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Assembly of biomolecules at solid–water interfaces requires molecules to traverse com-
plex orientation-dependent energy landscapes through processes that are poorly under-
stood, largely due to the dearth of in situ single-molecule measurements and statistical
analyses of the rotational dynamics that define directional selection. Emerging capabili-
ties in high-speed atomic force microscopy and machine learning have allowed us to
directly determine the orientational energy landscape and observe and quantify the rota-
tional dynamics for protein nanorods on the surface of muscovite mica under a variety
of conditions. Comparisons with kinetic Monte Carlo simulations show that the transi-
tion rates between adjacent orientation-specific energetic minima can largely be under-
stood through traditional models of in-plane Brownian rotation across a biased energy
landscape, with resulting transition rates that are exponential in the energy barriers
between states. However, transitions between more distant angular states are decoupled
from barrier height, with jump-size distributions showing a power law decay that is
characteristic of a nonclassical Levy-flight random walk, indicating that large jumps are
enabled by alternative modes of motion via activated states. The findings provide
insights into the dynamics of biomolecules at solid–liquid interfaces that lead to self-
assembly, epitaxial matching, and other orientationally anisotropic outcomes and define
a general procedure for exploring such dynamics with implications for hybrid
biomolecular–inorganic materials design.
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Living systems create a wide range of extended biomolecular arrays with complex func-
tions that are inherently connected to array architecture and often comprise interfaces
between disparate materials, as with S-layer cell envelopes (1), bacterial microcompart-
ments (2, 3), and other vesicles (4), and insoluble matrices that direct formation of
mineralized tissues (5–7). Inspired by such systems, numerous synthetic biomolecular
systems have been developed, many of which assemble through epitaxial relationships
with mineral surfaces (8–15). Both the dynamics and final architectures are determined
by the energy landscape arising from an interplay between protein–protein and
protein–substrate interactions (16, 17), which often exhibit a degree of rotational sym-
metry that creates multiple energy minima separated by small barriers. While living
systems use such multiwell landscapes to alter array architecture in response to environ-
mental conditions (18), similar capabilities in artificially engineered biomolecular arrays
have rarely been realized, in part, because the energy landscapes remain largely unex-
plored. In particular, the dynamics and mechanisms by which biomolecules at inor-
ganic surfaces undergo transitions between metastable states in the energy landscape to
reach the final stable state, as well as the response of that landscape to environmental
stimuli, are unknown. This lack of knowledge presents a fundamental obstacle to the
design and application of artificial hybrid biomaterials.
In this work, we used in situ high-speed atomic force microscopy (HS-AFM) (19)

and machine learning (ML)–based analysis to investigate the energy landscapes and
interminima transitions associated with in-plane rotation of the de novo designed
repeat protein, DHR10-micaN (MicaN; N denotes the number of repeat subunits per
molecule), on the muscovite mica (m-mica) (001) surface under a variety of conditions.
As these molecules each display preferred orientations with the m-mica substrate, they
provide the opportunity to test how molecules transition between preferred states.
The predominant paradigm for understanding nanoscale biomolecular motion is

derived from the theory of Brownian motion developed by Einstein (20) and Smo-
luchowski (21). If this theory holds, transitions rates between angular states could
be predicted through numerical implementation of Brownian drift–diffusion
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equations. However, studies on nanoparticle transitional
motion are increasingly pointing toward the possibility of non-
classical “superdiffusional” processes involving intermittent large
jumps or Levy-flight jump-size distributions (22–27). If such pro-
cesses also occur during biased angular motion, they may have
important effects on the transition rates between angular states.
Thus, in this study, we utilize kinetic Monte Carlo (kMC) simula-
tions to compare our state-of-the-art experimental observations
with classical expectations. These comparisons show that transi-
tions between neighboring angular states can be largely reproduced
through classical models of Brownian motion, with transition rates
that are exponential in the energy barrier between states in both
cases, as expected. However, transitions between nonadjacent
minima are more frequent than expected and show a power law
decay in jump size that is indicative of a nonclassical Levy-flight
process. We suggest that these large jumps may be facilitated by
enhanced rotation via a spectrum of quasithree-dimensional
motions involving transient desorption from the substrate. Our
findings provide fundamental insights into the dynamics and
energetics of biomolecules at liquid–solid interfaces, confirming
that nonclassical diffusion processes, like Levy-flight motion,
occur in soft matter systems, and they suggest approaches to bio-
materials design that exploit nonclassical motion as a means for
biomolecules to rapidly bypass high-energy barriers and reach sta-
ble minima.

Results

Impact of Rod Length and Cation Type on Orientation. MicaN
has a programmed binding surface on which glutamate side
chains are geometrically matched to the K+ sublattice of
m-mica (001) (Fig. 1A) (15). Hence, the minimum energy ori-
entation was expected to occur when the long axis is aligned
parallel to one of the close-packed directions of the m-mica
(001) lattice ([100], [110], or 11� 0½ �), which are separated by
60° intervals. Based on the protein design, these three direc-
tions were expected to be equally favorable, but atomic force
microscopy (AFM) imaging showed that one direction was gen-
erally preferred (15). This reduced symmetry reflects complex
interactions between the protein and the mica surface, which
arise from structural features in the underlying crystal lattice
that distort its symmetry (28). This asymmetry provides an
opportunity to quantify both the relative depths and interven-
ing barriers of the minima, as well as the rates and mechanisms
of transitions between them.
In situ HS-AFM data clearly show that, for Mica18 and

