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Functions of the WNT Signaling
Network in Shaping Host Responses
to Infection
Johanna K. Ljungberg, Jessica C. Kling, Thao Thanh Tran † and Antje Blumenthal*

The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia

It is well-established that aberrant WNT expression and signaling is associated with

developmental defects, malignant transformation and carcinogenesis. More recently,

WNT ligands have emerged as integral components of host responses to infection

but their functions in the context of immune responses are incompletely understood.

Roles in the modulation of inflammatory cytokine production, host cell intrinsic innate

defense mechanisms, as well as the bridging of innate and adaptive immunity have been

described. To what degree WNT responses are defined by the nature of the invading

pathogen or are specific for subsets of host cells is currently not well-understood. Here

we provide an overview of WNT responses during infection with phylogenetically diverse

pathogens and highlight functions of WNT ligands in the host defense against infection.

Detailed understanding of how the WNT network orchestrates immune cell functions will

not only improve our understanding of the fundamental principles underlying complex

immune response, but also help identify therapeutic opportunities or potential risks

associated with the pharmacological targeting of the WNT network, as currently pursued

for novel therapeutics in cancer and bone disorders.

Keywords: WNT signaling, antigen presenting cells (APCS), infection, inflammation, anti-microbial defense

THE WNT SIGNALING NETWORK

The WNT signaling network is a central regulator of embryonic development and tissue
homeostasis. WNT proteins are phylogenetically highly conserved secreted, cysteine-rich glyco-
lipoproteins (1). Nineteen individual WNT proteins have thus far been described in mammals (2).
Best known functions of WNT proteins include regulation of cell cycle, cellular differentiation,
cell motility, cellular polarity, and cell death (3). WNT proteins act as directional growth factors
that orchestrate patterning, expansion and differentiation of tissues in the organized formation of
body plans, and are central regulators of stem and progenitor cell development and maintenance
both during embryogenesis and adult homeostasis (4, 5). Dysregulation of WNT signaling is
implicated in a multitude of diseases, including cancer, fibrosis, bone density disorders, metabolic
and neurodegenerative diseases (6).

WNT proteins are highly hydrophobic due to post-translational modification by palmitoleic and
palmitic acid at conserved cysteine residues. This is afforded through action of the acyltransferase
Porcupine (PORCN) in the endoplasmic reticulum (Figure 1). WNT acylation has been shown
to be required for the release, receptor interactions, and functions of WNTs (1). The chaperone
Wntless (WLS) facilitates transport of acylated WNT ligands to the plasma membrane and aids in
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FIGURE 1 | Posttranslational modification and secretion of WNT ligands. Upon translation, WNT proteins undergo acylation in the endoplasmic reticulum by

Porcupine (PORCN), a modification required for WNT release (7), receptor interactions (8), and functions (7, 9). Wntless (WLS) facilitates transport of acylated WNT

ligands to the plasma membrane and aids in WNT release (10–12). WNT secretion and extracellular transport appears to occur via multiple mechanisms including

multi-vesicular bodies and exosomes, cytonemes, lipoproteins, and heparan sulfate proteoglycans (1). WLS protein is recycled via clathrin-mediated endocytosis (13).

Figure created with Biorender.com.

WNT release (14). WNT proteins act as morphogens in a
concentration-dependent manner through the formation of
gradients within tissues. How the hydrophobic WNT ligands act
at short distances as well as at longer ranges is incompletely
understood. Multiple mechanisms that facilitate WNT transport
beyond the boundaries of the producing cell have been
described, including chaperones, lipoproteins, exosomes, and
cytonemes (1). Macrophages infected by viruses or intracellular
bacterial pathogens release exosomes and microvesicles that
contain pathogen-derived components alongside host membrane
proteins (e.g., MHC-I, MHC-II) and immune mediators (e.g.,
cytokines) that modulate functions of bystander cells (15–18).
Observations of elevated WNT5A protein levels in serum of
patients with severe sepsis (19) highlights the possibility that
WNT proteins produced in response to infection may act not
only locally but also systemically, and thereby shape immune cell
differentiation and functions at distant sites.

WNT ligands initiate intracellular signaling by binding to cell
surface-expressed WNT receptors and co-receptors, including
Frizzled (FZD) 7-transmembrane domain receptors, low-density
lipoprotein-related proteins (LRP5, LRP6), as well as receptor
tyrosine kinases ROR and RYK (20). Cytoplasmic scaffolding
proteins of the disheveled family (DVL) are central to initiating
intracellular signaling downstream of FZD receptors (21). The
functional outcome of WNT interactions with target cells is
decided at the level of receptor engagement. Depending on
the receptor context, WNT ligands activate distinct intracellular
pathways, which can be grouped into β-catenin-dependent and
β-catenin-independent signaling events (Figure 2). Individual
modalities of β-catenin-dependent and β-catenin-independent
WNT signaling have been reviewed in detail elsewhere (3, 5,
20). Briefly, β-catenin-dependent WNT signaling is mediated
by cytoplasmic stabilization of β-catenin, which is controlled
by the β-catenin destruction complex. The destruction complex
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FIGURE 2 | WNT signaling pathways. (A) WNT/β-catenin signaling. The destruction complex is comprised of APC, AXIN1, CK1, and GSK3β. Phosphorylation of

β-catenin by CK1 and GSK3β within the destruction complex results in β-catenin ubiquitination mediated by β-TrCP resulting in proteasomal degradation of β-catenin

(22, 23) The transcriptional repressor Groucho suppresses expression of genes controlled by TCF/LEF transcription factors. Binding of WNT ligands to Frizzled (FZD)

receptors and LRP co-receptors promotes recruitment and clustering of DVL, forming signalosomes (21, 24), facilitating recruitment of the destruction complex and

stabilization of cytoplasmic β-catenin. Nuclear translocation of β-catenin enables its functions as a transcriptional co-activator for transcription factors of the TCF/LEF

family (3). (B) WNT/JNK signaling via FZD, alone or in conjunction with co-receptors (e.g., ROR RYK) activates the small GTPases RAC1 and RHOA engaging the

actin cytoskeleton, as well as JNK MAP kinase activation (25–27). (C) WNT/Ca2+ signaling downstream of FZD receptors is mediated by phospholipase C (PLC)

activation leading to enhanced levels of cytosolic Ca2+, resulting in calmodulin/calmodulin-dependent kinase II activation and NF-AT-regulated transcriptional

responses (28), and engagement of the actin cytoskeleton. RYK has been implicated as a co-receptor for WNT/Ca2+ signaling. Figure created with Biorender.com.
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is comprised of scaffolding proteins adenomatous polyposis
coli (APC), axis inhibition protein (Axin), and the kinases
casein kinase 1 (CK1) and glycogen synthase kinase 3β
(GSK3β). In the absence of WNT ligand binding to FZD
and LRP co-receptors, phosphorylation of β-catenin by CK1
and GSK3β within the destruction complex results in β-
catenin ubiquitination by beta-transducin repeat-containing E3
ubiquitin protein ligase (βTrCP), fueling continuous degradation
of β-catenin by the proteasome (Figure 2A). Binding of WNT
ligands to FZD/LRP results in recruitment of DVL and the
destruction complex, inhibiting GSK3β and CK1 activity and
stabilization of cytoplasmic β-catenin. This enables nuclear
translocation of β-catenin where it functions as transcriptional
co-activator for transcription factors of the TCF/LEF family
(Figure 2A). WNT/JNK- [described as planar cell polarity (PCP)
pathway in Drosophila] and WNT/Ca2+-signaling are modes
of β-catenin-independent WNT signaling. WNT/JNK signaling
results in FZD/DVL-mediated activation of the small GTPases
RAC1 and RHOA, directing cytoskeletal rearrangements, cell
polarization and motility. Activation of JNK can drive c-Jun- and
AP-1-controlled transcription (Figure 2B).WNT/Ca2+ signaling
downstream of FZD receptors and DVL leads to phospholipase
C (PLC) activation and enhanced levels of cytosolic Ca2+, which
activates calmodulin/calmodulin-dependent kinase II andNFAT-
regulated transcriptional responses (Figure 2C).

Tight regulation and precise targeting of WNT signaling
is essential, as emphasized by the evolutionary investment
in multiple layers and modes of WNT pathway modulation.
WNT signaling is negatively regulated by secreted Frizzled-
related proteins (sFRP) and WNT inhibitory factor 1 (WIF-1),
which directly bind WNT proteins interfering with receptor
interactions (3). The palmitoleoyl-protein carboxylesterase
Notum was shown to facilitate serine de-palmitoleoylation of
WNT ligands, thereby negatively regulating WNT functions
(29). Members of the Dickkopf (DKK) and Sclerostin/SOST
families, as well as the glycoprotein Dorsal Inhibitory Axon
Guidance Protein (DRAXIN) interact with LRP5/6 and interfere
with WNT binding (30–32). FZD receptor surface availability
is regulated through the E3 ubiquitin ligases, Zinc and Ring
Finger 3 (ZNRF3) and Ring Finger protein 43 (RFN43), which
ubiquitinate FZD receptors destining them for proteasomal
degradation (33). ZNFR3 and RFN43 serve as negative feedback
regulators for WNT signaling, as they themselves are encoded by
WNT target genes (5).

WNT RESPONSES TO INFECTION

Early studies identified WNT5A as a highly responsive gene in
humanmacrophages uponmicrobial encounter (19, 34).WNT5A
has also been found to be highly expressed by tumor-associated
macrophages (35), synoviocytes in rheumatoid arthritis (36),
macrophages in atherosclerotic plaques (37), and adipose tissue-
resident macrophages in obesity (38). This has directed initial
attention toward elucidating immune functions of WNT5A.
However, it is increasingly evident that the host response
to infection encompasses differential expression of multiple

WNT ligands, receptors and regulators (39–43). Thus, detailed
understanding of how the concerted actions of WNT ligands
and potentially concurrent WNT signaling events define host
responses to infection is key to firmly establishing immune
functions of the WNT signaling network.

