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Abstract: The composition of the gut microbiota can be influenced by dietary composition.
In pregnancy, the maternal gut microbiome has associations with maternal and infant metabolic
status. There is little known regarding the impact of a vegetarian diet in pregnancy on maternal
gut microbiota. This study explored the gut microbiota profile in women who were vegetarian or
omnivorous in early gestation. Women were selected from participants in the Study of PRobiotics IN
Gestational diabetes (SPRING) randomised controlled trial. Nine women identified as vegetarians
were matched to omnivorous women in a 1:2 ratio. Microbiota analyses were performed using 16S
rRNA gene amplicon sequencing and analysed using the Quantitative Insights Into Microbial Ecology
(QIIME) and Calypso software tools. There was no difference in alpha diversity, but beta diversity
was slightly reduced in vegetarians. There were differences seen in the relative abundance of several
genera in those on a vegetarian diet, specifically a reduction in Collinsella, Holdemania, and increases
in the relative abundances of Roseburia and Lachnospiraceae. In this sub-analysis of gut microbiota
from women in early pregnancy, a vegetarian as compared to omnivorous diet, was associated with
a different gut microbiome, with features suggesting alterations in fermentation end products from
a mixed acid fermentation towards more acetate/butyrate.

Keywords: microbiota; pregnancy; vegetarian

1. Introduction

The composition of the gut microbiota has been associated with host metabolic status and health
and is affected by dietary composition [1]. The impact of vegetarian diets on the gut microbiota
in adults has been examined in observational and interventional trials. In a cross-sectional study
of 101 adults in Italy, greater richness, and increased abundance of the phylum Bacteroidetes was
observed in the vegetarian compared to vegan and omnivore groups [2]. Another cross-sectional
cohort examined 268 non-diabetic participants who were strict vegetarians, lacto-ovo vegetarians and
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omnivores [3]. The abundance of the phylum Firmicutes was lower and Bacteroidetes was higher in strict
vegetarians, with the genus Prevotella being increased amongst other changes [3]. A prospective study
addressed the changes in response to the adoption of a lacto-ovo-vegetarian diet for three months in
a group of 15 omnivores, in comparison to continuous omnivores (n = 7) and long term vegetarians
(n = 7) [4]. Adoption of a vegetarian diet did not change individual diversity of the gut microbiota
(alpha diversity) but caused a decrease in the diversity (beta diversity) in the group of people who
changed to a vegetarian diet. In addition, increases in the abundance of the genera Roseburia and
Ruminococcus, which are known to be involved in digestion of plant polysaccharides, were observed.
Those individuals who adhered to a long term vegetarian diet also showed enrichment in the genera
Haemophilus, Neisseria, Aggregatibacter, and Veillonella [4].

Plant-based diets are thought to be beneficial in the prevention and control of type 2 diabetes
and in reducing cardiovascular risk factors [5]. There is limited evidence that this may be mediated in
part through modulation of gut microbiota. When 6 obese participants with type 2 diabetes (n = 4)
and/or hypertension (n = 2) were assigned to a vegetarian diet for 1 month, a reduction in body weight,
and improvement in metabolic markers was observed. There was also a reduction in the Firmicutes to
Bacteroidetes ratio in the gut microbiota, with decrease in Enterobacteriaceae and increase in Clostridium
species and Bacteroides fragilis [6].

The composition of the gut microbiota is generally reported to be affected by pregnancy [7].
There are no studies the authors are aware of that have investigated the composition of the gut
microbiota in women maintaining a vegetarian diet during pregnancy. This cohort from the Study
of PRobiotics IN Gestational diabetes (SPRING) [8] randomised controlled trial supplementing
overweight or obese women with a probiotic offers the opportunity to examine the microbiota of
women in early pregnancy, prior to supplementation. The analysis described below aims to analyse
the association between dietary patterns on maternal gut microbiota in early pregnancy in this well
characterised cohort with detailed dietary and metabolic data.