Mica34 on m-mica (001) in 10 mM [K+] solution
(Mica18@KCl10mM and Mica34@KCl10mM, respectively),
most proteins share the same preferred orientation, and pro-
teins tend to retain that general orientation for extended peri-
ods of time (Fig. 1 B and C and Movies S1 and S2). We
consider only a 180° rotational space as opposed to a full 360°
rotation because the N-terminal and C-terminal ends of the
protein nanorod are indistinguishable in the AFM images.
However, because the pattern of contact between mica-lattice
sites and glutamate side chains is similar upon 180° rotations
(15), we anticipate that rotations of 180° will produce a config-
uration with similar energy. Orientation tracking of selected
Mica18 nanorods (Fig. 1 F and G) further illustrates that, while
the protein nanorods have one thermodynamically preferred
orientation, they occasionally transit to other higher-energy
orientations with relatively long lifetimes. Mica6 (Mica6@
KCl10mM), which has fewer glutamate residues per molecule
and a lower binding affinity to the substrate, is more mobile on

m-mica (001), with the consequence that the dominant orienta-
tions are less visually distinguishable (Fig. 1D and Movie S3).

When Na+ is used instead of K+, the surficial K+ ions of
mica are replaced by Na+ (29). Unlike K+, Na+ has been
found to inhibit self-assembly of proteins on m-mica (001) (10,
15). HS-AFM data show that Mica18@NaCl10mM has much
faster in-plane dynamics and much lower coverage on m-mica
(001). Moreover, whether a dominant orientation even exists is
unclear without careful statistical analysis of distributions over
long time periods (Fig. 1E and Movie S4).

Orientation-Dependent Energy Landscapes. The HS-AFM
data record details of angular distributions and rotational dynam-
ics for MicaN on m-mica (001). However, the amount of data
generated (hundreds of frames in each condition with tens of pro-
tein nanorods in each frame), as with other big datasets, creates a
severe obstacle to quantification with traditional data-processing
approaches (30, 31). Hence, we developed an ML approach to
track and quantify the distributions and dynamics. Using the
segmentation routine from U-NET (32), the orientational distri-
butions of MicaN (n = 34, 18, 6) across the time span of the
experiments (Fig. 2, Movie S5, and SI Appendix, Fig. S1) were
extracted. For all values of N and both K+ and Na+, the orienta-
tional distributions of protein nanorods are stable throughout the
experiments (Fig. 2 A, Lower, B, Lower, C, Lower, and D, Lower),
indicating they reflect equilibrium distributions (histograms in
Fig. 2), from which the orientation-dependent energy landscape
G(θ) can be determined (curves in Fig. 2). The resulting land-
scapes all show minima at several angles with intervening barriers
on the order of 1 to 6 kBT.

For the case with K+, the expectation that energy minima
should occur when the long axis of the nanorod is aligned par-
allel to one of the K+ close-packed directions of m-mica (001)
or possibly at an intermediate angle close to 30°, which allows
a high ratio of carboxylate side chains of glutamates to simulta-
neously match with the K+ sublattice, is partially confirmed.
With Mica18@KCl10mM (Fig. 2A), we observe one primary
minimum at around �20° (defined arbitrarily), a secondary
minimum at around �80° (�60° relative to the primary mini-
mum), and a third at around 70°/�110° (90° relative to the
primary minimum). However, the lack of a stable minima at
40° (+60° relative to the primary minimum) suggests that
interactions with the mica surface involve more complex phe-
nomena than simple geometric coincidence between the potas-
sium lattice and the glutamate side chains.

This conclusion is reinforced by the behavior of other designs;
Mica34@KCl10mM shows a similar pattern with angles at 80°
and 20° and another minimum between them, but the minimum
at �40°/140° is missing; also, the angular dependence of G(θ) is
less pronounced with Mica6@KCl10mM, for which the energy
barriers between local minima are smaller (Fig. 2C), consistent
with the lower binding affinity of Mica6 to m-mica (001) relative
to that of Mica18 and Mica34 (15).

In contrast, Mica18@NaCl10mM does not show a clear,
dominant orientation on m-mica (001) but has three roughly
equal orientations (Fig. 2D), two of which are about 60° apart
and one of which is at an intermediate value. The results dem-
onstrate that ions such as K+ and Na+, which have their own
distinct binding affinities and adsorption geometries on mica
(001) (33, 34), play a critical role in mediating the binding
configurations of the proteins on m-mica.

Energy Barriers and Transition Rates. So far, we have dis-
cussed the stationary angular distributions of the system. To
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investigate dynamics, we compiled trajectory heat maps for the
Mica18@KCl10mM, as shown in Fig. 3A and Movie S6. These
figures, which were generated by identifying nanorods with a
specific orientation and plotting a heat map of their subsequent
orientational distributions as a function of elapsed time, help
reveal several distinct types of dynamic behavior. First, there is
a clear tendency for proteins to follow the local slope of the ori-
entational energy landscape and migrate toward local orienta-
tional minima. Fig. 3 A, i shows that Mica18@KCl10mM

