	al.,	 2016;	
Kesler	&	Blayney,	2015;	Lepage	et	al.,	2014;	Nudelman	et	al.,	2014;	
Simo	et	al.,	2015;	Stouten-	Kemperman	et	al.,	2014).	However,	many	
patients	demonstrate	differences	in	brain	structure	and	function	prior	
to	chemotherapy	suggesting	that	cancer	pathogenesis,	surgery/anes-
thesia,	disease	burden,	host-	related,	and/or	other	factors	may	contrib-
ute	to	early	brain	changes	(Cimprich	et	al.,	2010;	McDonald,	Conroy,	
Ahles,	West,	&	Saykin,	2012;	Menning	et	al.,	2015;	Sato	et	al.,	2015;	
Scherling,	 Collins,	 Mackenzie,	 Bielajew,	 &	 Smith,	 2012;	 Scherling,	
Collins,	Mackenzie,	Lepage,	et	al.,	2012).

Interestingly,	while	studies	suggest	that	chronic	effects	of	cancer	
and	its	treatments	are	characterized	by	lower	brain	functional	activa-
tion	(Kesler,	Kent,	&	O’Hara,	2011;	de	Ruiter	et	al.,	2011),	evaluation	
of	 newly	 diagnosed	 patients	 consistently	 indicates	 hyper-	activation	
(McDonald	 et	al.,	 2012;	 Scherling,	 Collins,	 Mackenzie,	 Bielajew,	 &	
Smith,	2011).	The	reasons	for	this	pattern	are	unclear	but	early	hyper-	
activation	 may	 represent	 disease-	related	 brain	 injury	 that	 disrupts	
appropriate	 neural	 resource	 allocation	 and/or	 functional	 dynamics.	
Support	for	our	hypothesis	includes	a	postsurgery/prechemotherapy	
study	 of	 patients	 with	 breast	 cancer	 that	 demonstrated	 disrupted	
scale-	free	 functional	 dynamics	 (Churchill	 et	al.,	 2015).	 Additionally,	
we	have	previously	noted	a	potential	alteration	in	the	relationship	be-
tween	structural	and	functional	connectome	properties	in	long-	term	
survivors	of	breast	cancer	(Kesler,	Watson,	&	Blayney,	2015)	that	may	
result	in	restricted	flexibility	of	the	functional	network	(Wirsich	et	al.,	
2016).	However,	to	date,	no	studies	have	evaluated	the	relationship	
between	structural	and	functional	connectomes	in	the	same	cohort	of	
patients	with	breast	cancer.

The	 connectome	 is	 a	 mathematical	 representation	 of	 the	 brain	
network	 comprised	 of	 regions	 (nodes)	 and	 connections	 (edges)	 be-
tween	 regions.	 This	 approach	 to	 evaluate	 brain	 connectivity	 relies	
on	graph	theory,	which	is	the	study	of	objects	and	their	connections.	
Connectomes	display	a	“small-	world”	organization	wherein	specialized	
groups	or	clusters	of	neurons	are	highly	connected	to	each	other	while	
being	economically	connected	to	other	clusters	(Bassett	and	Bullmore,	
2006).	Thus,	connectome	properties	provide	unique	insights	regarding	
both	the	integration	and	segregation	of	the	brain	network.

To	date,	pretreatment	neuroimaging	studies	have	involved	a	post-
surgery/prechemotherapy	baseline.	Given	evidence	that	surgery	and/
or	 anesthesia	 may	 be	 associated	with	 cognitive	 and	 brain	 changes	
(Chen,	Miaskowski,	Liu,	&	Chen,	2012;	Sato	et	al.,	2015),	the	effects	
of	cancer	alone	remain	unclear.	A	recent	study	by	Patel	et	al.	 (2015)	
demonstrated	significantly	reduced	cognitive	function	in	patients	with	
breast	cancer	compared	to	healthy	controls	prior	to	initiation	of	any	
treatment,	including	surgery.	These	cognitive	impairments	were	asso-
ciated	with	elevated	pro-	inflammatory	cytokine	levels.	The	effects	of	
peripheral	inflammation	on	cognition	have	been	shown	to	be	mediated	

by	changes	in	the	brain	(Harrison,	Doeller,	Voon,	Burgess,	&	Critchley,	
2014).	Therefore,	it	is	likely	that	disruptions	of	brain	structure	and/or	
function	also	exist	at	this	early,	pretreatment	stage	of	breast	cancer.	
These	disruptions	may	parallel,	at	least	in	part,	those	noted	following	
cancer	treatments	given	that	inflammation	is	a	candidate	mechanism	
underlying	cancer	pathogenesis	as	well	as	chemotherapy-	related	ef-
fects	 on	 the	 brain	 (Janelsins,	 Kesler,	Ahles,	 &	Morrow,	 2014;	 Patel	
et	al.,	2015).

As	part	of	our	prospective,	longitudinal	study	of	cognition	in	breast	
cancer,	we	evaluated	newly	diagnosed	patients	prior	to	any	treatment,	
including	 surgery	with	 anesthesia.	 In	 this	 initial	 study,	we	 aimed	 to	
compare	brain	structure	and	function,	including	functional	dynamics,	
at	 our	 pretreatment	 baseline.	We	hypothesized	 that	 patients	would	
demonstrate	 lower	 functional	 connectivity	 and	 dynamics	 compared	
to	controls,	based	on	the	previous	studies	noted	above	that	obtained	
postsurgery/prechemotherapy	 baselines.	We	 also	 hypothesized	 that	
the	 relationship	 between	 structural	 and	 functional	 connectome	 to-
pologies	would	 be	 altered	 in	 the	 breast	 cancer	 group	 compared	 to	
controls,	 based	 on	 our	 previous	work	 in	 breast	 cancer	 survivors,	 as	
described	above.	We	employed	a	multimodal	neuroimaging	approach	
including	advanced	methods	 that	emphasize	multivariate,	brain	net-
work	connectivity.