2. Materials and Methods

2.1. Participants

Women were selected from participants in the Study of PRobiotics IN Gestational diabetes
(SPRING; ANZCTR 12611001208998) randomised controlled trial [8] who completed the food frequency
questionnaire and supplied a stool sample at baseline (<16 weeks gestation). The study was
approved by the human research ethics committee of the Royal Brisbane and Women’s Hospital
(HREC/11/QRBW/467) and The University of Queensland (201200080) and all participants provided
informed written consent. The study enrolled only overweight or obese women. Nine women
identified as vegetarians and they were matched to omnivorous women in a 1:2 ratio. The matching
was performed on maternal body mass index (BMI) at baseline, total energy intake at 16 weeks
gestation and the future development of gestational diabetes mellitus. Each woman completed the
Victoria Cancer Council Food Frequency Questionnaire (Version DQES V2.0) with instruction to include
only dietary information since the beginning of pregnancy. This dietary information was analysed for
macronutrient and fatty acid content. Women also provided a self-collected stool sample, which was
kept cold until storage at −80 ◦C prior to faecal DNA isolation. In addition, fasting blood samples;
anthropometric measurements and medical and obstetric history were obtained from all participants.

2.2. Faecal DNA Extraction

Stool samples were thawed at 4 ◦C prior to subsampling ~250 mg stool for DNA extraction using
the repeated bead beating and column (RBB + C) protocol and Qiagen AllPrep columns for DNA
purification [9,10]. The faecal subsample was mixed with the RBB + C lysis buffer and sterile zirconia
beads (0.1 and 0.5 mm diameter) and homogenised using a TissueLyser II (Qiagen, Chadstone, VIC,
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Australia) for 3 min at 30 Hz. DNA quantity and quality were analysed using the Nanodrop ND 1000
spectrophotometer (NanoDrop Technologies, Thermo Scientific, Scoresby, VIC, Australia) system.

2.3. 16S rRNA Sequencing

The V6-V8 hypervariable regions of the bacterial 16S rRNA gene in stool DNA extracts were PCR
amplified using the 926F forward (5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG AAA
CTY AAA KGA ATT GRC GG-3′) and 1392R reverse (5′-GTC TCG TGG GCT CGG AGA TGT GTA
TAA GAG ACA GAC GGG CGG TGW GTR C-3′) primers. Positive (E. coli JM109 DNA) and negative
(deionised sterile water) controls were included in each PCR run. The PCR products were barcoded
with the Nextera XT V2 index kit Sets A and B (Illumina, San Diego, CA, USA), and purified with the
AMPure XP bead system (Illumina, San Diego, CA, USA). Sequencing libraries were prepared after
quantification, normalisation and pooling of the barcoded DNA and sequenced on the Illumina MiSeq
platform (Illumina, San Diego, CA, USA) at the Australian Centre for Ecogenomics at The University of
Queensland. Forward and reverse sequences were joined and de-multiplexed using the Quantitative
Insights Into Microbial Ecology (QIIME) v1.9.1 analysis tool [11]. The open reference operational
taxonomic unit (OTU) picking method was used for taxonomic assignments via the Greengenes
reference database, with a pairwise identity threshold of 97%. Any OTUs present in the negative
controls were removed from the analysis as were OTUs with a relative abundance of <0.0001. The OTU
table was rarefied to 3000 sequences/sample prior to downstream analysis. No samples were removed
in the rarefaction step.