nanorods found with an initial orientation of �7.5° ± 1.5°
(i.e., within the deep primary basin in the energy landscape)
clearly migrate toward the optimal orientation at �20°. Par-
ticles already located at their local minima (such as Fig. 3 A, ii)
tend to retain their initial orientation but may make small fluc-
tuations within the well. However, given enough time, some of
these particles are seen to escape the local minimum and transi-
tion into other energy wells, as evidenced by the increasing
population in the major minimum at �20°.
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Fig. 1. Overview of design and in-plane dynamics of MicaN on m-mica (001). (A) Models of MicaN (N= 34, 18, and 6) on m-mica (001). The purple spheres
indicate K+ sublattice, occupying the negatively charged sites on m-mica (001). Inset shows the side view of Mica6 on m-mica (001) with glutamate side chains
interacting with the K+ sublattice. (Scale bar: 5 nm.) (B–E) Selected frames of four consecutive HS-AFM datasets, representing the in-plane dynamics of MicaN
(N = 18, 34, and 6) with 10 mM KCl and Mica18 with 10 mM NaCl on m-mica (001), respectively. (Scale bars: 50 nm.) (F) Selected frames tracking Mica18 with
10 mM KCl on m-mica (001). (G) Direction tracking of the selected Mica18 molecules in F. The arrows in the upper right corners indicate the dominated orien-
tations of MicaN in each dataset. The times in the upper right corners indicate the relative capturing time of each frame in the corresponding dataset. All
solutions are buffered with 20 mM Tris (pH 7). The frame speeds are 0.92 Hz.
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In order to efficiently quantify the transition behavior for
each dataset, we conducted a detailed analysis on the angular
transitions of protein nanorods between consecutive frames in
each HS-AFM dataset (Fig. 1G shows an example). By comput-
ing the frequencies and probabilities for rods to transition
between angular states, we constructed transition frequency
matrices (Fig. 3B and SI Appendix, Fig. S2), which give the
number of times a rod starting in an angular state X’ in one
frame is observed transitioning to a state X in the next frame.
We found that the transition–frequency matrices of all datasets
are roughly symmetric with respect to forward and reverse tran-
sitions between states X and X’, demonstrating agreement with

the principle of detailed balance (e.g., that every elementary
process is equilibrated by its reverse process) and indicating
that the dynamics are compatible with a system at thermody-
namic equilibrium driven by random motions. Thus, we can
approximately treat the motions of proteins as random Markov
chains.

To model these dynamics as a Markovian process, the proba-
bilities for transitioning between states were established. Fig.
3C shows the state transition probability (P) matrix for
Mica18@KCl10mM, where P(St+1 = XjSt = X’) is the probability
that a rod will transition to state X given that it started in state X’.
The diagonal of the matrix indicates the probability for proteins to

Fig. 2. Orientation distributions and relative energy landscapes, G(θ), of MicaN. Accumulated orientation distributions over time (histograms) and corre-
sponding derived relative energy landscapes, G(θ) (colored curves; Upper) (details are in SI Appendix), and instant orientation distribution at each time step
(Lower) are visualized for (A) Mica18@KCl10mM, (B) Mica34@KCl10mM, (C) Mica6@KCl10mM, and (D) Mica18@NaCl10mM. The orientation distributions are
computed from extracted region properties of the instance segmentation. These distributions are normalized relative to the largest numbers in the histo-
grams. The choice of θ = 0 represents horizontal with respect to the image orientation but is arbitrary with respect to the orientation of the m-mica (001) lat-
tice. The orientation range is 180° and centered at the largest minima in each dataset. There is no correlation between the angles (and hence, the states) of
different datasets.
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remain in the same state [Fig. 3C, P(St+1 = XjSt = X)]. From the
matrix, we directly computed the influx probability for a protein
molecule to rotate into X at time t + 1 if it was not in X at time t
[P(St+1 = XjSt ≠ X)]. This analysis allows us to identify long-lived
states that are not immediately visible as local minima in the
stationary distributions (Fig. 2A). For example, in contrast to the
stationary orientation distributions of Mica18@KCl10mM in
Fig. 2A, there are six, instead of three, distinct peaks in both the
remaining and influx probability histograms in Fig. 3C.
Using the minima of these distributions, the appropriate

boundaries for six populated angular states were defined (Fig.
3C, histogram on the right) to obtain the resulting six-state
transition probability matrix for Mica18@KCl10mM (Fig.
3D). The expected angular stationary distribution (ASD) for
the transition probability matrix was then computed with the
assumption of a random Markov model (Fig. 3D, histogram
along the bottom). Compared with the observed distributions
of HS-AFM data (Fig. 2A), the computed stationary distribu-
tions match in all cases with low absolute errors (SI Appendix,
Table S1). Following the same procedure (SI Appendix, Figs.
S2 and S3), the six-state Markov models for Mica34@
KCl10mM, Mica6@KCl10mM, and Mica18@NaCl10mM
were also computed (Fig. 3 E–G). These models provide
detailed insights into how the transition possibilities between
states in these systems give rise to the observed ASDs.
In aggregate, the Markov probability tables reveal a strong

correlation between the probability to remain in a state and the
depth of the corresponding energy well in G(θ). More

specifically, when the probability of transitioning into an
adjacent state, P(XjX’), is plotted vs. the energy barrier for that
transition, G‡

XjX’ (Fig. 3H), we clearly observe the expected
exponential relationship predicted by transition state theory,
with P(XjX’) ∼ P0 exp(�G‡

XjX’/kBT). This relationship demon-
strates that knowledge of the equilibrium angular-dependent
energy landscape allows us to account for a significant portion
of the differences in angular dynamics between systems. For
example, Mica34, which has the strongest binding affinity to
the mica surface and the highest-energy barriers between states,
generally displays the lowest frequency of transitions, while the
smaller Mica6 tends to display the lowest-energy barriers
between states and the highest frequency of transitions.