2  | METHODS

2.1 | Participants

At	 the	 time	 of	 this	 study,	 we	 had	 enrolled	 74	 women	 aged	
29–65	years	with	newly	diagnosed	primary	breast	cancer	who	had	
completed	 their	 initial	 study	 visit	 prior	 to	 any	 treatment	 (surgery,	
chemotherapy,	 and	breast	 radiation	 therapy).	We	 also	 enrolled	50	
healthy	female	controls	frequency	matched	for	age,	education,	and	
menopausal	 status	 (Table	1).	 Patients	with	 breast	 cancer	were	 re-
cruited	 at	 the	 Stanford	 Cancer	 Institute.	 All	 consecutive	 patients	
who	met	study	eligibility	criteria	were	approached.	Healthy	controls	
were	recruited	via	local	media	advertisements	in	northern	California	
communities.	 There	were	 156	 participants	 screened;	 32	were	 ex-
cluded	 or	 declined	 to	 participate.	 Participants	 were	 excluded	 for	
psychiatric,	 neurologic,	 or	 comorbid	 medical	 conditions	 that	 are	
known	to	affect	cognitive	function	as	well	as	any	major	sensory	defi-
cits	 (e.g.,	blindness).	Participants	were	also	required	to	be	fluent	 in	
English	sufficient	for	valid	cognitive	testing.	The	Stanford	University	
Institutional	Review	Board	approved	this	study,	and	all	participants	
provided	informed	consent.

2.2 | Cognitive performance

Trained	 research	 staff	 administered	 the	 following	 neuropsycho-
logical	 tests	 to	 all	 participants:	 Comprehensive	 Trail	 Making	 Test	
(CTMT)	 (Moses,	 2004),	 Controlled	Oral	Word	 Association	 (COWA)	
(Ruff,	 Light,	 Parker,	 &	 Levin,	 1996),	 and	 the	 Rey	 Auditory	 Verbal	
Learning	Test	(RAVLT)	(Schmidt,	2012).	Participants	were	also	admin-
istered	 domain-	specific	 self-	report	 measures,	 including	 the	 Clinical	
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Assessment	of	Depression	(CAD)	(Aghakhani	&	Chan,	2007),	a	meas-
ure	of	depression,	anxiety,	and	fatigue,	the	Behavioral	Rating	Inventory	
of	 Executive	 Function	 for	 Adults	 (BRIEF)	 (Roth,	 Isquith,	 &	 Gioia,	
2005),	and	the	Prospective	and	Retrospective	Memory	Questionnaire	
(PRMQ)	 (Crawford,	 Henry,	Ward,	 &	 Blake,	 2006;	 Crawford,	 Smith,	
Maylor,	 Della	 Sala,	 &	 Logie,	 2003).	 Testing	 required	 approximately	
1	hr.	Raw	scores	were	used	for	RAVLT,	while	age-	adjusted	raw	scores	
were	used	for	COWA	and	T	scores	for	CTMT,	based	on	these	tests’	
normative	data.

2.3 | Neuroimaging acquisition

Participants	were	included	in	this	study	even	if	they	had	MRI	contrain-
dications;	65	of	the	74	patients	with	breast	cancer	and	all	50	of	the	
controls	underwent	MRI.	Neuroimaging	data	were	acquired	using	a	GE	
Discovery	MR750	3.0	Tesla	whole	body	scanner	(GE	Medical	Systems)	
on	the	same	day	as	the	cognitive	testing	session.	Resting-	state	func-
tional	magnetic	resonance	imaging	(rsfMRI)	data	were	acquired	while	
participants	 rested	 in	 the	 scanner	with	 their	 eyes	 closed.	We	 used	
a	T2*-	weighted	gradient	echo	spiral	pulse	sequence	 (Glover	&	Law,	
2001)	with	the	following	parameters:	relaxation	time	=	2,000	ms,	echo	
time	=	30	ms,	 flip	 angle	=	89°	 and	 1	 interleave,	 field	 of	 view	=	200,	
matrix	=	64	×	64,	 in-	plane	 resolution	=	3.125.	 Number	 of	 volumes	
collected	was	216,	scan	time	=	7:12.	An	automated	high-	order	shim-
ming	method	was	used	to	reduce	field	inhomogeneity.

We	 also	 acquired	 a	 high-	resolution,	 3D	 inversion-	recovery	 pre-
pared	 fast	 spoiled	 gradient	 echo	T1-	weighted	 anatomical	MRI	 scan	
with	the	following	parameters:	TR	=	minimum,	TE	=	minimum,	flip	=	11	
degrees,	 inversion	 time	=	300	ms,	 bandwidth	=	±31.25	kHz,	 field	 of	
view	=	24	cm,	 phase	 field	 of	 view	=	0.75,	 slice	 thickness	=	1.5	mm,	
125	 slices,	 256	×	256	 at	 1	 excitation,	 scan	 time	=	4:26.	 Some	 par-
ticipants	 also	 underwent	 diffusion	 tensor	 imaging	 if	 time	 allowed	
(total	 scan	time	=	30	min	or	 less).	These	data	are	not	 reported	here.	
Neuroimaging	 data	were	 visually	 inspected	 for	 quality	 prior	 to	 any	
preprocessing.