2.4. Statistical Analysis

The abundances of the bacteria were not normally distributed and are therefore presented as
median and interquartile range (IQR). Non-parametric statistical methods were used throughout the
study with a p value cut-off of <0.05 for statistical significance. The online Calypso software tool [12]
was used to analyse the sample profiles, presenting primarily the results at the family and genus level
of taxonomic assignments. The Chao1, Shannon, ACE, Evenness, Richness and Simpson indices were
used for comparison of within sample (alpha) diversity. Between sample (beta) diversity variation was
compared using the permutation multivariate analysis of variance (PERMANOVA) in the Adonis tool.
Clustering of the samples was analysed by canonical correspondence analysis. Network analysis was
performed to identify positive and negative correlations between bacterial taxa for both the vegetarian
and omnivorous groups. Genera associated with a vegetarian or omnivorous diet were identified
using Spearman’s rho correlation coefficients with 1000-fold permutations. The results are reported
as significant if the false discovery rate (FDR) was <0.05, with the degree of colouring of the nodes
reflecting the level of significance of association with either diet type. The size of the nodes indicates
the abundance of the genus. The predicted functions of the microbiome were analysed with the
PICRUSt software tool [13]. LefSe (Linear discriminant analysis (LDA) effect size) analysis was carried
out to identify genera discriminating between the groups [14].

3. Results

3.1. Study Participants

For this sub-analysis, the vegetarian group was selected from the women who supplied a faecal
sample and dietary information at 16 weeks gestation. Only nine women followed a vegetarian diet.
Each of these women was matched with two women who were similar in BMI, future gestational
diabetes status and overall energy intake (Table 1).

This ensured that the groups were more even in size rather than comparing the vegetarian
women to all omnivorous women. The overall reported energy intake was low, suggesting possible
underreporting, but not different between groups. Women on a vegetarian diet had similar blood
pressure and slightly higher fasting blood glucose than women on an omnivorous diet. However, their
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overall future gestational diabetes mellitus (GDM) rates were not different from the overall Study
of PRobiotics IN Gestational diabetes (SPRING) population (11.1% vs. 15.3%, p = 1). Women eating
a vegetarian diet had significantly lower intake of protein, sugars and saturated fat but higher intake
of polyunsaturated fat (PUFA) (Table 2). They also had higher levels of dietary linoleic acid (ω-6),
and lower levels of arachidonic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA).

Table 1. Participant characteristics.

Vegetarian Omnivorous p Value

N 9 18 ND
Maternal age (years) 33 (29–34) 34 (32–37) 0.38

Maternal BMI (kg/m2) * 28.3 (26.5–35.5) 28.4 (26.5–35–3) 0.91
Ethnicity

ND
Caucasian (%) 7 (77.8) 16 (88.8)

Indian (%) 2 (22.2) 1 (5.6)
Asian (%) 0 (0) 1 (5.6)
Parity $ 0 (0–2) 1 (1–2) ND

Systolic blood pressure (mmHg) 110 (107–118) 110 (101–112) 0.46
Diastolic blood pressure (mmHg) 60 (58–70) 63 (60–70) 0.59

Glucose (mmol/L) 4.5 (4.4–4.6) 4.3 (4.1–4.4) 0.04
HbA1c (%) 4.8 (4.7–5.1) 4.7 (4.6–5.0) 0.41

Future GDM (%) 1 (11.1) 2 (11.1) 1
Insulin 4.7 (3.8–7.4) 7.3 (4.6–8.3) 0.38

Total Cholesterol (mmol/L) 5.4 (4.7–6.1) 5.3 (4.6–5.9) 0.71
HDL cholesterol (mmol/L) 2 (1.7–2.2) 1.7 (1.6–2.0) 0.11
LDL cholesterol (mmol/L) 3 (2.5–3.2) 3.0 (2.4–3.3) 0.88

VLDL cholesterol (mmol/L) 0.6 (0.4–0.7) 0.6 (0.4–0.8) 0.75
Triglycerides (mmol/L) 1.3 (1.0–1.8) 1.4 (0.8–1.7) 0.87

Fetal sex (F/M) 6/3 11/7 1
Birth weight (g) 3572 (3193–3992) 3397 (2976–3978) 0.52

Birth length (cm) 51.5 (49.1–53.0) 50 (49.2–55.3) 0.82

All data are presented as median (IQR), comparisons between the groups were made by Mann–Whitney U testing.
All circulating metabolic markers were determined fasting. * determined at study entry; $ data missing from five
vegetarians and four controls. ND: not-determined; BMI: body mass index; GDM: gestational diabetes mellitus;
HDL: high-density lipoprotein; LDL: low-densitiy lipoprotein; VLDL: very low-density lipoprotein.