Transitions between Adjacent States Reproduced in the
Brownian Model. The above analysis indicates that the equilib-
rium orientational energy landscape exhibits significant control
over state transition dynamics. Here, we consider the ability of
existing classical models of Brownian motion to simulate the
observed nanorod rotation and predict rates of transitions
between states. To represent Brownian motion on a biased
energy landscape, G(θ), we employ a Markovian random walk-
through angular space, assuming thermally activated, nonballis-
tic, diffusive motion.

The use of a nonballistic model is justified on the grounds
that the momentum persistence time for nanoscale particles in
aqueous fluids is typically on the order of picoseconds, making
it much shorter than the timescale of observation. Moreover,
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the kinetic energies associated with observable rotational
motions are negligibly small in comparison with kBT (Materials
and Methods has details). The nonballistic behavior is further
confirmed by phase-space diagrams (Fig. 4B), derived from
the orientation tracking (Fig. 4A). In these diagrams, the
magnitude of the angular velocities is found to increase as
the rods transition from one stable state to another. This behav-
ior is contradictory to ballistic motion, for which one would
expect to see velocities slow during transitions as kinetic energy is
transformed into potential energy near the maximum of the
energy barrier, but it is consistent with thermally activated
motion, for which the largest observed motions occur after
particles traverse local maxima and are driven into new energy
wells.
We implemented the Markovian random walk through a

coarse-grained kMC simulation, in which particles undergo a
series of incremental rotations of either +1° or �1°. The rela-
tive frequencies of forward and backward rotations are weighted
to reflect the experimentally determined angular free energy
landscape using a standard rejection-free kMC residence time
criteria, and after simulation, we calibrate the rate constant
(i.e., the unbiased rotation attempt frequency) so that the rms
angular deviation between sampling time steps matches that of
the experimental data (SI Appendix has details). The model’s
ability to reproduce small angular motions on the order of a
few degrees is limited by its coarse graining, and efforts to
increase the angular resolution are impeded by our limited
knowledge of the underlying energy landscape, which is only

determined to 3° resolution. Smaller angular motions must be
based on an interpolated energy landscape, and we thus expect
some systematic error when modeling small-scale angular motions
within a given energy well. However, the simulation’s resolution
should still be sufficient to predict the rates of Brownian transi-
tions between different wells given that the angular distances
between local minima in the energy landscape are typically tens
of degrees apart.

Comparing the resulting simulation trajectories (Fig. 4C)
and phase-space diagrams (Fig. 4D) with the experimental tra-
jectories (Fig. 4A) and phase-space diagrams (Fig. 4B), we find
that the simulations reproduce much but not all of the experi-
mental behaviors. Given that the nanoparticle motion is sto-
chastic, it is not possible to reproduce any particular trajectory
but only to generate trajectories with qualitatively similar
behavior. We find that the simulations reproduce the stationary
distributions as designed (SI Appendix, Fig. S7), and they pro-
duce qualitatively similar trajectories, in which proteins spend
extended periods of time making small motions about preferred
angles (reflecting local minima in the energy landscape); how-
ever, they occasionally make large and rapid angular motions as
they overcome energy barriers to enter neighboring local
minima (Fig. 4 B and D and SI Appendix, Fig. S4). The rapid-
ness of these large jumps is reflected by the appearance of
“steps” in both the experimental and simulated trajectories
(Fig. 4 A and C) and the appearance of higher angular velocities
as proteins transition between local minima in the phase-space
diagrams (Fig. 4 B and D).

Fig. 4. Trajectories and kMC simulations of rotational dynamics of MicaN. (A) Angular trajectories for three protein nanorods selected from
Mica18@KCl10mM experimental (Exp.) data shown in Fig. 1. Continuous trajectories were constructed within the cyclic boundary conditions under the
assumption that the trajectory between observations followed the minimum angular path length. (B) Phase-space diagrams of angular velocity vs. angle for
the same experimental data of A. (C and D) Corresponding angular trajectories and phase-space plots generated from kMC simulated (Sim.) trajectories of
Mica18@KCl10mM. (E) A six-state probability transition table for the Mica18@KCl10mM simulation for comparison with the experimental probability transi-
tion table in Fig. 3B. (F) Comparison of state-to-state transition probabilities per experiment vs. kMC simulations. The aggregated data show good 1:1 agree-
ment for transitions between adjacent states (solid markers), but the experimental probability for transition between nonadjacent states (open markers,
non-adj.) is significantly higher than in simulation. The black line shows the ideal 1:1 correlation. (G) Jump-size distribution plot. G, Lower plots the normal-
ized frequency of observed jumps as a function of jump size. A key feature is that the experimental data (solid lines) show a power law decay, whereas sim-
ulated data (dashed lines) show an exponential decay. As a consequence of the power law decay, the experimental data show more transitions at larger dis-
tances than are seen in simulation. Vertical lines in G, Upper (which shares an x axis with G, Lower) mark the characteristic center-to-center distances
between pairs of states (in degrees). These state-to-state transitions primarily occur at angular distances greater than 20°, highlighting the fact that the
region of power law decay seen in the experimental data corresponds to the larger distances where state-to-state transitions are accessible. Note that dis-
crepancies between the experimental and simulated curves at small angles are due, in part, to the approximate nature of the energy landscape derived
from the experiments and the coarse graining of that landscape used in the simulation.
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There are subtle differences in the size and intensity of the
nanorod motion within local minima, as the simulated nano-
rods tend to make larger and more rapid excursions about the
local minima in the angular energy landscape. However, as pre-
viously noted, this is expected since it is tied to our limited
knowledge of the angular energy landscape at scales of a few
degrees or less. Unfortunately, it may not prove feasible to
attain a perfect reproduction of nanoscale motion using a single
energy landscape since each real protein exists in a slightly dif-
ferent local environment (e.g., local crowdedness or variations
in local mica surface chemistry) that may slightly perturb its
behavior from what would be expected based on the averaged
energy landscape. Despite slight discrepancies at small scale, the
simulations show remarkable success at predicting the likeli-
hood that proteins either remain within or exit a given state.
When comparing experimental histograms (Fig. 3B) with simu-
lated histograms (Fig. 4E), we see similar patterns in both cases.
This confirms that G(θ) imposes the primary control over pro-
tein dynamics and that the Markovian random walk comprises
a good first approximation for the primary mechanism of angu-
lar motion. This success is most dramatically demonstrated
when comparing the probability for observing transitions
between various pairs of adjacent states, as shown in Fig.
4F (solid symbols), where we see a clear 1:1 relationship
between the experimental and simulated probabilities.
These simulations thus provide a valuable tool for under-