Bacterial Infections
Gram-Negative Bacteria
WNT responses to infection have been studies in the context of
experimental infection with a limited number of Gram-negative
bacterial pathogens (Table 1). WNT pathway activation and
functions in the context of Salmonella infection have largely been
focused on in a model of gastroenteritis in antibiotic-pretreated
mice, as well as in epithelial cell lines in vitro. Salmonella
(S.) enterica serovar Typhimurium infection of streptomycin-
pretreated mice increased mRNA expression of Wnt3, Wnt6,
Wnt9a, and protein expression of Wnt2 and Wnt11 in intestinal
tissues (43, 50, 56). In vitro studies indicated that colonization of
murine intestinal epithelial cells with S. Typhimurium induced
elevated mRNA expression of Wnt2 and Wnt11 (also confirmed
at protein level), Fzd2, Fzd4, Fzd6, Fzd7, Fzd8, Fzd9, with limited
or no effects on the expression of other Wnt and Fzd genes (50,
56). Induction of Wnt2 and Wnt11 expression was attributed at
least in part to Salmonella AvrA (50, 56), a bacterial effector that
has been implicated in the regulation of β-catenin ubiquitination
and stabilization (64–67). With an increasing understanding
of the complex WNT response in Salmonella infection, future
studies should explore WNT network activation in macrophages,
innate immune cells that are important in the host control of
Salmonella infection. Thus far, it has been noted thatWnt5a and
Fzd4 expression in S. Typhimurium-infected murine peritoneal
macrophages was modestly increased, albeit the impact on the
expression of otherWNT signaling components was not explored
in this study (44).

Ehrlichia (E.) chaffeensis infection of human THP-1
macrophage-like cells transiently increased mRNA expression of
WNT6,WNT10A, FZD5, and FZD9, while decreasing expression
of WNT5B, WNT7B, and FZD7, as determined by pathway-
specific qPCR arrays (42). Expression of WNT regulators such as
DKK3 and sFRP2 was suppressed or enhanced, respectively, and
a significant number of WNT-target genes were differentially
expressed (42).

WNT responses upon encounter of pathogenic and non-
pathogenic Escherichia (E.) coli have been investigated to some
extent in mouse models in vivo. Mono-colonization of mice
with E. coli F18 enhanced expression of Wnt2 in the intestine
compared to germ-free mice (50). Bladder infection with
uropathogenic E. coli (UPEC) induced rapid downregulation of
Wnt5a expression in the urothelium of infected mice, which
was partially attributed to the bacterial virulence and adhesion
factor, FimH (58). This observation seems to contrast a small
increase of WNT5A expression described in a human urothelial
cell line infected with UPEC in vitro (59). Yet, exposure of
mouse thioglycolate-elicited peritoneal macrophages exhibited
a marked decrease in Wnt5a mRNA expression when exposed
to a non-pathogenic E. coli strain, while expression of all
other WNT ligands remained unaltered at the time point
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TABLE 1 | Bacteria-induced WNT responses in experimental systems and patient samples.

Mycobacterium sp. S. aureus S. pneumoniae E. chaffeensis E. coli P. aeruginosa S. Typhimurium LPS

WNT1 ↑ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

↓ mRNA

mom-2C. elegans IEC

(45)

unaffected mRNA

mPM (44)

unaffected L. vannamei

HP, LO, HT (46)

– n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– ↓protein HCT116 (47) ↑ protein THP-1 (48)

↑ mRNA mBMDM (40)

↓ mRNA fetal ovine lungs

(49)

n.d. mRNA murine

spleen (39)

WNT2 ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

↑ mRNA

cwn-2C. elegans IEC

(45)

unaffected mRNA

mPM (44)

unaffected L. vannamei

HP, LO, HT (46)

– n.d. mRNA THP-1 (42) ↑ mRNA and protein

CMT93 (50)

unaffected mRNA

mPM (44)

– ↑ mRNA and protein

IEC-18 (50)

n.d. mRNA murine spleen

(39)

↓ mRNA fetal ovine

lungs (49)

WNT2B ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

↓ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

unaffected mRNA

THP-1 (42)

unaffected mRNA

mPM (44)

– unaffected mRNA

IEC-18 (50)

↑ mRNA mBMDM (40)

n.d. mRNA murine

spleen (39)

WNT3 unaffected mRNA Mtb

murine lung tissue (40)

– ↓ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

unaffected mRNA

THP-1 (42)

unaffected mRNA

mPM (44)

– ↑ mRNA mIEC (43) ↑ mRNA hMDM (52)

unaffected mRNA murine

spleen (39)

WNT3A ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

– n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– unaffected mRNA

IEC-18 (50)

n.d. mRNA mBMDM (40) ↑

mRNA BEAS-2B (53)

n.d. mRNA murine

spleen (39)

WNT4 ↓ mRNA Mtb murine

lung tissue (40)

↓ mRNA M. marinum

infected zebrafish (54)

unaffected mRNA

M. bovis BCG

mPM (44)

↑ mRNA D.

melanogaster (55)

unaffected mRNA

mPM (44)

unaffected L. vannamei

HP, LO, HT (46)

↑ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

unaffected mRNA

THP-1 (42)

unaffected mRNA

mPM (44)

– unaffected mRNA

IEC-18 (56)

↓ mRNA fetal ovine lungs

(49)

unaffected mRNA murine

spleen (39)

WNT5A ↑ mRNA Mtb hMDM

(34) ↓ mRNA Mtb

murine lung tissue (40)

↑ mRNA Mtb hPBMC

and M. bovis (BCG)

mPM (44) ↑ mRNA

M. marinum zebrafish

(54)

WNT5A expressing

macrophages in human

tuberculosis

granulomas (34)

↑ mRNA mPM (44) ↑

mRNA (LvWnt5)

L. vannamei HP, LO,

HT (46)

↓ protein RAW264.7

(57)

n.d. mRNA THP-1 (42) ↓ mRNA mPM (44)

↓ mRNA murine

urothelium (58)

↑ mRNA human

urothelium (59)

↓ protein

RAW264.7 (57)

↑ mRNA mPM (44)

unaffected mRNA

IEC-18 (56)

↑ mRNA hMDM (34)

↑ mRNA BEAS-2B (53)

↑ mRNA hPBMC and

hBMDM during sepsis (19)

↑ mRNA THP-1 (60) ↑

mRNA primary human

monocytes (61)

↑ mRNA RAW264.7 (37)

unaffected mRNA murine

spleen (39)

unaffected mBMDM (40)

(Continued)
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TABLE 1 | Continued

Mycobacterium sp. S. aureus S. pneumoniae E. chaffeensis E. coli P. aeruginosa S. Typhimurium LPS

WNT5B ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

↑ mRNA (LvWnt5)

L. vannamei HP, LO,

HT (46)

↑ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

↓ mRNA THP-1 (42) unaffected mRNA

mPM (44)

– unaffected mRNA

IEC-18 (56)

↑ mRNA mBMDM (40)

↑ mRNA murine spleen (39)

WNT6 ↑ mRNA Mtb mBMDM

(40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

↑ mRNA L. vannamei

HP, unaffected LO,

HT (46)

↓ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

↑ mRNA THP-1 (42) unaffected mRNA

mPM (44)

– ↑ mRNA mIEC (43) ↓ mRNA murine spleen (39)

↑ mRNA mBMDM (40)

WNT7A ↓ Mtb murine lung

tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

unaffected mRNA

(LvWnt7) L. vannamei

HP, LO, HT (46)

↑ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– – n.d. mRNA mBMDM (40)

n.d. mRNA murine

spleen (39)

WNT7B unaffected mRNA Mtb

murine lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

unaffected mRNA

(LvWnt7) L. vannamei

HP, LO, HT (46)

↑ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

↓ mRNA THP-1 (42) unaffected mRNA

mPM (44)

– – n.d. mRNA mBMDM (40)

↑ mRNA fetal ovine lungs

(49)

n.d. mRNA murine

spleen (39)

WNT8A ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

unaffected mRNA

(LvWnt8) L. vannamei

HP, LO, HT (46)

– unaffected THP-1 (42) unaffected mRNA

mPM (44)

– – n.d. mRNA mBMDM (40)

n.d. mRNA murine

spleen (39)

WNT8B ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

unaffected mRNA

(LvWnt8) L. vannamei

HP, LO, HT (46)

– n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– – n.d. mRNA murine

spleen (39)

WNT9A ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

↑ mRNA (LvWnt9)

L. vannamei lymphoid

organ (46)

unaffected mRNA

(LvWnt9) L. vannamei

HP, LO, HT (46)

↓ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

unaffected mRNA

THP-1 (42)

unaffected mRNA

mPM (44)

– ↑ mRNA mIEC (43) n.d. mRNA murine

spleen (39)

WNT9B ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

↑ mRNA (LvWnt9)

L. vannamei lymphoid

organ (46)

unaffected mRNA

(LvWnt9) L. vannamei

HP, LO, HT (46)

↓ mRNA murine

S. pneumoniae

1pep27 lung tissue

(51)

n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– – n.d. mRNA murine

spleen (39)

(Continued)

F
ro
n
tie
rs

in
Im

m
u
n
o
lo
g
y
|w

w
w
.fro

n
tie
rsin

.o
rg

6
N
o
ve
m
b
e
r
2
0
1
9
|V

o
lu
m
e
1
0
|A

rtic
le
2
5
2
1

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


L
ju
n
g
b
e
rg

e
t
a
l.