2.4 | Functional connectome construction

Functional	connectivity	preprocessing	was	performed	using	Statistical	
Parametric	Mapping	8	(SPM8,	RRID:SCR_007037)	and	CONN	Toolbox	
(RRID:SCR_009550)	as	previously	described	(Kesler	&	Blayney,	2015;	
Kesler	et	al.,	2013,	2014).	Successful	normalization	was	confirmed	via	
visual	 inspection	using	the	check	registration	function	 in	SPM8	and	
in-	house	software	that	creates	whole	volume	slice	montages.	Artifact	
correction	included	wavelet	despiking	(Patel	et	al.,	2014).	Correlation	
coefficients	were	calculated	between	rsfMRI	time	courses	for	each	pair	
of	90	Automated	Anatomical	Labeling	Atlas	(AAL)	(Tzourio-	Mazoyer	
et	al.,	 2002)	 regions	 of	 interest	 (ROIs)	 and	 then	 normalized	 using	
Fisher’s	 r-	z	 transformation.	 Realignment	 motion	 parameters	 were	
included	as	covariates	and	images	with	excessive	motion/signal	arti-
fact	were	excluded.	The	resulting	z-	score	connectivity	matrices	were	
thresholded	 to	minimum	connection	density	 and	 then	 submitted	 to	
graph	theoretical	analysis	using	our	Brain	Networks	Toolbox	(https://
github.com/srkesler/bnets.git,	 RRID:SCR_014788)	 as	 well	 as	 Brain	
Connectivity	Toolbox	(Rubinov	&	Sporns,	2010)	(RRID:SCR_004841)	
implemented	in	MATLAB	v2014b.	We	focused	on	the	clustering	coef-
ficient	 considering	our	previous	findings	 (Bruno,	Hosseini,	&	Kesler,	
2012;	Kesler,	Gugel,	Huston-	Warren,	&	Watson,	2016;	Kesler	et	al.,	
2015).	 Clustering	 coefficient	 reflects	 the	 ratio	 of	 actual	 to	 possible	
connections	between	a	node’s	neighbors	and	is	therefore	a	measure	
of	network	segregation	(Rubinov	&	Sporns,	2010).	We	examined	both	
global	clustering	(mean	clustering	coefficient	across	all	nodes)	as	well	
as	local	clustering	(nodal	clustering).

2.5 | Functional network dynamics

We	evaluated	 the	 temporal	 dynamics	of	 the	 functional	 network	by	
calculating	 the	 rescaled	 range	Hurst	 exponent	 (Hurst,	 1951)	 for	 all	
90	 ROIs,	 corrected	 for	 small	 sample	 bias.	 The	 windowing	 function	
was	based	on	a	data-	derived	natural	number	that	possessed	the	larg-
est	number	of	divisors	among	all	natural	numbers	 in	the	time	series	

TABLE  1 Demographic	and	medical	variables

Breast cancer, N = 74 Healthy controls N = 50 F/Chi Sq. p

Age 49.8	(9.3) 49.7	(10.0) 0.057 .95

Age	range 29–66 26–64

Education	(years) 17.0 17.5 −1.083 .28

Minority	status 33% 20% 2.46 .117

Postmenopausal 45% 40% 0.328 .567

Disease	stage	at	diagnosis	(0,	I,	II,	III) 6%,	35%,	47%,	11%

Days	since	diagnosis 38	(26)

Estrogen	receptor	positive 89%

Progesterone	receptor	positive 75%

Estrogen/progesterone	receptor	positive 75%

HER2	positive 24%

BRCA	(BRCA1	positive,	BRCA2	positive) 9%,	9%

HER2,	human	epidermal	growth	factor	receptor	2;	BRCA,	breast	cancer	susceptibility.

https://github.com/srkesler/bnets.git
https://github.com/srkesler/bnets.git
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interval.	The	Hurst	exponent	quantifies	how	correlated	a	time	series	is	
with	itself,	or	how	well	it	reflects	elements	of	the	baseline	signal	from	
both	the	recent	and	remote	past.	This	autocorrelative	property	is	re-
ferred	to	as	“long	memory”	(Churchill	et	al.,	2015;	Ciuciu,	Varoquaux,	
Abry,	Sadaghiani,	&	Kleinschmidt,	2012;	He,	2011).

2.6 | Structural connectome construction

Gray	 matter	 maps	 were	 obtained	 using	 voxel-	based	 morphometry	
(VBM).	 Images	 were	 first	 manually	 reoriented	 to	 the	 anterior	 and	
posterior	 commissures	 then	 realigned,	 segmented	 into	 tissue	 com-
partments,	 spatially	 normalized	 to	 a	 template	 using	 diffeomorphic	
anatomical	registration	through	exponentiated	lie	algebra	(DARTEL),	
and	modulated	and	smoothed	(12	mm	full	width,	half	maximum	ker-
nel)	using	the	VBM8	Toolbox	within	SPM8	(Kurth,	Gaser,	&	Luders,	
2015).	Successful	normalization	was	confirmed	via	visual	 inspection	
using	the	check	registration	function	in	SPM8	and	whole	volume	slice	
montages	as	well	as	with	the	check	sample	homogeneity	function	in	
VBM8	Toolbox.