standing particle motion. They produce trajectories that have
many of the qualitative behaviors of real particles (demonstrat-
ing periods of intrawell motion punctuated by occasional inter-
well jumps), and they can quantitatively predict the frequency
of transitions between adjacent wells. Moreover, important
knowledge can be obtained from these simulations. In particu-
lar, the unbiased rotation attempt frequency rate constant
calibration for each dataset can be used to estimate rotational
diffusion coefficients for each protein and thus, provides an
important link to the hydrodynamic properties of proteins at
the interface (Materials and Methods has details). In fact, esti-
mated diffusion coefficients are found to range from 0.006
rad2/s for Mica34 to 0.048 rad2/s for Mica6, and thus, they fol-
low the expected trend that larger particles show lower
diffusivity.

Deviations from Brownian Behavior during Transitions
between Nonadjacent States. Despite the simulation’s success
in reproducing jump frequencies between neighboring states,
there are important discrepancies when considering large-angle
jumps between nonneighboring states. This is most clear in
Fig. 4F (open symbols), where we see that the 1:1 relationship
between experiment and simulation jump probabilities (which
was observed for jumps between adjacent states) is broken for
jumps between nonadjacent states. Instead, the simulations sys-
tematically predict fewer jumps between nonadjacent states
than are observed in the experiment by as much as two orders
of magnitude, and this trend exists across all datasets. This
behavior can also be examined in detail by comparing the
experimental-state probability transition matrices (Fig. 3) with
the simulated-state probability transition matrices (SI Appendix,
Fig. S6) or by comparing the 3° transition tables and transition
probability tables (SI Appendix, Figs. S2, S3, and S5). In all
cases, the experimental tables show a greater probability for
“large jumps” occurring far off the diagonal than do the
simulations.
The nature of the discrepancy can be better understood

through Fig. 4G, which shows a histogram of jump probability

vs. jump size. In this figure, the Brownian kMC simulations
display an exponential decay in jump probability at large jump
size for all proteins. This exponential decay in the simulations
differs slightly from simple Gaussian decay, but it is consistent
with Brownian behavior under the influence of a complex
energy landscape (27). In contrast, the experimental data dis-
play a long tail at large jump sizes, with a power law decay that
is a key indicator of “Levy-flight” motion through angular space
(35, 36). Importantly, this power law decay cannot be repro-
duced by Brownian simulations, even when accounting for the
complex angular energy landscape. Since classical Brownian
motion universally emerges when motion is driven by the statis-
tical combination of many smaller, independent events, these
long-tail deviations indicate that motion is partially driven by
rare, large rotational events. The observed Levy-flight motion is
a particularly important case of non-Brownian diffusion that
occurs when the underlying jump-size distribution possesses a
scale-invariant long-tail distribution (35, 36). This prevents the
normally expected convergence toward Brownian behavior (20,
21), and Levy-flight random walks are often referred to as
superdiffusion due to the associated enhanced probability for
large jumps. The observation of non-Brownian motion here is
consistent with numerous other recent in situ transmission elec-
tron microscopy and AFM studies of nanoparticle lateral and
rotational motion, where both bimodal jump distributions (26)
or Levy-flight jump distributions (22, 23, 37) have been
observed.

Discussion

Although past studies have revealed complex modes of nano-
particle motion, potentially involving quasithree-dimensional
motion of concerted rotational and translational motion or
motion through the bulk (26, 35, 37), the results reported here
are unique in that we have observed such motions on a com-
plex energy landscape that possesses distinct barriers and local
minima in two dimensions. While our analyses show that these
barriers are directly linked to the diffusional dynamics—and
thus, may provide a tool for tuning the kinetics of rotation and
facilitating the controlled assembly of two-dimensional hierar-
chical architectures at solid–liquid interfaces—they also imply
that the more complex motions leading to Levy-flight behavior
can provide a pathway for molecules to bypass these barriers to
achieve biomaterials with nonequilibrium states.