W
N
T
R
e
sp

o
n
se

s
in

th
e
H
o
st

C
o
n
tro

lo
f
In
fe
c
tio

n

TABLE 1 | Continued

Mycobacterium sp. S. aureus S. pneumoniae E. chaffeensis E. coli P. aeruginosa S. Typhimurium LPS

WNT10A ↑ mRNA Mtb murine

lung tissue (40)

↓ mRNA M. marinum

zebrafish (54)

unaffected mRNA

(LvWnt10) L. vannamei

HP, LO, HT (46)

– ↑ mRNA THP-1 (42) unaffected mRNA

mPM (44)

– – ↑ mRNA murine spleen (39)

unaffected mRNA

mBMDM (40)

WNT10B ↓ mRNA Mtb murine

lung tissue (40)

unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

unaffected mRNA

(LvWnt10) L. vannamei

HP, LO, HT (46)

– n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– unaffected mRNA

IEC-18 (50)

↑ mRNA murine spleen (39)

↑ mRNA mBMDM (40)

WNT11 unaffected mRNA

M. bovis BCG

mPM (44)

unaffected mRNA

mPM (44)

unaffected mRNA

L. vannamei HP, LO,

HT (46)

– unaffected mRNA

THP-1 (42)

unaffected mRNA

mPM (44)

– ↑ mRNA and protein

IEC-18 (56)

unaffected mBMDM (40)

↑ mRNA murine spleen (39)

WNT16 ↓ mRNA Mtb murine

lung tissue (40)

↓ mRNA M. marinum

zebrafish (54)

unaffected mRNA

L. vannamei HP, LO,

HT (46)

– n.d. mRNA THP-1 (42) unaffected mRNA

mPM (44)

– – unaffected mRNA murine

spleen (39)

Effects

not

specific

to

individual

WNT

proteins

↑ Fzd1 Mtb murine

lung tissue and

mBMDM (41)

↑ Fzd4, Lrp5, β-catenin

stabilization through

GSK3 phosphorylation

in M. bovis BCG mPM

(44)

↓ Axin2, Dvl3,

Fzd8,9,10 ↑ Dvl2

M. marinum

zebrafish (54)

↓ mom-5, mig-1 (FZD

homologues)

C. elegans IEC (45)

↑ Fzd4 m. PM (44)

↑ mRNA LvWntA

L. vannamei HP,

LO (46)

↓ β-catenin activity

murine lung tissue (62)

↓ FZD7 ↑ FZD5, 9 ↓

DKK3 ↑ sFRP2

THP-1 (42)

- ↓ Ctnnb1

RAW264.7 (63)

β-catenin degradation

IEC-18 (64)

↑ Fzd4, 6, 9, Fzd3, 10

unaffected IEC-18 (50)

↑ FZD2, 7, 8 FZD5

unaffected HCT116

(56)

↑ Fzd4 mPM (44)

↑ Fzd1, 5, Wisp1, β-catenin

↓ Fzd7, 8 Fzd3, 6, 9, and 10

unaffected murine spleen

(39)

↓ Ctnnb1 fetal ovine lungs

(49)

↑ LRP6 phosphorylation

BEAS-2B (53)

↑ DVL3 hMDM (34)

mRNA or protein expression of WNT ligands and signaling components in response to infection or LPS exposure. ↑, upregulation; ↓, downregulation; –, indicative of no data; n.d., not detectable; protein, protein expression; mRNA,

mRNA expression; m, murine; h, human; PM, peritoneal macrophages; BMDM, bone marrow-derived macrophages; IEC, intestinal epithelial cells; MDM, monocyte-derived macrophages; PBMC, peripheral blood mononuclear cells;

SMC, spleen mononuclear cells; HP, hepatopancreas; LO, lymphoid organs; HT, hemocytes; Mtb, Mycobacterium tuberculosis.
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analyzed (44). Decreased Wnt5a protein and decreased Ctnnb1
mRNA expression in the mouse macrophage cell line RAW264.7
have also been reported upon infection with Pseudomonas (P.)
aeruginosa (57) (63).

While several studies reported WNT5A expression to be
responsive to macrophage encounter with Gram-negative
bacterial pathogens, it remains to be defined whether opposing
directions of the regulation of WNT5A expression reflect
pathogen-specific responses, cell-type-dependent variations,
or species-specific differences between humans and mice.
Some indication that the latter apect might indeed be of
importance comes from studies of macrophages stimulated
with lipopolysaccharide (LPS), a major cell wall component
of Gram-negative bacteria. Increased WNT5A expression has
been noted in LPS-stimulated human monocytes, the human
monocytic THP-1 cell line, as well as human bronchial epithelial
BEAS-2B cells (19, 34, 53, 60, 61). LPS-induced WNT5A
expression in human macrophages occured downstream
of Toll-like receptor signaling and nuclear factor kappa B
(NF-κB) activation, and was amplified by inflammatory
cytokines such as tumor necrosis factor (TNF) and interferon
γ (IFNγ) (19, 34, 60). In contrast, LPS stimulation did not
significantly increase the relatively lowWnt5amRNA expression
of mouse bone marrow-derived macrophages (40), yet LPS
stimulation did enhance Wnt5a mRNA expression by mouse
RAW264.7 macrophages (37). Nevertheless, the amplitude of
the WNT5A response might also be governed by the nature of
the invading bacterial pathogen as suggested by observations
that Porphyromonas gingivalis LPS induced WNT5A mRNA
expression in THP-1 cells to a greater extent compared to E.
coli-derived LPS (60).

Importantly, however, the LPS-induced WNT response
encompasses more than WNT5A. LPS stimulation elevated
expression of WNT3 in human monocyte-derived macrophages
(52), and WNT1 in differentiated human THP-1 cells and
murine bone marrow-derived macrophages (40, 48). The latter
cells also displayed increased expression of Wnt2b, Wnt5b,
Wnt6, and Wnt10b upon LPS stimulation, whereas expression
of Wnt5a, Wnt10a, and Wnt11 remained unchanged, and
expression of the remaining Wnt genes was below the detection
limit (40). Systemic challenge of mice with a sub-lethal dose
of LPS in vivo induced rapid elevation of Wnt5b, Wnt10a,
Wnt10b, Wnt11, Fzd1, and Fzd5 mRNA expression in spleen
tissue, accompanied by elevated expression of the WNT target
gene Wisp1. In contrast, expression of Wnt6, Fzd7, and Fzd8
was decreased, whereas Wnt3, Wnt4, Wnt5a, Wnt16, Fzd3,
Fzd6, Fzd9, and Fzd10 were not differentially expressed (39).
In an ovine model of fetal intra-amniotic LPS exposure,
elevated expression of Wnt7b, and reduced mRNA expression
of Wnt1, Wnt2, Wnt4, and Ctnnb1 were observed in fetal lung
tissue (49).

With patterns beginning to emerge in the WNT response
to Gram-negative bacteria (e.g., WNT5A expression by
macrophages), more detailed insight is required to delineate the
impact of cell type-, species-, and pathogen-specific contributions
to the amplitude and composition of infection-associated
WNT responses.

Gram-Positive Bacteria
WNT responses upon infection with Gram-positive bacteria
are just beginning to be explored (Table 1). Staphylococcus (S.)
aureus infection of Drosophila melanogaster led to enhanced
expression of Wnt4 (55). Expression of other WNT ligands
was not determined in this study, leaving it to be determined
how S. aureus, and other pathogens, affect WNT expression
in Drosophila. S. aureus infection of Caenorhabditis elegans
induced elevated expression of the WNT2 homolog cwn-2, and
suppressed expression of the WNT1 homolog mom-2 and the
FZD homolog mom-5 (45). A comprehensive analysis of WNT
expression in the Pacific white shrimp Litopenaeus vannamei
revealed pronounced upregulation of the mRNA expression of
multiple WNT ligands, including LvWnt5, LvWnt6, LvWnt9,
and LvWntA in different organs upon S. aureus infection
(46). Expression of Wnt5a and Fzd4 by murine macrophages
marginally increased upon infection with S. aureus (44). In
contrast, infection of RAW264.7 mouse macrophages with
Streptococcus (S). pneumoniae has been reported to suppress
Wnt5a protein expression (57). Sequencing analyses of lung
tissue of mice vaccinated intranasally with S. pneumoniae
deficient for the autolysis-inducing factor pep27 revealed
enhanced expression of Wnt4, Wnt5b, Wnt7a, and Wnt7b,
and impaired Wnt2b, Wnt3, Wnt6, Wnt9a, and Wnt9b mRNA
expression (51). Kinase activity profiling in mouse lung tissue of
S. pneumoniae-infected mice indicated a reduction in β-catenin-
stabilizing signals associated with a decrease in β-catenin protein
expression (62). Thus, due to the paucity of information it is
currently largely unknown if host cell encounter with pathogenic
Gram-positive bacteria directly modulates WNT responses and
signaling capabilities.

Mycobacteria
Mycobacterial infections induce significant alterations in the
expression of WNT signaling components in infected tissues of
a variety of host organisms (Table 1). Macrophage-associated
WNT5A expression was initially described in tuberculosis lung
granulomas (34), and WNT5A and FZD4 mRNA expression
was significantly elevated in peripheral blood mononuclear cells
of tuberculosis patients (44). Mycobacterium (M.) tuberculosis
infection of C57BL/6 mice enhanced lung mRNA expression
of Wnt1, Wnt6, Wnt10a, Fzd1, and Fzd5, while reducing
expression of Wnt2, Wnt2b, Wnt3a, Wnt4, Wnt5a, Wnt7a,
Wnt8a, Wnt10b, as well as Fzd3, Fzd7, Fzd8, Fzd9, and Fzd10
(40, 41). M. marinum infection of zebrafish enhanced expression
of wnt5a, yet suppressed expression of multiple other WNT
ligands, receptors and WNT pathway regulators (54). Regulation
into opposing directions was noted for some WNT network
components, depending on the virulence of the infecting M.
marinum strain (54). Macrophages are major host cells for
mycobacteria and have been identified as a significant source of
WNT expression during mycobacterial infection. In vitro studies
showed that infection of monocytes and macrophages of human
and mouse origin with mycobacteria across a virulence spectrum
(M. tuberculosis, M. avium, M. bovis Bacillus Calmette-Guérin)
greatly enhanced expression of WNT5A (34, 44). Importantly,
expression and induction of WNT5A in human macrophages
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was more pronounced compared to mouse cells. In M.
tuberculosis-infected mice, expression of Wnt6 was localized to
macrophages in lung granulomas, and Wnt6 mRNA expression
was significantly elevated in murine bone marrow derived
macrophages infected with M. tuberculosis or M. avium (40).
Taken together, the experimental evidence to date suggests that
upregulation of WNT5A by mycobacteria-infected macrophages
may be evolutionarily conserved between humans, mice and
possibly other species. Nevertheless, expression of other WNT
ligands by infected macrophages remains to be explored more
systematically across species. Moreover, WNT/WNT receptor
expression in infected tissues requires cellular context for more
detailed understanding of where WNT responses occur upon
encounter of pathogenic mycobacteria.