Gray	matter	covariance	networks	were	constructed	 for	each	pa-
tient	 using	 an	 innovative	 similarity-	based	 extraction	method	 (Tijms,	
Series,	Willshaw,	&	 Lawrie,	 2012).	Network	 nodes	were	 defined	 by	
3	×	3	×	3	voxel	cubes	spanning	the	entire	gray	matter	volume	(mean	
network	size	=	8,525	±	49	nodes).	Each	node	therefore	contained	27	
gray	 matter	 volume	 values	 and	 a	 correlation	 matrix	 was	 calculated	
across	all	pairs	of	nodes	taking	into	account	the	sum	over	the	product	
of	 the	differences	between	 the	cubes’	values	at	each	voxel	 location	
as	well	as	the	cubes’	average	values	(Tijms	et	al.,	2012).	The	correla-
tion	matrices	were	thresholded	to	minimum	connection	density	and	

evaluated	 using	 graph	 theoretical	 analysis	 as	 described	 above.	 For	
local	analysis,	nodes	were	assigned	one	of	the	90	AAL	labels	based	on	
the	node’s	voxel	coordinates.	Nodal	clustering	was	calculated	for	each	
node	as	 the	average	clustering	coefficient	across	all	nodes	with	 the	
same	AAL	label	as	previously	described	(Tijms	et	al.,	2012).

2.7 | Statistical analyses

Between-	group	differences	in	cognitive	test	scores	and	clustering	co-
efficients	were	calculated	using	the	general	linear	model,	covarying	for	
minority	status	and	CAD	score.	Structural	clustering	was	additionally	
covaried	for	structural	connectome	size	(i.e.,	number	of	nodes)	given	
that	 this	 varied	 between	 individuals.	 Local	 clustering	 and	 cognitive	
test	score	models	were	corrected	for	false	discovery	rate	(FDR).	Hurst	
long	memory	was	not	normally	distributed	and	was	therefore	evalu-
ated	using	Wilcoxon	rank	test	for	both	global	and	local	effects	(with	
FDR	correction	for	local	effects).

Within	 both	 groups	 separately,	 the	 relationships	 among	 func-
tional	 clustering	 and	 structural	 clustering	 and	 Hurst	 long	memory	
were	explored	using	two-	tailed	correlations.	Differences	 in	correla-
tions	 between	 the	 groups	were	 evaluated	 using	 two-	tailed	 Fisher	
r-	to-	z	 transformation.	 To	 examine	 the	 effect	 of	 the	 relationship	
between	 structural	 clustering	 and	 functional	 clustering	 on	 cogni-
tive	 performance,	 we	 conducted	 a	 principle	 component	 analysis	
(PCA)	on	structural	 and	 functional	 clustering	coefficients	across	all	
participants.

Within	 the	 breast	 cancer	 group,	 exploratory,	 two-	tailed	 cor-
relations	were	 performed	 to	 examine	 the	 relationships	 among	 ed-
ucation	level,	age,	disease	stage,	days	since	diagnosis,	brain	metrics,	

Breast cancer 
(N = 74)

Healthy controls 
(N = 50) F/Chi Sq. p

p (FDR 
corrected)

RAVLT	total	
recall

52.5	(8.6) 56.1	(7.6) 7.64 .01 .02

RAVLT	
interference

5.82	(1.8) 6.76	(1.8) 8.21 .01 .02

RAVLT	delayed	
recall

10.9	(2.7) 11.6	(2.2) 3.07 .08 .12

CTMT	1 50.7	(7.3) 55.5	(9.7) 9.16 .003 .02

CTMT	2 52.7	(10.6) 54.2	(10.4) 0.45 .50 .56

CTMT	3 50.1	(8.2) 50.1	(10.1) 0.01 .91 .91

CTMT	4 54.8	(10.1) 56.5	(10.1) 0.46 .50 .56

CTMT	5 50.6	(8.8) 54.0	(9.5) 4.35 .04 .07

COWA 42.5	(13.0) 49.5	(12.8) 7.44 .01 .02

BRIEF	GECa 51.3	(9.2) 45.3	(9.8) 0.74 .39

PRMQa 36.7	(8.8) 32.8	(8.2) 0.89 .35

CADa 52.0	(9.8) 43.7	(9.6) 22.8 <.0001

RAVLT,	 Rey	 Auditory	 Verbal	 Learning	 Test;	 CTMT,	 Comprehensive	 Trail	 Making	 Test;	 COWA,	
Controlled	Oral	Word	Association;	 BRIEF	GEC,	 Behavioral	 Rating	 Inventory	 of	 Executive	 Function	
Global	 Executive	 Composite;	 PRMQ,	 Prospective	 and	 Retrospective	Memory	Questionnaire;	 CAD,	
clinical	assessment	of	depression;	FDR,	false	discovery	rate.
aHigher	 scores	 on	 the	 BRIEF,	 PRMQ,	 CAD	=	elevated	 symptoms.	 Higher	 scores	 on	 all	 other	 mea-
sures	=	better	performance.

TABLE  2 Cognitive	and	self-	report	
measures
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and	 cognition.	 Exploratory,	 two-	tailed	 t-		 or	 rank	 tests	were	 calcu-
lated	to	determine	whether	menopausal	status	or	tumor	pathology	
contributed	 to	 neurobiologic	 status	 and/or	 cognitive	 performance.	
Tumor	 pathology	 included	 hormone	 receptor	 (estrogen/progester-
one),	 human	 epidermal	 growth	 factor	 receptor	 2,	 and	 breast	 can-
cer	susceptibility	status	obtained	from	the	patient’s	medical	record.	
Only	 the	 brain	 metrics	 and	 cognitive	 tests	 that	 were	 significantly	
different	 between	 groups	 were	 examined.	 To	 reduce	 the	 number	
of	comparisons,	a	composite	of	the	significant	cognitive	test	scores	
was	computed	using	the	Mahalanobis	distance,	which	was	then	log	
transformed	 (Mahalanobis,	 1936;	 Menning	 et	al.,	 2015;	 Stouten-	
Kemperman	et	al.,	2015).