Levy flights were proposed to explain anomalies in the lateral
motion of inorganic nanoparticles (22, 23) as well as polymer
chains (24, 25); however, although non-Gaussian Brownian
diffusion may be common in soft materials (27), such non-
Fickian behavior has not, to our knowledge, been previously
identified for the rotational motion of biomolecules. Given the
mundane nature of both the substrate (i.e., a heterogeneously
structured mineral) and the interacting functional groups of the
protein, namely glutamate side chains, the results here suggest
that Levy flights may frequently be responsible for large-angle
rotations of bio-macromolecules and numerous biological pro-
cesses at interfaces and play a significant role in sampling the
energy minima in the process of attaining equilibrium.

With respect to the mechanistic emergence of Levy-flight
dynamics, it has been demonstrated that power law–distributed
jump sizes emerge when the underlying events are also power
law distributed. Thus, its observation implies that additional
modes of rotation involving large jumps exist in addition to the
small incremental motions represented by a Brownian model.
As we consider how these large jumps are facilitated, a likely
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possibility is that large jumps occur when proteins momentarily
dissociate from the surface and temporarily enter an excited
state, where they encounter conditions of decreased angular drag
that enable a brief period of more rapid motion. If a single excited
state was accessible, it could lead to a double-exponential jump-size
distribution. If, however, there is a spectrum of accessible excited
states, with each state being increasingly difficult to access but of
increasingly higher angular diffusivity, a power law jump-size distri-
bution could in principle be achieved (SI Appendix, Fig. S9). For a
bio-macromolecule like MicaN, this spectrum of states may reflect,
for example, the number of carboxyl groups that are instanta-
neously available to bind with the surface with low cation con-
centration. Thus, we propose that the Levy-flight diffusion and
associated superdiffusional jumps between nonadjacent states may
be facilitated by a spectrum of quasithree-dimensional motions.
We also consider whether the dynamics of nanorod rotation

discussed above are influenced by interactions between neigh-
boring proteins. In our experiments, this effect should be most
significant for Mica18@KCl10mM, in which a sizeable fraction
of proteins has a nearest neighbor within 16 nm (SI Appendix,
Fig. S10), which is obtained when particles lie side by side. Sur-
face coverages for the other conditions are much lower, and few
particles have nearby neighbors. Thus, we expect that
protein–protein interactions are more negligible in these cases.
Examining the energy landscapes for subpopulations of
Mica18@KCl10mM, we see that that proteins with nearest
neighbors closer than 16 nm are slightly more likely to be
found in the primary minima and less likely to exist in one of
the secondary minima. Thus, collective protein–protein interac-
tions can modify the energy landscape experienced by individ-
ual proteins. However, jump-size distributions remain similar,
and the existence of the Levy-flight distribution is clearly
observed no matter whether the proteins possess a nearby
neighbor (SI Appendix, Fig. S11).
Finally, the approach reported here quantifies positions and

orientations in an HS-AFM image series by ML. It further
establishes energy landscapes and transition rates that are then
seamlessly connected to the underlying physics via computa-
tional models. Thus, the findings both broaden the physical
understanding of biomolecular dynamics at solid–liquid interfa-
ces and define a general procedure for using in situ visualization
and ML to explore such dynamics. Thus, the approach prom-
ises to enable discoveries of physical phenomena in such sys-
tems and introduces a feasible sampling procedure for the
design of hybrid biomolecular–inorganic materials.

Materials and Methods

Protein Design and Synthesis. The computational design of DHR10-mica6
(Mica6), DHR10-mica18 (Mica18), and the DHR10 protein they are based on is
described elsewhere (15, 38). A DHR10-mica34 (Mica34) model was produced
by copying the backbone and sequence of internal repeats in Mica18 from 16 to
32 repeats. A plasmid containing a gene encoding Mica34 was cloned from a
Mica18-encoding plasmid via recursive directional ligation by plasmid recon-
struction (39). All proteins were expressed and purified as described (15), except
that Mica18 and Mica34 were expressed without His tags and the
Ni–nitriloacetic acid purification and His tag cleavage steps were replaced with
the following procedure. First, the clarified lysate was incubated at 80 °C for 1
h and centrifuged at 14,000 relative centrifugal force (RCF) for 30 min, and the
supernatant was retained. Second, solid ammonium sulfate was added to 30%
saturation; the mixture was rocked at room temperature for 1 h and then, centri-
fuged at 10,000 RCF for 15 min. Finally, the readily soluble white pellets formed
by the MicaN proteins were resuspended in Tris(hydroxymethyl)aminomethane
(Tris)–buffered saline solution (150 mM NaCl, 20 mM Tris, pH 8). All subsequent
purification steps were completed as described previously (15).

HS-AFM. Protein stock solutions were diluted to 0.05 μM with 20 mM Tris buffer
(pH 7) having 10 mM KCl or 10 mM NaCl. A 20-μL diluted protein solution was
dropped onto freshly cleaved m-mica (001) (SPI Supplies) and characterized by
Cypher Video-Rate AFM (Asylum Research) in liquid amplitude–modulation mode.
The probe USC-F1.2-K0.15 (NanoWorld) was used. The imaging force was adjusted
to minimize any interruption. The estimated energy loss of the AFM cantilever within
each oscillation cycle is 0.26 to 0.55 kBT (19), smaller than the calculated energy bar-
riers of the relative energy landscapes, G(θ), in Fig. 2. The standard offline data proc-
essing was done by Asylum analyzing software written on IgorPro (WaveMetrics)
and software SPIP (Image Metrology). Tris�HCl buffer (pH 7, 1 M), KCl, and NaCl
were bought from Sigma-Aldrich. Nuclease-free water was bought from Ambion.