Toward Defining Patterns in the Host WNT Response

to Bacterial Infections
A WNT response consistently reported for human, and to some
extent murine, macrophages to diverse microbial challenges
appears to be regulation ofWNT5A expression. Yet, as it becomes
clear that host WNT responses to bacterial infection reach well
beyond differential expression of WNT5A, it will be essential
to delineate whether patterns of WNT pathway activity are
stereotypical responses of distinct host cell types and tissues
to microbial insult, and/or how these responses are defined by
the nature of the invading pathogen. With increasing insights
into WNT responses to infection arises the need to understand
WNT responses in human disease. Studies in patients with
severe sepsis and septic shock highlight the complex nature of
the host WNT response to microbial insult. Comparisons of
blood gene expression patterns in patients with septic shock
compared to healthy controls, revealed elevated expression of
WNT5B andWNT11, whereas the expression ofWNT1,WNT2B,
WNT3, WNT6, WNT7A, WNT9A, WNT10A, WNT10B, and
WNT16 was significantly reduced (39). Patients with severe
sepsis had elevated WNT5A serum levels, and patients with
sepsis-associated acute respiratory distress syndrome displayed
elevated WNT5A protein expression in lung tissue (19, 68, 69).
An increase of WNT5A protein serum concentrations appeared
to correlate with disease progression, whereas a decrease was
associated with recovery in critically ill sepsis patients (68).
However, WNT5A mRNA expression in whole blood was very
low and not significantly different between healthy controls and
septic shock patients, whereas alterations in the expression of
other WNT ligands was more readily detectable (39). Whether
dynamic changes in the expression ofWNTpathway components
accompanying severe acute infections can be exploited for
the development of easily assessible biomarkers remains to be
determined. Signatures that might enable patient stratification or
rapidly identify classes of causative bacteria are worth exploring.

Protozoal and Fungal Infections
WNT responses to infections with protozoa and fungi
are less well-explored (Table 2). In mice intraperitoneally
inoculated with the protozoan parasite Trypanosoma (T.)
cruzi, protein expression of Wnt3a, Wnt5a, and β-catenin in
splenic mononuclear cells increased with disease progression

(74). Similar patterns were observed for Wnt3a and Wnt5a
mRNA and protein expression in murine bone marrow-derived
macrophages (BMDMs) (74). In vitro experiments indicated
enhanced expression of Wnt3a and Wnt5a, Fzd4, Fzd6, Fzd8,
and Fzd9 upon T. cruzi infection of murine BMDMs. In
contrast, Leishmania donovani infection of mouse RAW264.7
macrophages resulted in diminished expression of Wnt5a,
whereas other WNT ligands and sigaling components were
not assessed (80). In human corneas infected with the fungus
Aspergillus (A.) fumigatus, WNT5A expression was found
to be significantly higher than in uninfected corneal tissues.
WNT5A mRNA and protein expression were also enhanced
by A. fumigatus infection of human THP-1 macrophages (78).
Murine peritoneal macrophages infected with Candida albicans,
A. fumigatus, or A. flavus or stimulated with the fungal and
bacterial cell wall component Curdlan displayed elevated Wnt5a
expression (79). More comprehensive profiling of the WNT
network will be required to assess the quality of WNT responses
by protozoal and fungal infections and determine to what extent
WNT expression and signaling are defined by the host cell vs. the
nature of the encountered pathogen.

Viral Infections
WNT responses to viral infections have been studied in the
context of a limited number of viral infections (Table 2). HIV
infection elevated WNT2B and WNT10B expression by human
primary astrocytes (71), whereas expression of WNT1, WNT3,
WNT5B, WNT9A, WNT9B, and WNT16 remained unaffected,
and WNT2, WNT3A, WNT4, WNT5A, WNT6, WNT7A,
WNT7B, WNT8A, WNT8B, WNT10A, and WNT11 expression
was below the detection limit of the assay (71). HIV infection of
mouse neuronal cells of the spinal dorsal horn elevated Wnt5a
mRNA expression (77).WNT5A expression was also upregulated
in Epstein Barr virus (EBV)- infected nasopharyngeal carcinoma
epithelial cells (75). Influenza A infection of mice resulted in
impaired expression of Wnt2, Wnt3a, Wnt10b, Fzd2, Lrp4,
and Tcf3 in infected lung tissues (72). Human cytomegalovirus
(HCMV) infection of human foreskin fibroblasts was associated
with WNT5A and WNT5B downregulation (76), whereas
HCMV infection elevated WNT2 expression in human
mesenchymal stem cells (73). HCMV infection of dermal
fibroblasts, placental extravillous trophoblasts, and foreskin
fibroblasts was associated with degradation of β-catenin (83). In
contrast, β-catenin stabilization was observed in human B cells
infected with EBV (86), vaccinia virus-infected HEK293T cells
(87), hepatitis B virus-infected Huh7 cells (84), and hepatitis
C virus-infected HEK293T cells (85). These reports indicate
responsiveness of the WNT signaling network to viral infections.
Modulation of β-catenin stabilization might be indicative of
viral exploitation of host cell replication and apoptosis. Yet,
the WNT responses associated with viral infection noted thus
far show no discernible patterns, likely due to the paucity
of comprehensive analyses. Systematic comparisons of host
cells and different viral classes are required to assess whether
there are WNT network signatures that are indicative of a
viral infection.
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WNT FUNCTIONS IN THE HOST
RESPONSE TO INFECTION

The realization that theWNT network is responsive to infections
has driven significant interest in delineating its roles in host
defense and immune responses. There is increasing evidence
that WNT ligands (and other ligands for WNT receptors)
contribute to the host control of phylogenetically diverse
pathogens in non-vertebrates and vertebrates (57, 74, 80,
88, 89). Some associations between polymorphisms in WNT
network genes, and susceptibility and quality of the immune
response to infection have been suggested (90–93). Professional
antigen-presenting cells (APCs) such as macrophages and
dendritic cells have been studied intensively as sources and
targets of WNT ligands (19, 40, 44, 94, 95). Roles for WNT
ligands in orchestrating phagocytosis, antimicrobial defense and
inflammatory cytokine responses have been indicated (Figure 3,
Table 3) (48, 98, 100). WNT ligands have also been implicated in
the cellular differentiation and functional polarization of APCs
and T cells, bridging of innate and adaptive immune responses
(34, 94), and shaping lymphocyte functions (107–112).

Considerations for Experimentation
Experimental approaches to deciphering WNT ligand-driven
immune functions include utilization of mouse models with

genetic deletion of individual WNT ligands or receptors. Use
of cell-specific deletion (95, 113) or heterozygous mice (40,
57) is often indicated due to the deleterious impact of global
deletion of individual WNT ligands on embryonic development.
SiRNA-mediated knock-down of endogenousWNT components
(104, 114), interference with WNT/WNT receptor interactions
using neutralizing antibodies and recombinant WNT regulators
(e.g., sFRPs, DKK) (34, 115), as well as plasmid-based
overexpression of WNT ligands, receptors and regulators (63,
116) are commonly utilized, in particular in in vitro cell-
based studies. Conditioned media from WNT-overexpressing
cells and recombinant WNT proteins have also been proven as
valuable tools for deciphering WNT functions. Of note, some
biological responses of innate immune cells observed upon
exposure to recombinant WNT protein preparations have been
attributed to Toll-like receptor activation, rather than known
WNT receptors (61, 117). The biological importance of this
requires further clarification.

As it becomes increasingly evident that multiple WNT
ligands are differentially expressed in response to microbial
insults, and that WNT ligands are likely to arise from different
cellular sources during infection, strategies that broadly target
the WNT response as opposed to individual WNT ligands are
increasingly employed. Cell-targeted conditional deletion ofWLS
and PORCN in mouse models, and the use of small molecule

FIGURE 3 | Impact of WNT ligands that activate β-catenin-independent vs. β-catenin-dependent signaling on the functions of macrophages and myeloid DCs in the

context of infection with phylogenetically diverse pathogens. Mtb, Mycobacterium tuberculosis; Ld, Leishmania donovani; Ec, Escherichia coli; Sp, Streptococcus

pneumonia; Pa, Pseudomonas aeruginosa; Ech, Ehrlichia chaffeensis; Lm, Listeria monocytogenes; Sf, Shigella flexneri; T. cruzi, Trypanosoma cruzi; v., virus;

*Autophagy in IFNγ-activated macrophages.
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TABLE 2 | WNT responses induced by viral, fungal, and protozoal infection in experimental systems.