Table 2. Dietary characteristics.

Vegetarian Omnivorous p Value

Overall Energy intake (kJ/day) 4988 (3531–6387) 5528 (5021–6428) 0.15
Protein (g/day) 42.5 (32.7–59.2) 71.1 (61.3–77) 0.0003

Iron intake (g/day)) 8.1 8.4 0.56
Carbohydrate (g/day) 129.1 (106.5–154.4) 144.6 (133.5–167) 0.21

Starch (g/day) 76.5 (47.5–95.1) 74.0 (54.1–88.0) 0.78
Sugars (g/day) 56.0 (44.2–72.1) 75.3 (64.2–92.3) 0.02

Dietary fibre (g/day) 20.9 (13.9–26.7) 16.5 (13.5–19.6) 0.13
Glycaemic Index 51.5 (49.0–52.1) 49.1 (46.7–52.6) 0.40

Saturated fatty acids (g/day) 13.9 (11.3–23.8) 21.5 (17.4–26.5) 0.04
Monounsaturated fatty acids (g/day) 18.0 (10.6–23.8) 18.9 (16.4–23.5) 0.53
Polyunsaturated fatty acids (g/day) 11.6 (9.1–15.8) 6.5 (5.0–8.6) 0.006

α-Linoleic acid (g/day) 0.97 0.63 0.16
Linoleic acid (g/day) 10.4 5.7 0.008

Arachidonic acid (g/day) 0.02 0.05 0.05
EPA (g/day) 0.003 0.078 0.002
DHA (g/day) 0.01 0.17 0.002

All data is presented as median (IQR), comparisons between the groups were made by Mann–Whitney U testing.
EPA: eicosapentanoic acid; DHA: docosahexanoic acid.
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3.2. Comparison of Overall Gut Microbiota Composition

While there was no significant differences between the groups in terms of their alpha
(within sample) diversity metrics for any of the indices analysed at phylum (Figure S1), genus (Shannon,
p = 0.56, Figure 1A and Figure S2) and OTU level (Figure S3), the beta diversity between groups was
significantly different at genus and OTU level but not at phylum (genus level R = 0.16; p = 0.046,
Figure 1B; OTU level R = 0.17; p = 0.041, Figure S4A) as was the canonical correspondence analysis of
these profiles (genus level p = 0.021, Figure 1C; OTU level p = 0.017, Figure S4B).
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Figure 1. Measures of diversity, comparing vegetarian to omnivorous participants. (A) Shannon
Index, Box plots show the 2.5th and 97.5th percentile with a line at the median; (B) Bray–Curtis
Distance, Box plots show the 2.5th and 97.5th percentile with a line at the median; (C) Canonical
correspondence analysis at the genus level according to diet. The percentage of variation is shown.
This hypothesis-driven technique suggests that diet significantly affects gut microbiota composition
(p = 0.017). Black circles, omnivorous diet; white squares, vegetarian diet.