Denoising. Before feeding the images into our deep learning segmentation pipe-
line, we used two techniques for the preprocessing step to correct unbalanced illu-
mination, reduce the amount of noise, and improve the contrast of the input
images: bilateral filter (40) and the contrast limited adaptive histogram equalization
(CLAHE) (41). The bilateral filter was an edge-preserving and noise-reducing filter. It
averaged pixels based on their spatial closeness and radiometric similarity. In other
words, it smoothed homogeneous regions of the image and preserved details
(such as borders of objects). After improving the signal to noise ratio using the bilat-
eral filter, the next step was to correct illumination and emphasize targeted struc-
tures for segmentation. We applied the CLAHE method, which used histograms
computed over different tile regions of the image. In doing so, local details were
enhanced even in regions that were darker or lighter than most of the image.

Deep Learning Segmentation. The first step in the pipeline involved seg-
menting the nanorods into blobs. For this, we employed U-NET (42), a deep neu-
ral network architecture that is commonly used for microscopy and medical
image segmentation. One common issue with deep learning segmentation tasks
is the challenge of getting good separation between objects in cluttered micros-
copy images. The high level of noise makes learning boundaries difficult at
times. To combat this issue, we used a strategy similar to that used in Zhou et al.
(43), where an additional neural network was trained to learn centroids of rods.
For our purposes, the results of this neural network were used as seeds for a
watershed postprocess to get better instance segmentation/separation. This was
important for extracting as much data as possible from the images. The example
pipeline is illustrated as SI Appendix, Fig. S1.

Angular Free Energy Calculation. To compute the relative angular free
energy landscape, G(θ), for each condition, we used the distributions of rod ori-
entations throughout all images in the corresponding AFM datasets. We gener-
ated a histogram of orientations using 3° bin widths, N(θ), and normalized these
histograms relative to the number of rods in the dominant orientation, N(θ*).
Taking the negative natural logarithm of these values gave us the G(θ) in terms
of Boltzmann's constant and the temperature, kBT, as G(θ) = �kBT
ln(N(θ)/N(θ*)).

Tracking. For performing tracking, we employed a graph-based method similar
to that of Yang et al. (44). While the seed/blob segmentation method we had
implemented had yielded strong results that offered us the ability to maximize
the amount of information extractable from any given frame, this did not guar-
antee that the boundaries were correctly discerned for all frames for all rods. For
some blobs, we still saw false merges that we cannot separate easily using mor-
phology or other methods. This is an issue when trying to do tracking on clut-
tered images. We first constructed a graph of blob associations for every pair of
consecutive frames. Each blob in each frame was a node. For every blob in frame
t, we found the blob in the following frame t + 1 with the highest intersection
over union (IoU) and created an edge between these nodes. Then, for every blob
in frame t + 1, we found the blob in frame t with the highest IoU and created
an edge here. If no parent is found for any of the blobs in frame t + 1 and the
size of the blob meets some area threshold requirement, this is marked as a
“starting point” node for the traversal. We additionally impose a minimum set
value for the maximum IoU for potential associations as well.

Once this was completed for all pairs of consecutive frames, we performed a
traversal from each starting node (nodes with no connection to anything in the
previous frame chronologically). When the traversal hits a node with two chil-
dren, a decision is made based on the average n former values of the centroid
on which child should be considered to be part of that track. From this, we were
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able to construct trajectories of rod motions. Once rod trajectories are formed,
we visualize the tracking of rods on the original video of the rods. We then filter
out tracks with errors from the final tracking analysis.

Markov Analysis. For the Markov model analysis, the first step was to take the
segmentation results and perform frame to frame data associations. We used
IoU for this association to find the corresponding blobs in frame t + 1 to t; for
each rod i at a given time t with angle θi(t), we found the corresponding rod at
time t + 1 to determine θi(t + 1). Since the stationary distributions of angles
only revealed the preferred angular states rather than all six expected potential
states, we began again by quantizing the data regularly into 3° bins. With this,
we could compute the frequency of transitioning between angular states: that
is, we compute j θ Sl ! Smð Þ j¼j fi j Sl ≤ θi tð Þ < Sl þ 3, Sm ≤ θi tþ 1ð Þ
< Sm þ 3g j, and we do this � Sl, Sm ∈ fS j �90 ≤ S ≤ 87, a mod 3¼ 0g.
From the transition frequency matrix, we computed the probability P Sl ! Smð Þ
of a rod to transition from angle Sl to Sm between two frames by dividing each row
of the matrix by the number of rods that started in Sl, which was simply the sum of
the corresponding row. This analysis was helpful because it allowed us to 1) find
angles that rods prefer to move toward as well as remain in and 2) create a statistical,
Markov-based model for how rods move within 1-s intervals (i.e., between frames).

kMC Simulations. kMC was used to simulate the dynamics as a Markovian ran-
dom walk on a biased energy landscape using a standard rejection-free
“residence time” kMC algorithm (45). We considered potential rotations in angle
of ±1°, where rates of forward and backward rotation are given as kþ1 θð Þ ¼
k0exp

G θð Þ�G θþ1°ð Þ
2kT and k�1 θð Þ ¼ k0exp

G θð Þ�G θ�1°ð Þ
2kT , and G(θ) is the angle-

dependent relative free energy. G(θ) was estimated from the experimental AFM
data as described above and was resampled to 1° intervals using piecewise cubic
spline interpolation. The resulting trajectories were resampled at 1-s intervals (cor-
responding to the AFM video frame rate) after calibrating k0 such that frame-to-
frame rms angular deviation in the simulations reproduced that of the experiment.