All	statistical	analyses	were	conducted	in	the	R	statistical	package	
(R	Foundation,	RRID:SCR_001905).

3  | RESULTS

3.1 | Cognitive performance

The	 breast	 cancer	 group	 demonstrated	 lower	 scores	 on	 all	 cogni-
tive	tests	except	for	CTMT	trial	3.	Of	the	10	cognitive	measures,	the	
RAVLT	 total	 recall	 and	 interference	 trials,	CTMT	trial	1	and	COWA	
scores	were	significant	and	survived	FDR	correction	 (Table	2).	CAD	
was	not	a	significant	covariate	in	these	models	(p	>	.19),	but	minority	
status	was	for	RAVLT	interference	and	COWA	(p < .04).

3.2 | Self- ratings

The	breast	 cancer	 group	 showed	elevated	psychological	 distress	 as	
measured	 by	 the	 CAD	 compared	 to	 controls	 (p	<	.0001,	 Table	2).	
Minority	status	was	nonsignificant	in	the	model	(p	=	.99).	There	were	
no	 significant	 differences	 in	 subjective	 executive	 or	 memory	 func-
tion	(Table	2).	CAD	was	a	very	significant	covariate	 in	these	models	
(p	<	.0001),	but	minority	status	was	not	(p	>	.87).

3.3 | Functional network clustering coefficient

No	significant	difference	was	observed	between	the	groups	in	global	
clustering	(p	=	.19,	Table	3).	However,	the	breast	cancer	group	showed	
significantly	altered	local	clustering	in	several	frontal	and	parietal	re-
gions,	but	 these	did	not	survive	FDR	correction	 (Figure	1).	Minority	
status	and	CAD	were	nonsignificant	covariates	(p	>	.51).

3.4 | Structural network clustering coefficient

No	significant	group	difference	was	found	in	global	clustering	(p	=	.61,	
Table	3).	Again,	local	clustering	was	significantly	altered	in	frontal	and	
parietal	as	well	as	temporal	regions	in	the	breast	cancer	group	but	not	
after	 FDR	 correction	 (Figure	1).	Minority	 status	 and	CAD	were	 not	
significant	covariates	(p	>	.53).

3.5 | Functional network dynamics

The	breast	cancer	group	demonstrated	significantly	 lower	Hurst	 long	
memory	compared	to	controls	(p	=	.046,	Table	3).	This	primarily	involved	
distributed,	right	lateralized	regions	(Figure	1).	Hurst	long	memory	was	
not	correlated	with	CAD	or	minority	status	in	either	group	(p > .33).

3.6 | Brain structure and function relationships

Structural	clustering	and	functional	clustering	as	well	as	functional	clus-
tering	and	Hurst	 long	memory	were	significantly	associated,	although	
only	 in	the	breast	cancer	group	 (Figure	2).	Specifically,	structural	clus-
tering	 and	 functional	 clustering	 were	 inversely	 correlated	 (r	=	−0.33,	
p	=	.01)	and	structural	clustering	was	directly	correlated	with	Hurst	long	
memory	(r	=	0.26,	p	=	.050).	The	difference	in	correlation	between	the	
groups	was	significant	for	structural	clustering	and	functional	clustering	
(z	=	2.21,	p	=	.03)	but	not	for	structural	clustering	and	Hurst	long	mem-
ory	(z	=	1.4,	p	=	.16).	We	examined	only	the	first	PCA	component,	which	
accounted	for	59%	of	the	variance.	This	component	weighted	functional	
clustering	 negatively	 and	 structural	 clustering	 positively.	 Component	
scores	were	not	correlated	with	CAD	or	minority	status	(p > .31).

3.7 | Brain and cognition

In	the	breast	cancer	group,	Mahalanobis	distance	was	significantly	corre-
lated	with	PCA	component	scores	(Figure	3,	r	=	0.34,	p	=	.005)	and	mod-
erately	associated	with	Hurst	 long	memory	(r	=	−0.21,	p	=	.09).	Higher	
Mahalanobis	distance	indicates	higher	deviance	of	cognitive	scores	from	
the	control	group	and	therefore	greater	cognitive	dysfunction.

3.8 | Disease, demographics, brain, and cognition

There	were	no	differences	 in	Hurst	 long	memory,	PCA	component	
or	Mahalanobis	distance	 related	 to	disease	stage,	 tumor	pathology,	

Breast cancer 
(N = 65)

Healthy controls 
(N = 50) F p

Functional	connectome	global	
clustering	coefficient

0.54	(0.03) 0.53	(0.03) 1.78 .19

Structural	connectome	global	clustering	
coefficient

0.69	(0.005) 0.70	(0.005) 0.26 .61

Structural	connectome	size 8,521	(48) 8,531	(49) 0.01 .92

Functional	network	dynamics	(Hurst	
exponent)

0.19	(0.10) 0.22	(0.11) 1,271 .046

TABLE  3 Brain	network	metrics
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or	menopausal	status.	There	were	also	no	significant	correlational	ef-
fects	 of	 demographic	 variables	 or	 days	 since	 diagnosis	 on	 brain	 or	
cognition.