When comparing the composition of the gut microbiota between the groups, there were no
differences in abundance at phylum level. At genus level, women consuming a vegetarian diet
possessed significantly lower abundances of Collinsella (p = 0.0059), Holdemania (p = 0.025), Unclassified
S247 (p = 0.039), and Eubacterium (p = 0.041), but had significantly higher relative abundances
of Roseburia (p = 0.0064) and Unclassified Lachnospiraceae (p = 0.0087) and the relative abundances
of Clostridium and Acidaminococcus approached statistical significance (p = 0.060 and p = 0.061,
respectively, Figure 2A). Similarly, the LEfSe analysis identified the genera Roseburia, Clostridium,
Uncl. Lachnospiraceae and Holdemania as biomarker genera for a vegetarian diet whereas Collinsella,
Eubacterium and Uncl. S247 as biomarker genera for an omnivorous diet (Figure 2B). These results
were in line with the comparisons at family (Figure S5) and OTU level (Figures S6 and S7), which also
indicate that members of these genera are altered in a similar direction by a vegetarian diet.
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3.3. Network Analysis

Network analyses were performed to investigate if diet type altered the overall composition of the
gut microbiota. A vegetarian diet in early pregnancy was associated with increased abundance
of Holdemania, Roseburia, Acidaminococcus, Uncl. Lachnospiraceae, Uncl. Erysipelotrichaceae and
Parabacteroides. In contrast, an omnivorous diet in early pregnancy is associated with increased
abundance of Collinsella, Uncl. S247, Ruminococcus, and Uncl Christensenellaceae (Figure 3). The relative
brightness of the nodes indicates the significance level of their association, highlighting the importance
of Roseburia, Holdemania and Uncl. Lachnospiraceae in the vegetarian group and that of Collinsella in the
omnivorous group.
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3.4. Regression Analyses of Microbiota Profiles with Anthropometric Data

The composition of the gut microbiota was not correlated with the participants’ BMI or fasting
glucose levels. Fasting circulating lipid and insulin levels as well as glycated haemoglobin (HbA1c)
were correlated with abundance of specific genera (Table 3). Dietary intake of many macronutrients
was correlated with gut microbiota composition (Table 3) although dietary intake of sugars, total
fatty acids and mono-unsaturated fatty acids (MUFA) and total energy was not correlated to bacterial
abundance. Given the observed differences in PUFA intake between the groups, this was investigated
further by analysing the relationships between gut microbiota composition and dietaryω-6 andω-3
fatty acids. The intake of the linoleic acid (ω-6) fatty acid was positively correlated with Holdemania
(rho = 0.51, p = 0.006) and Roseburia (rho = 0.40, p = 0.04) abundance, but negatively correlated with
Collinsella (rho = −0.50, p = 0.009), Slackia (rho = −0.42, p = 0.03) and Uncl. Rikenellaceae (rho = −0.40,
p = 0.04). Arachidonic acid (ω-6) intake was positively correlated with Bilophila taxa (r = 0.44, p = 0.02),



Nutrients 2018, 10, 890 8 of 13

whereas the intake of ω-3 fatty acids eicosapentanoic acid (EPA) and docohexaenoic acid (DHA)
positively correlated with an Uncl. Rumminococcus (r = 0.43, p = 0.02 and r = 0.42, p = 0.03 respectively);
Linolenic acid (ω-3) intake was positively correlated with Holdemania abundance (rho = 0.44, p = 0.02)
and negatively with Streptococcus (rho = −0.43, p = 0.02).

Table 3. Correlations between specific genera and clinical characteristics and dietary intake.

Genus Rho p Value

HbA1c
Ruminococcus −0.59 0.002

Turicibacter −0.47 0.016

Insulin Coprococcus −0.38 0.050

Total cholesterol
Uncl. RF39 −0.40 0.036

Ruminococcus 0.39 0.043

HDL cholesterol
Uncl. Coriobacteriaceae −0.43 0.027

Parabacteroides 0.38 0.050

LDL cholesterol Uncl. RF39 −0.43 0.029

VLDL cholesterol
Lachnospira −0.43 0.029
Collinsella 0.39 0.048

Triglycerides Lachnospira −0.40 0.038

Dietary Intake (g/day)