Justification of Random Walk Model. The dynamics of particles in dissipa-
tive (e.g., viscous) environments can often be broken into fast and slow
processes, with short-time behaviors following “ballistic” motion (i.e., motion
involving momentum terms) and long-time behavior emerging from the accu-
mulated effect of many incremental motions. As discussed in Einstein’s work on
Brownian motion (20), it is often the case that the short-time behavior cannot be
observed on experimental timescales. In such cases, it is appropriate to model
the dynamics using course-grained models that are not sensitive to the detailed
behavior on short timescales. Here, we confirm the reasonableness of this
approach through two analysis.

First, we consider that the relaxation time, Tr , for perturbations of angular
velocity of a nanoparticle in a viscous fluid can be estimated as Tr ≈ I=f , where
I is the moment of inertia and f is the rotational friction drag coefficient. For pro-
tein nanorods, we can estimate I ≈ 1=12 mass � length2 using the standard
equation for the rotation of a rod about its centroid, and we can approximate
f ≈ π � η � length3 using Kirchoff’s formula for the rotational friction drag coeffi-
cient of a sphere immersed in a fluid of dynamic viscosity η (44). The resulting
relaxation times are estimated to be Tr ≈ 0:2 to 0:3 ps. These values will be
reduced even further in the vicinity of the interface where the effective drag coef-
ficient will be higher. Thus, the timescales for ballistic motion (picoseconds) are
much smaller than the experimental timescales (seconds), and we conclude that
we can employ course-grained models.

Alternatively, we can consider the energetic contributions of the rotational
motion observed in AFM. The maximum angular velocities, ω, that can be
observed in AFM using a 1-Hz sampling rate are ∼1.5 rad/s. The associated rota-
tional kinetic energy can be estimated as KErot ¼ 1

2 Iω
2, giving maximum observ-

able values of ∼1�10�40, 5�10�39, and 3�10�38 J for Mica6, Mica18, and
Mica34, respectively. This is a clearly negligible contribution to the system
energy when compared with the thermal energies, which are on the order of kBT
= 4�10�21 J at room temperature.

These analyses confirm that a course-grained model neglecting ballistic
motion, such as a Markovian random walk, provides an appropriate strategy for
modeling the observable system dynamics. As noted in the text, we further con-
firm this through phase-space plots of the nanorod trajectories that show no evi-
dence for a reduction in kinetic energy as the protein traverses the energy bar-
riers between stable states, which would typify ballistic motion.

Checking Ergodicity. Simulated trajectories of angle vs. time were obtained by
running the kMC simulations for 20,000,000 iterations. We confirmed that the
resulting trajectory is ergodic by comparing the simulation’s output population
distributions with the experimental angular population distributions that were
used to generate the input energy landscape (SI Appendix, Fig. S7). We obtain
close agreement with the input population distribution and the output popula-
tions and can thus assume that the simulation time period has run long enough
to provides a statistically robust approximation of the system energetics, for
which our analysis will be limited by the statistics of the input data rather than
the statistics of the simulation.

Calibration of Time Constant. The kMC simulations utilize an arbitrary rate
constant k0, which must be calibrated in order to directly compare simulation
dynamics with experimental dynamics. We perform this calibration for each
system by choosing the rate constant that best reproduces the rms angular devi-
ation from frame to frame in the experimental data. The calibration is demon-
strated in SI Appendix, Fig. S8, where it is determined by finding the cross-over
points between the horizontal line (which represents the rms angular deviation
that we observe in experimental data between frames: that is, after a 1-s lag
time) and the corresponding thicker arc (which shows rms deviation of the simu-
lation data as a function of the number of computational time steps).

The value of k0, which provides the best agreement between experiment and
simulation, is tabulated below for each condition:

p06K: k0 = 159 attempts per second (unbiased diffusion coefficient, D =
0.048 rad2/s);
p18N: k0 = 68 attempts per second (unbiased diffusion coefficient, D = 0.021
rad2/s);
p18K: k0 = 52 attempts per second (unbiased diffusion coefficient, D = 0.016
rad2/s); and
p34K: k0 = 19 attempts per second (unbiased diffusion coefficient, D = 0.006
rad2/s).

We may also estimate the unbiased angular diffusion coefficient (i.e., the
angular diffusion coefficient that would be expected for that attempt frequency
in the absence of a biasing energy landscape) as D = k0 Δθ0

2. This analysis pro-
vides physically intuitive results. We find that the attempt frequency (and thus,
the angular diffusivity) is inversely related to particle size and is slightly higher
with sodium (an ion that binds less strongly to the mica surface than
potassium).

Data Availability. The tracking verification of each dataset and the synthetic
datasets by the simulation can be found at Zenodo (DOI: 10.5281/
zenodo.6300127).
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