Viruses Fungi Protozoa

WNT1 ↑ mRNA HepC Huh7 (70)

unaffected mRNA HIV hPdA (71)

– –

WNT2 ↓ mRNA IVA murine lungs (72)

↑ mRNA HCMV hMSC (73) n.d. mRNA HIV hPdA (71)

– –

WNT2B ↑ mRNA HIV hPdA (71) – –

WNT3 unaffected mRNA HIV hPdA (71) – –

WNT3A ↓ mRNA IVA murine lungs (72)

n.d mRNA HIV hPdA (71)

– ↑ protein T. cruzi mSMC and mBMDM (74)

↑ mRNA T. cruzi mBMDM (74)

WNT4 n.d. mRNA HIV hPdA (71) – -

WNT5A ↑ mRNA EBV hNC (75)

↓ mRNA HCMV hFF (76)

↑ mRNA HIV mSDH (77) n.d mRNA HIV hPdA (71)

↑ mRNA, protein A. fumigatus THP-1 and

human corneas (78)

↑ mRNA C. albicans, A. flavus,

A. fumigatus, Curdlan mPM (79)

↓ mRNA L. donovani RAW264.7 (80)

↑ protein T. cruzi mSMC, mBMDM (74)

↑ mRNA T. cruzi mBMDM (74)

WNT5B ↓ mRNA HCMV hFF (76)

unaffected mRNA HIV hPdA (71)

– –

WNT6 n.d mRNA HIV hPdA (71) – –

WNT7A n.d mRNA HIV hPdA (71) – –

WNT7B n.d mRNA HIV hPdA (71) – –

WNT8A n.d mRNA HIV hPdA (71) – –

WNT8B n.d mRNA HIV hPdA (71) – –

WNT9A unaffected mRNA HIV hPdA (71) – –

WNT9B unaffected mRNA HIV hPdA (71) – –

WNT10A n.d mRNA HIV hPdA (71) – –

WNT10B ↓ mRNA IVA murine lungs (72)

↑ mRNA HIV hPdA (71)

– –

WNT11 n.d mRNA HIV hPdA (71) – –

WNT16 ↑ mRNA HPV18 HaCat (81)

unaffected mRNA HIV hPdA (71)

– –

Effects not specific to

individual WNT proteins

↓Fzd2, Lrp4, Tcf-3 mRNA IVA murine lungs (72)

↑ WNT/β-catenin signaling Rift Valley fever virus

HEK293T (82)

↑ β-catenin degradation HCMV hDF and hPET (83)

↑ β-catenin protein HepB Huh7 (84)

β-catenin stabilization HepC HEK293T (85),

EBV hB-cells (86), Vaccinia virus HEK293T (87)

↓ protein β-catenin, no effect on DVL2,3 HCMV

hFF (76)

– ↑ β-catenin protein T. cruzi mSMC and

mBMDM (74)

↑ Fzd4, 6, 8, 9 mRNA T. cruzi

mBMDM (74)

mRNA and protein expression of WNT signaling molecules in response to infection. ↑, upregulation; ↓, downregulation; –, indicative of no data; n.d., not detectable; protein, protein

expression; mRNA, mRNA expression; m, murine; h, human; MSC, mesenchymal stem cells; PdA, primary-derived astrocytes; SMC, spleen mononuclear cells; BMDM, bone

marrow-derived macrophages; NC, nasopharyngeal carcinoma; FF, foreskin fibroblasts; SDH, spinal dorsal horn; DF, dermal fibroblasts; PET, placental extravillous trophoblasts.

inhibitors targeting PORCN activity have proven useful for in
vitro and in vivo studies (39, 42, 80, 98, 112, 118). Similarly,
genetic and pharmacologic interference with β-catenin functions
as a transcriptional co-activator have been employed to delineate
functions of β-catenin-mediatedWNT signaling (39, 112, 119). It
is important to note, however, that β-catenin stabilization is not
exclusively indicative of WNT/WNT receptor engagement, and
that microbial ligands and growth factors can induce β-catenin
stabilization (120–122). Thus, here we chose to focus mainly on
studies that linkWNT ligands, their receptors and regulators with
host defense to infection.

Phagocytosis
WNT-induced engagement of the actin cytoskeleton suggests that
WNT ligands may play an active role in phagocytosis. Indeed,

the D. melanogaster glypican dally is a co-receptor in wingless

signaling and has been implicated in promoting phagocytosis
of a non-pathogenic virus (white spot syndrome virus) by

S2 phagocytes. Functional interactions of dally with frizzled 2

and wnt2 in this process were deduced from gene expression
analyses (96). In mouse RAW264.7 macrophage-like cells, it
has been reported that exposure to Wnt5a-conditioned medium
or recombinant Wnt5a enhanced uptake of non-pathogenic
E. coli DH5α, as well as latex beads. In contrast, Wnt3a-
conditioned medium did not enhance phagocytosis (80, 98).
Fzd5, as well as Rac-1, PI3K and IKK signaling were implicated
in mediating the Wnt5a-driven phagocytic activity. Treatment
with liposome-encapsulated Inhibitor of WNT Production-2
(IWP-2), a small-molecule PORCN inhibitor (123), impaired
macrophage uptake of E. coli DH5α (98). A follow-up study
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TABLE 3 | WNT functions in shaping host cell defense mechanism.

Phagocytosis Autophagy ROS NOS Antimicrobial

peptides

Inflammatory cytokines

WNT1 – – – ↑ iNOS LPS stimulated

THP-1 (48)

– ↑ IL-6 ↑ TNF LPS

stimulated THP-1 (48)

WNT2 ↑ virus uptake D.

melanogaster S2 (96)

– – – – –

WNT2B - – – – – ↓ Sendai virus-induced

IFNβ1 HEK293T (97)

WNT3A unaffected E. coli DH5α

RAW264.7 (98)

↓ M. bovis BCG

RAW.264.7 (99)

unaffected

P. aeruginosa

RAW264.7 (100)

↑ NADPH oxidase and

hydrogen peroxide

HUVEC (101)

- ↑ mRNA β-defensin 1

and CRAMP

P. aeruginosa

RAW264.7 (100)

↓ TNF, IL-6, IL-1β

P. aeruginosa RAW264.7

(100)

WNT5A ↑ E. coli DH5α

RAW264.7 (98)

↑ latex beads

RAW264.7 (80)

↑ S. pneumoniae and

P. aeruginosa

RAW264.7 (57)

unaffected L. donovani

RAW264.7 (80)

unaffected Mtb

hMDM (102)

↑ P. aeruginosa and

S. pneumoniae

RAW264.7 (57) ↑

Mtb infected hMDM

(102) ↓ M. bovis BCG,

S. flexneri, L.

monocytogenes, but

not K. pneumoniae,

S. aureus or E. coli

(IFNγ-induced

autophagy)

RAW264.7 (103)

↑NADPH

oxidase-mediated ROS

production RAW264.7

(80)

↑ ROS ↑ Wnt5a mPM

and RAW264.7 (79)

– – ↑ mycobacteria-induced

IL-12 and IFNγ in PPD and

mycobacteria-stimulated

PBMC (34)

↑ TNF, IL-6, but not IL-10

RAW264.7 ± E. coli (98)

↑ TNF, IL-6, IFNβ E. coli

RAW264.7 (104) and

hPBMC (19)

↓ IFNβ Chandipura virus

Wnt5aKD RAW264.7 (104)

↑ IL-8, IL-6, IL-1β in hPBMC

(19)

↑ IL-10 hMDM, ↑IL-10

promotor RAW264.7 (105)

↑ IL-6, IL-8, IL1β

hPBMC (19)

WNT6 – – – – – ↓ TNF Mtb mBMDM (40)

WNT7A ↓ mMDM (106) – – – – ↓ IL-10, IL-12 ↑IL-6 mMDM

(106)

WNT9B – – – – – ↓ IFNβ1 Sendai virus

HEK293T (97)

WNT11 – – – – – ↓IL-8 mIEC (56)

↑, upregulation; ↓, downregulation; –, indicative of no data; protein, protein expression; mRNA, mRNA expression; m, murine; h, human; HUVEC, human umbilical vein endothelial cells;

MDM, monocyte-derived macrophages; PBMC, peripheral blood mononuclear cells; BMDM, bone marrow-derived macrophages; IEC, intestinal epithelial cells; MIM, myocardial infarct

macrophages; Mtb, Mycobacterium tuberculosis.

described that exogenously added recombinant Wnt5a also
enhanced RAW264.7 cell phagocytosis of S. pneumoniae (Gram-
positive) and P. aeruginosa (Gram-negative) mediated by Rac-
1 and Dvl (57). Mice pre-treated with IWP-2 displayed
enhanced bacterial burden within peritoneal cells at 2 h post-
intraperitoneal infection, and within lung homogenates 5 h
after intranasal infection with P. aeruginosa. Similarly, more
viable P. aeruginosa were recovered from peritoneal cell lysates
of Wnt5a+/− mice compared to Wnt5a+/+ mice (57). These
observations further suggest a role for Wnt5a, and potentially
other WNT ligands in host cell uptake of P. aeruginosa.

However, treatment of RAW264.7 cells with recombinant Wnt5a
did not alter internalization of L. donovani (80), and siRNA-
mediated knock-down of endogenous WNT5A did not impair
phagocytosis of M. tuberculosis by human monocyte-derived
macrophages (102). Thus, the effects of WNT5A on phagocytosis
of bacterial pathogens requires further investigation, including

comparisons of extracellular alongside intracellular pathogens
and macrophages of different origins.

E. chaffeensis is an obligate intracellular pathogen that infects
mononuclear cells through caveolae-mediated endocytosis and
resides in intracellular vesicles that retain characteristics of early
endosomes (124). E. chaffeensis tandem repeat proteins (TRPs)
are secreted effectors of E. chaffeensis that have been shown to
interact with host cell proteins, including components of the
WNT signaling network (125, 126). Phagocytosis of TRP120-
coated microspheres by human monocytic THP-1 cells was
impaired by small molecules targeting intracellular signaling
components that are also part of the WNT signaling network,
such as β-catenin/TCF interactions (FH535), CamKII (KN93),
and Rac-1 (NSC23766) (42). In contrast, a PORCN inhibitor
(IWP-2) did not impair TRP120-microsphere phagocytosis,
suggesting that secreted WNT proteins may not have been
directly involved in driving this process. In contrast to phagocytic
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cells, WNT11 over-expression, but not WNT2 overexpression,
by human intestinal epithelial HCT116 cells has been suggested
to decrease invasion by Salmonella enterica Typhimurium (50,
56). The cellular mechanisms facilitating this protection are
unknown and it remains to be established how induction of
WNT11 expression by Salmonella infection might contribute to
pathogenesis in vivo.