Protein Adlercreutzia 0.46 0.017

Carbohydrates Dialister −0.42 0.028
Ruminococcus 0.41 0.034

Starch Dialister −0.47 0.013
Uncl. Rikenellaceae −0.42 0.030

Coprococcus 0.41 0.033
Uncl. Clostridiaceae 0.39 0.047

Fibre Uncl. Lachnospiraceae 0.67 0.0002
Coprococcus 0.58 0.002
Haemophilus 0.44 0.021

Roseburia 0.42 0.031
Clostridium 0.41 0.036
Holdemania 0.38 0.050

Glycaemic index Holdemania 0.51 0.007
Prevotella −0.48 0.011

Uncl. Costridiaceae 0.44 0.020

Poly-unsaturated fatty acids Holdemania 0.47 0.012
Collinsella −0.46 0.017
Roseburia 0.41 0.033

Uncl. Rikenellaceae −0.41 0.035

Saturated fatty acids Roseburia −0.40 0.038

3.5. Predicted Biosynthesis Function Analyses

Predicted biosynthesis function analyses (Figure 4) suggested that microbiota associated with
biosynthesis pathways for fatty acids, lipids, folate amongst others were more pronounced in those on
vegetarian diet.
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4. Discussion

This study explored the gut microbiota profile in women who were vegetarian or omnivorous
during early gestation. There was no difference in alpha diversity, but beta diversity was reduced
in vegetarians. There were differences seen in the relative abundance of several genera in those on
a vegetarian diet, specifically a reduction in Collinsella, Holdemania, and an increase in Roseburia and
Lachnospiraceae. Functional analyses suggested that women on a vegetarian diet had higher abundance
of species involved in fatty acid and lipid synthesis.

We have previously reported a negative correlation between dietary fibre intake and Collinsella
abundance in early pregnancy in the SPRING cohort [15]. This is consistent with the reduction in
Collinsella seen in the current study where dietary fibre intake trended to be higher in those women
who followed a vegetarian diet. Collinsella is positively correlated with insulin and lipid levels in
the SPRING cohort [9] as well as outside pregnancy. In non-pregnant omnivorous people, Collinsella
aerofaciens was also reported to be higher than in their vegetarian counterparts [16].

Lachnospiraceae abundance was positively correlated with leptin and BMI in the larger SPRING
cohort. The current study found an increase in Lachnospiraceae in those on a vegetarian diet.
Lachnospiraceae degrade polysaccharides to short chain fatty acids (SCFA) and in animal studies,
with herbivores having a higher abundance than carnivores [17]. Outside pregnancy, a study of
adults, 11 lacto-vegetarian and 20 vegans compared to 20 omnivores showed a lower abundance of
Lachnospiraceae in those on a vegetarian diet [18].

In this study, a genus within the Lachnospiraceae family, Lachnospira, was negatively correlated
with very low-density lipoprotein (VLDL) cholesterol and circulating triglycerides indicating that the
associations between host factors and bacterial abundance differ between bacterial family members.
The protein and sugars intake were lower in those on vegetarian than omnivorous diets, with some
differences in fatty acid intake. The data from the current study supports some of the findings of
other studies of the gut microbiota in pregnancy. We believe this study to be the first to examine
the impact of whole dietary patterns (a vegetarian diet compared with omnivorous diet) rather
than analysis based on macronutrient composition. A study of overweight and obese women at
~17 weeks gestation in Finland examined the relationship between diet composition as measured
by 3-day food diary and maternal gut microbiota [19]. In this study, the analysis focused on intake
of fat and fibres separating women into three groups: low fibre/moderate fat, high fibre/moderate
fat and low fibre/high fat diets. Lachnospira was negatively correlated with VLDL particles and
VLDL triglyceride content as well as overall triglyceride levels [19], similar to the negative correlation
between Lachnospira and VLDL cholesterol levels observed in this study. Consumption of almonds,
which have a relatively high proportion of PUFAs, has been shown to increase Lachnospira, Roseburia,
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and Dialister abundance in 18 healthy adults [20]. Lachnospira is increased in whole grain compared to
refined grain diets in the setting of adults randomized to these diets for six weeks [21]. In 37 Australian
children aged 2–3 years, Lachnospira was positively associated with vegetarian diets [22]. Lastly,
Lachnospira abundance is decreased in overweight and obese women just after delivery suggesting that
its abundance is associated with a healthy gut microbiota [23].