F IGURE  1 Local	differences	in	brain	
network	metrics.	Compared	to	controls,	
patients	with	breast	cancer	showed	
altered	functional	clustering	(FC,	cyan)	in	
right	inferior	parietal	lobe,	right	middle	
inferior	orbital	frontal	gyrus,	and	right	
medial	superior	frontal	gyrus	(p	<	.05,	
uncorrected).	The	breast	cancer	group	
showed	altered	structural	clustering	(SC,	
blue)	in	right	inferior	and	middle	frontal	
gyri,	bilateral	postcentral	gyri,	right	
precuneus,	and	left	inferior	temporal	
gyrus	(p	<	.05,	uncorrected).	Functional	
dynamics	as	measured	by	Hurst	exponent	
(FD,	magenta)	was	lower	in	patients	with	
breast	cancer	compared	to	controls	in	
right	inferior	orbital	gyrus,	left	middle	
occipital	gyrus,	right	parietal	lobule,	right	
cuneus,	right	superior	temporal	gyrus,	
and	right	inferior	temporal	gyrus	(p	<	.05,	
uncorrected)

F IGURE  2 Correlations	between	brain	network	metrics.	The	
breast	cancer	group	demonstrated	a	significant	negative	correlation	
between	structural	and	functional	clustering	as	well	as	a	significant	
positive	correlation	between	functional	clustering	and	Hurst	
exponent.	Values	are	shown	as	r(p).	SC,	structural	connectome	
clustering;	FC,	functional	connectome	clustering;	FD,	functional	
dynamics	(Hurst	exponent).	*The	group	difference	between	these	
correlations	was	significant	(p = .03)

F IGURE  3 Relationship	of	structural	and	functional	principal	
component	and	cognitive	function	in	patients	with	breast	cancer.	
Greater	cognitive	dysfunction	was	associated	with	greater	overlap	
between	structural	and	functional	connectome	clustering	(r	=	0.34,	
p	=	.005).	MHD,	Mahalanobis	distance;	higher	MHD	=	greater	
cognitive	dysfunction
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4  | DISCUSSION

Our	 study	 replicates	findings	 reported	by	Patel	 et	al.	 (2015)	 in	 that	
we	observed	cognitive	impairment	in	newly	diagnosed	patients	with	
breast	 cancer	 at	 a	 pretreatment	 evaluation.	 Unlike	 most	 previous	
studies,	patients	enrolled	in	this	study	had	yet	to	undergo	any	cancer	
treatment,	including	any	surgery	with	general	anesthesia.	Importantly,	
our	 study	 provides	 novel	 information	 by	 demonstrating	 neural	 bio-
markers	of	cognitive	dysfunction	associated	with	breast	cancer.

Using	a	multimodal,	multivariate	approach,	we	examined	the	to-
pology	of	both	structural	and	functional	connectomes	as	well	as	the	
temporal	dynamics	of	the	functional	network.	We	demonstrated	that	
functional	 dynamics	were	 significantly	 lower	 in	patients	with	breast	
cancer	compared	to	controls.	This	method	is	based	on	the	theory	that	
the	brain	resides	in	a	state	of	“criticality”	allowing	it	to	adapt	quickly	to	
new	situations.	A	critical	state	system	is	characterized	by	spatial	and	
temporal	correlations	that	show	long	memory,	which	theoretically	rep-
resents	the	brain	network’s	ability	to	keep	relevant	information	readily	
available,	allowing	it	to	respond	dynamically	 (Ciuciu	et	al.,	2012;	He,	
2011).

Our	findings	indicate	that	the	adaptability	of	functional	networks	is	
disrupted	even	prior	to	initiation	of	cancer	treatments,	including	surgery.	
Conversely,	Churchill	et	al.	(2015)	observed	higher	Hurst	exponent	in	
patients	with	breast	cancer	compared	to	healthy	controls	(postsurgery/
prechemotherapy).	They	also	noted	relationships	between	Hurst	long	
memory	and	psychological	distress,	which	we	did	not.	However,	their	
study	involved	a	task-	fMRI	paradigm,	whereas	ours	 involved	resting-	
state	fMRI.	Hurst	exponent	 is	highest	during	resting	state	and	tends	
to	decrease	with	 increased	task	 load	(He,	2011;	He,	Zempel,	Snyder,	
&	Raichle,	2010).	Therefore,	the	Churchill	et	al.	findings	may	suggest	
a	deficit	 in	 task-	modulated	 suppression	of	 long	memory.	This	would	
be	consistent	with	other	studies	demonstrating	reduced	task-	related	
functional	deactivation	in	patients	with	breast	cancer	(Cimprich	et	al.,	
2010;	Kesler,	Bennett,	Mahaffey,	&	Spiegel,	2009).

We	 have	 previously	 observed	 altered	 structural	 and	 functional	
clustered	connectivity	in	our	cross-	sectional	studies	of	chemotherapy-	
treated,	 long-	term	 breast	 cancer	 survivors	 (Bruno	 et	al.,	 2012;	
Hosseini,	 Koovakkattu,	 &	 Kesler,	 2012;	 Kesler	 et	al.,	 2015).	 In	 the	
present	study,	we	demonstrated	only	very	subtle	disruption	of	 local	
clustered	connectivity	in	pretreatment	patients.	Taken	together,	these	
findings	suggest	that	this	 injury	may	begin	quite	early	in	the	disease	
course	but	is	more	affected	chronically	and/or	by	adjuvant	treatments.	
Regional	clustering	and	Hurst	exponent	results	indicate	a	widespread	
effect,	 consistent	with	 previous	 studies	 (Deprez	 et	al.,	 2012;	 Kesler	
et	al.,	2015).	Frontal,	parietal,	and	temporal	areas	were	altered	in	the	
breast	cancer	group	compared	to	controls,	consistent	with	deficits	in	
memory,	executive	function,	and	verbal	fluency.	 It	will	be	 important	
to	evaluate	how	these	regional	effects	change	in	patients	after	adju-
vant	treatments.	It	should	also	be	noted	that	regional	differences	did	
not	survive	correction	for	multiple	comparisons	and	may	therefore	be	
spurious.