Autophagy
Several studies have begun to address how WNT ligands might
affect the ability of host cells to control pathogenic bacteria. In
the case of non-pathogenic E. coli DH5α, exogenous addition of
Wnt5a enhanced phagocytosis, but did not alter the ability of
RAW264.7macrophages to rapidly kill the engulfed bacteria (98).
In contrast, RAW264.7 macrophages exposed to recombinant
Wnt5a displayed a more rapid decline in viable intracellular S.
pneumoniae and P. aeruginosa within the first 2–3 h of infection.
Wnt5a-induced killing within the first hours of infection was
suggested to be mediated by Rac-1 and Dvl. Mechanistically,
the authors implicated enhanced autophagy as the mechanism
of Wnt5a-induced enhanced control of engulfed S. pneumoniae
and P. aeruginosa (57). While S. pneumoniae is targeted by
autophagy in non-phagocytic cells (127), the contribution of
autophagy in macrophages to controlling this bacterium had
not been reported previously. In contrast, the contributions
of autophagy to macrophage control of P. aeruginosa require
further clarification as beneficial effects for the host as well as
the bacteria have been suggested (63, 128–131). It is noteworthy,
however, that after the sharp initial decline of viable intracellular
S. pneumoniae and P. aeruginosa in Wnt5a-treated RAW264.7
macrophages, from day 1 onwards the intracellular bacterial
burden declined more slowly and at a similar rate in bothWnt5a-
and control-treated cells (57). Thus, the cellular mechanisms
accelerating the initial bacterial killing might be transient, and
could be specific to some pathogens as they did not affect
macrophage killing of non-pathogenic E. coli DH5a (98). With
Wnt5a expression reported to be suppressed by S. pneumoniae
and P. aeruginosa infection of macrophages (57), roles of other
WNT ligands responsive to infection (e.g., Wnt4, Wnt5b, Wnt7a,
Wnt7b) (51) and the net-outcome of WNT signaling in infected
cells will need further exploration. Of note, overexpression of
β-catenin in RAW264.7 macrophages has been reported to
accelerate killing of engulfed P. aeruginosa, which was associated
with suppression of autophagy (63).

Beneficial or detrimental impact ofWNT-autophagy-crosstalk
might be defined by a pathogen’s ability to exploit intracellular
niches for replication and survival. Intracellular bacterial burden
in E. chaffeensis-infected THP-1 cells was diminished when cells
were exposed to IWP-2, as well as the β-catenin/TCF-1 inhibitor
FH535, or the CamKII inhibitor KN93. Small interfering RNA-
mediated knock-down of WNT pathway components, including
WNT5A, FZD5, FZD9, LRP6, CTNNB1, and DVL2 diminished
intracellular bacterial burden over 1-2 days of infection, further
supporting the notion that intracellular survival of E. chaffeensis
in this cell line was facilitated by the action of endogenous WNT
ligands (42). A subsequent study indicated that DVL signaling
suppressed autophagy and phago-lysosomal maturation in E.

chaffeensis-infected cells (132). WNT pathway activation (e.g.,
by Wnt5a) upon infection with M. bovis BCG has been
reported to interfere with IFNγ-induced activation of autophagy
in mouse macrophages, a process facilitated by arachidonate
lipoxygenase. The same mechanisms have also been implicated
for Shigella flexneri and Listeria monocytogenes infection (103).
A recent study suggested that in human monocyte-derived
macrophages infected withM. tuberculosis, WNT5A contributed
to enhancing autophagy resulting in a small decrease in
intracellular bacterial burden. In this study, WNT5A-mediated
autophagy was suggested as an effector mechanism of IL-36γ
(102). However, asWNT5A expression in humanmacrophages is
rapidly induced byM. tuberculosis infection (34), this mechanism
might represent an amplification of the WNT5A response of
these cells as indicated for other cytokines such as TNF (19).
Exogenous addition of Wnt3a conditioned medium suppressed
association of intracellular M. bovis BCG with autophagy
machinery in RAW264.7 macrophages, which was associated
with impaired mRNA expression of autophagy effectors (e.g.,
Atg5, Atg7, Atg12, p62) (99). With evidence for bi-directional
regulation between WNT signaling and autophagy (133–135),
and the notion that some pathogens might exploit this for their
intracellular survival, the functional consequences of this cross-
talk for pathogen control is an area for future pursuit.

Reactive Radicals
Additional cell-intrinsic host defense mechanisms that may
be regulated by WNT signaling include the formation of
reactive radicals. Treatment of RAW264.7 macrophages with
recombinant Wnt5a induced NADPH oxidase-mediated ROS
production, which has been suggested to contribute to the
macrophage control of L. donovani (80). Exogenous addition
of recombinant Wnt3a or Wnt3a-conditioned medium to
human umbilical vein endothelial cells induced elevated
expression of endothelial NADPH oxidase and production
of hydrogen peroxide (101), and GSK3β has been implicated
as a negative regulator of LPS-induced NADPH-oxidase 1
expression and production of reactive oxygen species production
by macrophages (136). These observations could implicate
β-catenin-stabilizing WNTs as drivers of ROS production.
Yet, treatment of RAW264.7 macrophages with Wnt3a-
conditioned medium did not affect ROS production upon
P. aeruginosa infection (100). Thus, contributions of WNT
ligands, in particular endogenously expressed WNTs to ROS
production as an anti-microbial defense mechanism require
further investigation.

Wls-deficiency in BMDMs of Wlsfl/fl-Lyz2-Cre mice has
been reported to significantly increase mRNA expression of
inducible nitric oxide synthase (iNOS, encoded by Nos2)
(137), a phenotype also observed in macrophages isolated
from myocardial infarct tissue of cfms-icre Wlsfl/fl mice (138).
This may be reflective of suppression of iNOS expression by
autocrine/paracrine WNT signaling. The human iNOS promoter
has TCF-4 binding sites and Nos2 expression and nitric oxide
production were shown to be positively regulated by β-catenin
and TCF-4 (139). These observations suggest that the balance
of β-catenin-dependent and -independent WNT signaling could
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be important for fine-tuning iNOS expression and activity.
Whether this bears consequences for pathogen control needs to
be investigated. Nevertheless, enhanced iNOS expression byWls-
deficient macrophages may indicate compensatory mechanisms
associated with the inability to release WNT proteins from
producing cells and significant elevation ofWNT gene expression
observed in these cells (137). However, such alterations in WNT
expression may be cell specific as F4/80+ liver macrophages of
Wlsfl/fl-Lyz2-Cre mice did not show significant differences in
Wnt4 andWnt6 expression (118).

With some indication that WNT ligands may determine a
cell’s ability for production of reactive oxygen and nitrogen
species, there is also evidence that ROS and NO produced
in response to microbial insult may regulate WNT responses.
For example, peritoneal macrophages isolated from Nos2−/−

mice showed lower induction of Wnt5a, Fzd4, and Lrp5 mRNA
expression upon M. bovis BCG infection compared to wild type
control cells. Treatment with an NO-donor restored Wnt5a,
Fzd4, and Lrp5 expression in Nos2-deficient macrophages (44),
implicating reactive nitrogen species as potentiators of WNT
signaling initiation. Dectin-1/Syk-mediated ROS production
by murine RAW264.7 macrophages contributed to β-catenin
stabilization (79), although how this might intersect with WNT-
driven cellular activation remains to be explored.

Antimicrobial Peptides
Beta-catenin-stabilizing WNT ligands may also play a role in the
expression of antimicrobial peptides. A recent study reported that
Wnt3a-conditioned medium elevated the P. aeruginosa-induced
mRNA expression of cathelicidin-related antimicrobial peptide
(CRAMP) and β-defensin 1 in RAW264.7 mouse macrophages,
which correlated with a small increase in bacterial killing by
these cells (100). Stabilization of β-catenin has also been linked
to production of the α-defensins cryptdin-1 and cryptdin-6 by
murine intestinal crypts (140). In C. elegans, it has been shown
that expression of the antimicrobial peptide clec-60 (human
homolog RegIIIγ) upon S. aureus infection is dependent upon the
β-catenin homolog bar-1 (45). These observations implicate β-
catenin in the transcriptional control of a range of antimicrobial
peptides. This encourage analyses on the potential roles of
infection-responsive endogenous WNTs in the expression of
antimicrobial peptides by infected cells.

Tryptophan Metabolism
Indoleamine 2,3dioxygenase (IDO) catalyzes the first rate-
limiting step in the catabolism of the tryptophan for the
formation of active metabolites (141). IDO activity is essential
for host resistance to some infections where IDO activity limits
the pathogen’s access to the essential amino acid tryptophan
(142, 143). The PORCN inhibitor IWP-L6 and the β-catenin
inhibitor iCRT14 enhanced IDO expression and activity in T.
cruzi-infected murine macrophages, which was associated with
enhanced control of intracellular parasites (74). This suggests
that endogenous WNT expression and associated β-catenin
stabilization in T. cruzi-infected macrophages suppressed IDO
expression in this context. It will be interesting to explore whether
induction of WNT/β-catenin signaling by T. cruzi is an active

strategy of subverting host defense mechanisms. Importantly,
β-catenin activity in CD11c+ APCs has been associated with
induction of IDO expression and the attainment of a tolerogenic
phenotype in DCs (144, 145).Whether these apparent differences
are reflective of the cellular context (macrophages vs. CD11c+

dendritic cells) or the immune responses (parasite infection vs.
sterile inflammation) are worth further investigations.

Anti-viral State and Type I Interferon
Responses
GSK3β activity and β-catenin functions have been implicated
in the positive or negative regulation of type I interferon
(IFN) responses associated with protection or susceptibility of
cells to viral infection (82, 97, 146–152). In some studies,
direct contributions of endogenous WNT ligands has been
confirmed. For example, siRNA-mediated knock-down ofWnt5a
in mouse bone marrow-derived macrophages and RAW264.7
cells impaired Chandipura virus-induced IFNβ production
associated with enhanced viral load in infected cell cultures (104).
WNT2B and WNT9B were identified as negative regulators
of Sendai virus-induced interferon beta (IFNβ1) expression,
and inhibition of GSK3β-controlled virus-induced type I IFN
responses in a β-catenin-dependent manner in a range of
human cell lines and primary cells (97). SiRNA-mediated knock-
down experiments in human bronchio-epithelial cells (HBECs)
identified WNT5A and DKK1 as positive, and FZD5, DVL3,
SFRP5, WNT7B, WNT9B as negative regulators of influenza A
PR8 replication (114). Knock-down of WNT2 and WNT3 (but
not WNT1, CTNNB1, or LEF1) impaired infection of HeLa cells
by Dengue virus (153). Enhanced control of flaviviruses was
associated with enhanced type I IFN signaling via interferon
regulatory factor (IRF)-3 activation and interferon response gene
expression. It was proposed that this was facilitated by cross-
regulation and physical interactions between TANK-binding
kinase-1 (TBK-1, which phosphorylates IRF-3) and GSK3β (153).
However, examples of β-catenin-stabilizing WNTs not affecting
virus-induced interferon responses also exist (154).