Members of genus Roseburia are Gram-positive and produce butyrate during fermentation.
Butyrate is widely described as beneficial because it can increase energy uptake and utilisation by the
host epithelium, as well as modulate local inflammation and cell repair via apoptosis [24]. Roseburia
abundance is increased in the setting of the Mediterranean diet [25], suggesting that dietary fibres
and carbohydrate composition have variable influence on Roseburia abundance [26] with resistant
starches promoting microbial production of SCFA such as butyrate. In the current study, we found
a greater abundance of Roseburia in women consuming a vegetarian diet with no difference in total
intake of carbohydrate or fibre between the vegetarian and omnivore groups. However, it is possible
that with a larger cohort size, women on a vegetarian diet would have higher dietary fibre intake given
that the median intake tended to be higher in women on a vegetarian diet in this study. A positive
correlation between Roseburia and fibre intake is commonly reported and seen in the current study as
well. Even though fibre intake did not differ, the type of fibre in the diet of those in our study may
have differed between groups, which could explain the difference in Roseburia abundance. Roseburia
abundance was also positively correlated with PUFA intake in this study. PUFA intake was higher
in women on a vegetarian diet especially of ω-6 fatty acids such as linoleic acid. Linoleic acid was
also positively correlated with Roseburia abundance. Given that some Gram-positive bacteria (such as
Roseburia) can use exogenous fatty acids for the biosynthesis of lipids and fatty acids [27], it is possible
that the higher abundance of PUFAs drives the higher abundance of fatty acid biosynthesis pathways.
Roseburia is found in the mucosal part of the gut microbiota rather than the luminal part and there is
some evidence that it may serve to protect other mucosal bacteria such as Faecalibacterium prausnitzii
from the detrimental effects of linoleic acid through biohydrogenating the linoleic acid to stearic
acid [28]. A small randomised controlled trial of a ω-3 PUFA in healthy middle-aged individuals
increased Roseburia abundance when given conjugated to triglycerides but as ethyl ester conjugates [29]
indicating that the form in which PUFAs are presented to the gut microbiota may be of importance to
their effects.

Holdemania is a Gram-positive anaerobic genus from the family Erysipelotrichaceae. We saw
an increased abundance of Holdemania and Uncl.Erysipelotrichaceae in women on vegetarian diet.
Holdemania abundance was positively correlated with intake of dietary fibre, overall PUFA and
both ω-3 and ω-6 PUFAs in this study. We have previously reported that in network analyses
of pregnant women with high versus low dietary fibre intake, high fibre intake is associated with
higher abundance of Holdemania [15]. Holdemania abundance has been reported to increase with dietary
resistant maltodextrin diets in healthy adult men [30]. It may be that Holdemania, which is saccharolytic
and does not grow on animal protein, is emblematic for a diet low in animal protein [31].

The strength of the current study is in the carefully characterised and detailed data on the
participants. Our results are also internally consistent with the findings from the larger SPRING cohort
around fibre intake. The overall numbers included in these sub-analyses are small, and many of the
findings here need to be explored in larger cohorts. Our study provides valuable preliminary data to
provide insight into some of the factors driving differences in maternal metabolism in pregnancy.

5. Conclusions

This study suggests that a vegetarian diet in early pregnancy is associated with a different
composition of the gut microbiota compared to an omnivorous diet. A vegetarian diet is associated
with higher abundance of bacteria that produce SCFA. It is unclear if this results in higher circulating
SCFA, a healthier gut mucosa and lower levels of inflammation.
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