These	potential	alterations	in	clustered	connectivity	involved	both	
functional	 and	 structural	 networks.	Unlike	most	 previous	 studies	of	

gray	matter	 structural	 covariance	networks,	 the	 similarity-	based	ex-
traction	method	we	applied	resulted	in	individual	level	networks	that	
allowed	us	to	examine	correlations	with	functional	connectomes.	Gray	
matter	structural	covariance	networks	are	believed	to	reflect	underly-
ing	axonal	connections	as	well	as	common	genetic,	neurotrophic,	and	
neuroplastic	 processes	 (Alexander-	Bloch,	 Giedd,	 &	 Bullmore,	 2013;	
Mechelli,	 Friston,	Frackowiak,	&	Price,	2005).	Our	group	and	others	
have	 previously	 demonstrated,	 in	 healthy	 adults,	 that	 structural	 co-
variance	 networks	 are	 consistent	with	 intrinsic	 functional	 networks	
with	respect	to	connectivity	pattern,	although	not	in	all	brain	regions	
(Damoiseaux	&	Greicius,	2009;	Hosseini	&	Kesler,	2013).

Additionally,	the	topologies	of	structural	and	functional	networks,	
as	measured	by	connectome	properties	such	as	clustering	coefficient,	
tend	to	be	uncorrelated	(Caeyenberghs,	Leemans,	Leunissen,	Michiels,	
&	Swinnen,	2013;	Hosseini	&	Kesler,	2013).	Consistently,	in	the	pres-
ent	 study,	 we	 found	 no	 significant	 relationship	 between	 structural	
and	functional	clustering	coefficients	in	healthy	controls.	Additionally,	
there	 was	 little	 overlap	 between	 functional	 and	 structural	 regional	
clustering	differences	between	the	groups	(Figure	1).	The	meaning	of	
this	 lack	of	correlation	 in	healthy	 individuals	 is	currently	unclear	but	
may	 indicate	 the	 presence	 of	 indirect	 functional	 connections,	 func-
tional	gating,	and/or	 interregional	distance	 (Deco	&	Corbetta,	2011;	
Honey	et	al.,	2009;	Stam	et	al.,	2016).

Unlike	controls,	the	breast	cancer	group	showed	a	significant	 in-
verse	relationship	between	structural	clustering	and	functional	clus-
tering.	 In	 our	 previous	 studies	 of	 breast	 cancer	 survivors,	 we	 have	
noted	a	similar	pattern	in	terms	of	group	differences	wherein	structural	
connectome	 clustering	 was	 elevated	 in	 one	 study	 while	 functional	
connectome	clustering	was	 reduced	compared	 to	 controls	 in	 a	 sep-
arate	study	(Bruno	et	al.,	2012;	Kesler	et	al.,	2015).	This	may	suggest	
a	 disease-	related	 disruption	 in	 the	 balance	 between	 structural	 and	
functional	connectome	organizations.	The	brain	involves	many	oppos-
ing	demands	that	might	be	represented	by	anticorrelated	processes.	
However,	the	brain	is	organized	to	reconcile	these	demands	(Rubinov	
&	Sporns,	2010;	Sporns	&	Honey,	2006),	and	therefore,	hyper-	inverse	
correlation	seems	to	suggest	a	disruption	in	the	brain	network’s	ability	
to	balance	competing	systems.	Accordingly,	our	principal	component	
analysis	 inversely	weighted	structural	clustering	and	functional	clus-
tering	and	these	component	scores	were	significantly	correlated	with	
cognitive	dysfunction.

A	review	of	connectome	studies	 in	Alzheimer’s	disease	also	sug-
gests	 inverse	 relationships	 between	 structural	 and	 functional	 con-
nectome	topologies	across	single-	modality	studies	 (Dai	et	al.,	2015).	
Additionally,	an	effect	of	inverse	structural	and	functional	connectome	
relationship	on	behavioral	phenotype	was	observed	in	a	previous	mul-
timodal	 study	 of	 individuals	with	 pervasive	 developmental	 disorder	
(Rudie	 et	al.,	 2012).	Additionally,	 hyper-	correlation	of	 structural	 and	
functional	connectome	properties	has	been	associated	with	temporal	
lobe	 epilepsy	 (Wirsich	 et	al.,	 2016).	Therefore,	 enhanced	 structure–
function	correlation	seems	likely	to	be	a	general	effect	of	neurologic	
disorder	rather	than	a	cancer-	specific	one.

One	possible	interpretation	of	our	results	is	that	increased	struc-
tural	clustering	results	in	decreased	flexibility	of	functional	networks.	
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This	 interpretation	 is	 supported	by	our	finding	 that	 lower	 structural	
clustering	 was	 associated	 with	 lower	 functional	 adaptability	 (Hurst	
long	memory).	Additionally,	lower	Hurst	long	memory	was	moderately,	
though	nonsignificantly	correlated	with	greater	cognitive	dysfunction	
in	patients	with	breast	cancer.	Brain	structure	is	believed	to	constrain	
brain	 function	 (Deco	&	Corbetta,	2011)	and	an	optimal	balance	be-
tween	 brain	 network	 stability	 and	 flexibility	 is	 required	 for	 learning	
(Hermundstad,	Brown,	Bassett,	&	Carlson,	2011a,	2011b).