Inflammation
WNT signaling has been ascribed both pro-inflammatory and
immune-regulatory properties. The paradigm developed over
the past decade or so suggests that WNT ligands triggering
β-catenin-independent signaling exert pro-inflammatory
functions, whereas WNT ligands driving β-catenin stabilization
have anti-inflammatory or immune-modulatory effects. These
emerging concepts of WNT ligands orchestrating inflammation
and immune cell functions have been reviewed and commented
on extensively over time (19, 120, 155–163). Here we have
chosen to specifically focus on examples for pro-inflammatory
and regulatory effects of endogenous WNT ligands.

It is increasingly recognized that the WNT response upon
infection or microbial challenge comprises complex changes
across multiple WNT ligands, receptors and regulators (Tables 1,
2). Moreover, WNT receptors exhibit a degree of promiscuity
for WNT ligands (164, 165). Thus, the concerted action of
WNT ligands and the consequences for local and systemic
inflammation in the context of infection require careful
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consideration. Use of small molecule inhibitors of PORCN
(e.g., IWP-2) indicated net pro-inflammatory roles of WNT
ligands in mouse models of LPS-induced endotoxemia and
E. coli-induced bacterial peritonitis (39, 98). Moreover, two
studies utilizing small molecule inhibitors of β-catenin functions
as transcriptional co-activator (ICG001, iCRT3) independently
revealed pro-inflammatory functions of β-catenin in LPS-
induced endotoxemia and cecal ligation and puncture (CLP)-
induced peritonitis (39, 119). This challenged the current
paradigm of anti-inflammatory roles of β-catenin stabilization
and urges further studies to understand the contributions of β-
catenin in different (immune) cells to inflammatory responses in
vivo. Moreover, which of the individual WNT ligands responsive
to infection are responsible for the pro-inflammatory functions in
vivo, and what role selective downregulation of regulatory WNTs
might play in this context remains to be explored in more detail.

Significant focus by some of the earliest studies has been on
WNT5A, a WNT family member implicated in driving pro-
inflammatory cytokine responses by myeloid cells via β-catenin-
independent signaling (19, 34–36, 166). Endogenous WNT5A
has been shown to positively contribute to pro-inflammatory
cytokine production by monocytes and macrophages in the
context of Mycobacterium and E. coli infection, as well as LPS
stimulation (19, 34, 104). Knockdown of WNT5A in primary
human bone marrow stromal cell also impaired basal and LPS-
induced release of pro-inflammatory cytokines and chemokines
(167). Inhibition of endogenous Wnt5a in a mouse model of
HIV-induced neuroinflammation reduced gp120-induced pro-
inflammatory cytokine responses in vivo (77). However, Wnt5a
has also been implicated in impairing dendritic cell functions
and creating an immune suppressive environment in a mouse
melanoma model. Importantly, this was attributed to Wnt5a
mediated β-catenin stabilization (168), which contrasts the pro-
inflammatory roles of Wnt5a affected by β-catenin-independent
signaling upon microbial challenge. This highlights that the
receptor/signaling context rather than the WNT ligand might
guide the functional outcome of WNT signaling.

Evidence for net anti-inflammatory functions ofWNT ligands
can be deduced from enhanced pro-inflammatory cytokine
release and decreased release of regulatory TGF-β by T. cruzi-
infected murine macrophages in the presence of PORCN (IWP-
L6) and β-catenin/TCF inhibitors (iCRT14) (74). In this study, it
was noted that neither PORCN nor β-catenin inhibitors affected
T. cruzi-induced IL-10 production by infected macrophages in
vitro (74). Similar results were observed in an in vivo LPS-
induced endotoxemia model (39). These observations highlight
that IL-10 may not be susceptible to WNT regulation in
all contexts.

An example of infection-induced expression of a specific
endogenous WNT ligand being associated with suppression
of pro-inflammatory cytokine responses comes from M.
tuberculosis-infected mouse macrophages. Bone marrow-derived
macrophages from Wnt6-deficient mice displayed elevated TNF
expression and secretion upon M. tuberculosis infection (40).
That immune-suppressive roles of individual WNT ligands
could be vital for host survival upon bacterial infection has

been demonstrated for WntD in Drosophila. WntD-deficiency
rendered flies more susceptible to L. monocytogenes infection
and this was attributed to WntD curbing lethal inflammation by
negatively regulating expression of the inflammatory mediator
edin via suppression of Dorsal, an NF-κB family member (88).
Inhibition of intracellular cell signaling cascades that drive
pro-inflammatory cytokine expression (e.g., NF-κB) has been
implicated as one of the mechanisms by which β-catenin-
stabilizing WNT ligands negatively regulate inflammation (169,
170). Evidence on how this contributes to shaping cellular
immune responses and inflammation during infection in
complex in vivo settings will be invaluable to further affirm this
regulatory feedback mechanism.

FUNCTIONAL FATE OF MACROPHAGES
AND DENDRITIC CELLS WITH
IMPLICATIONS FOR T-CELL RESPONSES

WNT ligands have been implicated in defining the functional
polarization and differentiation of macrophages and dendritic
cells. These innate immune cells are critical in shaping
inflammation and antimicrobial defense, and in instructing
adaptive immune responses in their role as professional antigen
presenting cells (APCs).

Macrophage Polarization
Macrophages exhibit functional plasticity along a multi-
dimensional spectrum directed by external and internal stimuli
such as microbial products, cytokines, oxygen availability
and cellular metabolism (171, 172). Accordingly, phenotypic
classification of macrophages based on relative induction
or suppression of the transcription of individual genes has
limitations. Nevertheless, expression of iNOS is commonly
associated with (M1-type) inflammatory macrophages, whereas
elevation of arginase 1 (Arg1) expression has been associated with
(M2-type) alternatively activated macrophages. Nevertheless,
Arg1 activity is also found in M1 macrophages regulating NO
production by iNOS (171). Wls deletion in resting mouse bone
marrow-derived macrophages was accompanied by elevated
expression of Nos2, Tnf, and Il6, and reduced expression of
the M2-associated gene Mrc1 (macrophage mannose receptor),
without affecting Arg1 expression (137). This suggests that
basal Wls activity (and by inference the net impact of released
WNT ligands) contributed toward M2 polarization of these
macrophages. In contrast, several studies indicated that Arg1
expression is regulated by WNT ligands in macrophages upon
pathogen encounter. For example, the PORCN inhibitor IWP-
L6, but not the β-catenin inhibitor iCRT14, decreased Arg1
expression in T. cruzi-infected mouse macrophages, yet without
impacting production of reactive nitrogen intermediates (74).
Wnt6-deficient macrophages expressed less Nos2 and Arg1 in
response to M. tuberculosis infection, yet reactive nitrogen
production was not impaired relative to wild type controls (40).
Exogenous addition of Wnt3a-conditioned medium promoted
the expression of Arg1 in M. tuberculosis-infected murine
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BMDMs (41). sFrp1-overexpression, which was accompanied by
impaired β-catenin signaling, led to reduced expression of Arg1
and macrophage mannose receptor, CD206 (173). Albeit not
evident of endogenousWNT ligands contributing tomacrophage
polarization, it is worth considering that in vitro exposure of
macrophages to recombinant WNT ligands (including Wnt1,
Wnt3a, Wnt5a, Wnt7a) have returned varying results on their
ability to elicit phenotypic changes indicative of alternatively
activated macrophages or macrophages tolerized against LPS
activation (61, 105, 106, 117).

Dendritic Cell Maturation and Functions
The impact of exogenously added or endogenously released
WNT ligands and contributions of β-catenin signaling on the
expression of functional surface markers of DCs (e.g., MHC-
I and MHC-II, co-stimulatory molecules, PD-L1, PD-L2) and
DC endocytic capacity has been analyzed in a number of
studies returning varying results (115, 137, 174–182). Such
variability is likely governed by the use of cells from different
species; differentiation and culture conditions; use of exogenous
modulation through recombinant WNTs, conditioned media,
WNT regulators vs. perturbation of endogenous WNT ligands
and signaling events, for example by using small molecule
inhibitors or genetic perturbations. Moreover, the utility of
recombinant proteins and the possibility of alternative receptors
interacting with WNT ligands requires further validation (61, 95,
117, 183, 184).

Nevertheless, β-catenin activity in myeloid cells has emerged
as a rheostat in immune-regulation and tolerance, specifically
elucidated in in vivo models of autoimmunity, gut mucosal
homeostasis and cancer (95, 120, 162, 183–185). Recent studies
implicate direct roles for WNT ligands that act via engagement
of LRP co-receptors in this regulatory mechanism. Selective
deletion of LRP5/6 in CD11c+ APCs (which includes DC and
macrophage populations in the intestinal mucosa) rendered
mice more susceptible to dextran sodium sulfate (DSS)-induced
colitis (95, 144). This was associated with elevated expression
of pro-inflammatory cytokines (e.g., TNF, IL-6, IL-1β) and
reduced expression of anti-inflammatory/regulatory effectors
(e.g., IL-10, IDO), and functional bias toward fostering Th1
and Th17 responses at the detriment of T regulatory cells
(Tregs). The microbiome has been implicated as a driver of
inflammation in mice with LRP5/6-deficient CD11c+ APCs
with expression of a stabilized form of β-catenin specifically
in CD11c+ APCs ameliorating disease pathology and pro-
inflammatory responses in the DSS colitis model (144).
Similar experimental approaches confirmed a regulatory role
for β-catenin expression in CD11c+ APCs in mouse models
of experimental autoimmune encephalitis (EAE), collagen-
induced arthritis, and tumorigenesis (94, 183–185). It is
interesting to note that the adjuvant utilized in the EAE model
contains mycobacterial antigens and that LRP5/6-deficient DCs
exhibited reduced pro-inflammatory and enhanced regulatory
cytokine responses upon mycobacterial stimulation in vitro
(94), suggesting that infection-associated WNT responses might
direct APC functions in Treg vs. Th1 and Th17 differentiation.