Given	the	nature	of	correlation,	the	alternative	interpretation	that	
increased	functional	clustering	decreases	structural	clustering	 is	also	
possible.	The	functional	hyper-	activation	noted	in	postsurgery/preche-
motherapy	studies	of	patients	with	breast	cancer	may	reflect	abnormal,	
excitotoxic	neural	activity	as	observed	in	other	neurologic	syndromes	
(Palop	&	Mucke,	2010).	We	have	previously	demonstrated	that	che-
motherapy	 upregulates	 neural	 activity	 and	 increases	 synaptic	 death	
in	cultured	neurons	 (Manchon	et	al.,	2016).	Perhaps	these	processes	
are	also	associated	with	aspects	of	cancer	pathogenesis.	Specifically,	
breast	cancer	tumors	initiate	neurogenesis	and	release	nerve	growth	
factor	 (Cole,	Nagaraja,	 Lutgendorf,	Green,	&	 Sood,	 2015;	 Pundavela	
et	al.,	2015;	Zhao	et	al.,	2014),	which	may	result	in	aberrant	CNS	activ-
ity	via	peripheral	innervation.	Tumor	aggressiveness	has	been	associ-
ated	with	tumor-	related	neurogenesis	(Zhao	et	al.,	2014).	However,	we	
were	unable	to	detect	any	effects	of	disease	severity	or	tumor	pathol-
ogy	on	brain	connectivity	or	cognitive	function.	This	may	have	been	
due	to	the	imbalance	in	our	sample	with	respect	to	disease	stage	and	
tumor	markers,	and	therefore,	further	investigation	is	required.

As	noted	above,	Patel	et	al.	(2015)	observed	correlations	between	
elevated	 cytokine	 levels	 and	 cognitive	 dysfunction	 in	 patients	with	
breast	cancer	presurgery.	Malignant	tumors	and	their	inflammatory	re-
sponse	are	also	characterized	by	angiogenesis	(Farnsworth,	Lackmann,	
Achen,	&	Stacker,	2014;	Folkman,	1971).	A	preliminary	study	by	Ng	
et	al.	 (2013)	 indicated	 elevated	 plasma	 vascular	 endothelial	 growth	
factor	 (VEGF),	 a	 common	 angiogenic	 factor,	 in	 patients	with	 breast	
cancer	 following	 chemotherapy	 treatment,	 that	was	 negatively	 cor-
related	with	cognition.	VEGF	is	expressed	in	the	brain	and	is	believed	
to	play	an	 important	role	 in	neurodegeneration.	However,	 the	study	
did	not	evaluate	baseline,	pretreatment	VEGF	levels.	Long-	term	breast	
cancer	survivors	also	have	increased	incidence	of	cerebral	small	vessel	
disease	following	cancer	therapies	(Koppelmans	et	al.,	2015),	but	it	is	
currently	unknown	if	these	vascular	effects	exist	prior	to	treatment	ini-
tiation.	The	potential	role	of	these	factors	in	cancer-	related	cognitive	
impairment	requires	further	investigation.

Stress	is	also	associated	with	disrupted	functional	dynamics	in	pa-
tients	with	breast	cancer,	inflammatory	response,	and	tumor	progres-
sion	(Churchill	et	al.,	2015;	Cole	et	al.,	2015).	Psychological	distress,	as	
measured	by	CAD,	was	significantly	higher	in	the	breast	cancer	group	
compared	to	controls,	but	was	not	a	significant	contributor	to	group	dif-
ferences	in	cognitive	performance	and	was	not	correlated	with	Hurst	
long	memory	or	structure–function	component.	Mean	CAD	score	 in	
the	breast	cancer	group	was	 in	 the	clinically	defined	“normal	 range”	
for	this	measure	(Aghakhani	&	Chan,	2007).	Therefore,	psychological	
distress	may	not	have	been	sufficiently	elevated	to	have	a	detectable	
impact	on	brain	function.	These	findings	provide	further	evidence	that	

cognitive	impairment	in	patients	with	breast	cancer	cannot	be	entirely	
explained	by	distress.	We	also	noted	that	distress	contributes	primarily	
to	 self-	reported	 rather	 than	objective	 cognitive	 function,	 consistent	
with	previous	studies	(Wefel,	Kesler,	Noll,	&	Schagen,	2015).

In	summary,	prior	to	initiation	of	any	treatments,	 including	surgery	
with	anesthesia,	patients	with	newly	diagnosed	breast	cancer	showed	
disruption	 of	 intrinsic	 functional	 network	 dynamics	 and	 altered	 rela-
tionship	between	structural	and	functional	connectome	clustering.	Our	
results	 provide	 important	 new	 insights	 regarding	 the	 effects	 of	 non-	
CNS	 cancer	 on	 brain	 network	 organization	with	 broader	 implications	
concerning	the	significance	of	the	relationship	between	structural	and	
functional	connectome	properties	as	a	potential	biomarker	of	neurologic	
deficit.	This	study,	in	combination	with	the	previous	literature	in	this	area,	
suggests	 that	 these	 effects	may	 represent	 a	 cumulative	 injury	 to	 the	
brain,	beginning	with	cancer	pathogenesis	and	then	increasing	in	severity	
across	subsequent	cancer	treatments.	Further	research	is	needed	to	ad-
dress	the	limitations	of	this	study	including	replication	of	structural	con-
nectomes	using	fiber	tractography	and	targeted	recruitment	of	patients	
to	balance	samples	in	terms	of	tumor	pathology	and	disease	severity.
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