In an OVA-expressing tumor model, Wnt1-overexpression by
DCs was associated with reduced T cell receptor stimulation,
granzyme B secretion and cytotoxicity by CD8+ T cells (186),
whereas conditional knockout of LRP5/LRP6 in CD11c+ cells
resulted in an increase in granzyme B production by CD8+

T cells (185). Thus, WNT-mediated activation of APCs also
bears consequences for subsequent T cell functionality. Of note,
there is some evidence indicating that WNT-mediated β-catenin
signaling also orchestrates the differentiation of plasmacytoid
DCs (187–190), but consequences for pDC functions remain to
be explored.

The aforementioned studies support the view that β-
catenin-stabilizingWNT signaling engaging LRP5/6 co-receptors
can mediate an immune-regulatory profile of DC functions.
In contrast, inducible deletion of Wnt5a and one of its
receptors, Ror2, rendered mice more resistant to DSS-induced
colitis (113). This was accompanied by diminished pro-
inflammatory cytokine responses, including IL-12 expression,
and selective impairment in the differentiation of IFNγ-
producing CD4+ T cells, without impact on IL-17- and IL-10-
producing CD4+ T cells (113). It was implicated that Wnt5a
in this context arose from non-hematopoietic cells such as
fibroblasts, whereas Ror2 signaling occurred in the hematopoietic
compartment including DCs. Nevertheless, cultured Wnt5a-
deficient and Ror2-deficient colonic DCs showed impaired pro-
inflammatory cytokine profiles upon LPS stimulation including
enhanced IL-12 production and increased responsiveness to
IFNγ (113). These observations support the notion of pro-
inflammatory roles of Wnt5a expressed by myeloid cells.
They also align with data indicating that myeloid cell-derived
WNT5A, and likely other WNT ligands, bridge innate and
adaptive immunity by perpetuating the IL-12-IFNγ axis in
T cell and natural killer T (NKT) cell responses (34, 112,
174). Importantly, however, the roles Wnt5a plays in shaping
DC functions may be defined by the receptor/signaling
output. This is highlighted by findings that melanoma-derived
Wnt5a effected a metabolic shift in DCs from glycolysis to
oxidative phosphorylation, which was attributed to β-catenin-
and PPARγ-mediated cellular activation. This resulted in
tolerogenic DCs that promoted IDO activity and regulatory
T cell differentiation. Relevance of this mechanism was
translated into an in vivo melanoma model in mice (145).
It will be important to delineate whether factors specific
to the pathophysiological context (e.g., immune regulatory
molecules, cytokine milieu) explain the apparently opposing
outcomes of WNT exposure on DC functions in melanoma vs.
inflammatory disorders.

T Cell Functions During Infection
Genetic deletion of β-catenin in CD11c+ cells was associated
with only a small increase in the frequency of CD4+

T cells, but no significant changes in the frequency of
CD8+ T cells, TCRγδ+ T cells, NKT cells, Tregs, or T
follicular helper cells were observed (183, 191). These
findings suggest that β-catenin functions in CD11c+

myeloid cells define the quality of T cell responses
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due to the functional capabilities of APCs, rather than
by significantly affecting lymphocyte differentiation.
Nevertheless, β-catenin and TCF activation play distinct
roles in the development, differentiation and function
of innate-like and adaptive lymphocytes, and direct
contributions of WNT ligands to these processes have been
shown (110, 192, 193).

In a mouse model of lymphocytic choriomeningitis virus
(LCMV) infection, TCF-1-deficiency had no effect on the
expansion and functions (e.g., IFNγ production and cytolysis)
of effector CD8+ T cells (194, 195), whereas others reported an
increase in effector CD8+ T cells associated with enhanced IFNγ

and TNF expression (196). In contrast to the apparently opposing
observations for effector T cells, these studies consistently
showed reduced numbers of memory CD8+ T cells, reduced
IL-2 expression, and impaired expansion of memory cells
upon rechallenge (194–196). However, it was suggested that
these TCF-1-mediated effects may not be attributable to β-
catenin functions, as conditional knockout of β-catenin in
mature T cells did not affect memory T cell numbers or
functions upon LCMV and L. monocytogenes infection (197).
Yet, in a transgenic mouse model of constitutively activated β-
catenin/TCF-1-signaling, an increased proportion of memory
CD8+ T cells and increased IFNγ expression during LCMV,
vaccinia virus and L. monocytogenes infection were reported
(198). These studies indicate that TCF-1 is likely required for
CD8+ T cell memory formation and functions after infection.
The role β-catenin might play in this and whether WNT ligands
have a direct contribution to these signaling events requires
further investigation.

In an in vitro system, depletion of WNT1, 2B, 3 and 5B from
astrocyte-conditioned medium reduced the differentiation of
CD8+ T cells toward a CD4dimCD8bright T phenotype in cultures
of human peripheral blood mononuclear cells. CD4dimCD8bright

T cells in the central nervous system are thought to be effector
memory T cells important in the control of HIV (71). While
this study implicated direct involvement of WNT ligands in
the formation of this CD8+ T cell subset, it remains to be
determined whether WNT ligands mediated this differentiation
by acting on the CD8+ T cells, or indirectly via APCs (e.g.,
by shaping the cytokine milieu). To our knowledge, there are
thus far only very few links between WNT ligands and CD4+ T
cell functions during infection. In a susceptible mouse model of
Leishmania major infection, an inhibitor of Dkk1, which should
increase WNT/β-catenin signaling, exhibited reduced numbers
of CD4+ T cells in the draining lymph node, with subsequent
reduced IL-4 and IL-10 expression after ex vivo stimulation
(199). An in vitro study utilizing neutralizing antibodies against
WNT5A and FZD5 showed impaired antigen-specific IFNγ

production by human PBMCs of antigen-experienced donors
re-stimulated with M. tuberculosis antigen. As human T cells
expressed FZD5, it was hypothesized that WNT signaling can
facilitate memory T cell activation (34). However, these studies
did not demonstrate that these effects were driven directly
by WNT signaling in CD4+ T cells, nor did they exclude
WNT effects on APC functions. Detailed analyses of the WNT
receptor andWNT regulator repertoire of different T cell lineages

and subsets should guide targeted interventions with WNT
signaling events to delineate the roles infection-associated WNT
responses play in shaping T cell effector and memory formation
and functions.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

The WNT signaling network has been firmly established as an
evolutionary conserved integral component of host responses to
infection. In-depth understanding of how WNT ligands define
immune cell functions is beginning to offer mechanistic insights
into the contributions of WNT responses to pathogen control
and inflammation. Experiments establishing how infection-
associated endogenous WNT responses shape immune cell
functionality in vivo will be key to deciphering WNT functions
in shaping complex immune responses. Thus far, macrophages
and DCs, as well as T cells have been a major focus of
delineating WNT-mediated immune functions. Knowledge of
how WNT ligands shape the functions of other immune cells,
including neutrophils, mast cells, natural killer cells, natural
killer T cells, innate lymphoid cells, B cells, etc. is required
to begin to understand the complexity of immune-related
WNT responses.

Considering that the WNT signaling outcome is largely
decided by the cellular context at the level of receptor engagement
(20), functional redundancy of WNT ligands, or lack thereof,
in orchestrating cellular responses of functionally diverse cells
in complex tissue environments is an important factor. With
a clearer understanding of the WNT receptor and WNT
regulator repertoire expressed by different immune- and non-
immune cells in responses to infection, it will be important
to determine if there are species-specific differences in the
consequences of WNT exposure of functionally similar cells.
This is especially critical when investing in utilizing animal
models for understanding human pathology and calls for
systematic analyses of WNT responses in infected tissues across
different species. Reporter mice for WNT ligand and receptor
expression as well as WNT signaling activity (200, 201) will
be invaluable for the temporal and spatial documentation of
WNT responses in complex in vivo settings, including infections.
Comparisons with human specimens, wherever possible, will
be critical.

While some consistent patterns of WNT responses begin
to arise (e.g., WNT5A regulation in human macrophages), it
remains largely unclear whether stereotypical WNT responses
to infection exist regardless of the invading pathogen, or
whether the nature of the pathogen dictates the WNT response.
Comparative studies using phylogenetically diverse pathogens
covering spectra of virulence and pathogenesis mechanisms will
be essential to distinguish stereotypical and selective responses
to microbial infection. In depth understanding of the molecular
drivers and regulators of WNT ligand and receptor expression
during infection will be invaluable in delineating whichmicrobial
factors drive WNT responses. Whereas our understanding
of WNT responses and functions during viral and bacterial
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infections is taking shape, WNT contributions to parasitic and
fungal infections remain to be explored in more breadth and
depth. Knowledge of the investment of pathogens into actively
manipulating the WNT signaling network (202–204) will inform
our understanding of pathogenesis mechanisms and roles of
WNT signaling in the host defense against infection. Such
insights will be essential when exploring WNT response patterns
as biological indicators supporting diagnosis, prognosis and
choices for clinical management of infectious diseases (205).

Due to the central role ofWNT signaling inmaintaining tissue
homeostasis, including epithelial barrier functions, consequences
of immune-related WNT responses reach beyond leukocyte
functions. Indications that WNT/WNT receptor interactions
shape chemokine responses (186) and cellular metabolism (145)
deserve particular attention in the context of immune responses
to infection and beyond. AberrantWNT expression and/orWNT
signaling underlying carcinogenesis, fibrosis, and osteoporosis
has generated considerable interest in pharmacologically
targeting the WNT signaling network (206–209). Understanding
the functional nature and temporal regulation of WNT
responses in the host response to infection, and other immune
settings, is essential for identifying therapeutic opportunities,
but also potential risks of pharmacologically targeting the
WNT signaling network.
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