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Introduction
Artificial intelligence (AI) has brought about 
revolutionary changes in the medical field, 
including clinical practice, basic research 
and health monitoring. The powerful 
computing capabilities and intelligent algo-
rithms enable it to process and analyse large-
scale medical data, thereby assisting clinicians 
and researchers in better understanding 
and addressing complex medical prob-
lems. In recent years, significant progress 
has been made in AI-aided medical image 
interpretation, clinical decision support and 
personalised medicine. Furthermore, the 
development of large language models has 
further expanded the prospective applica-
tions of AI models. However, there are still 
several issues that need to be addressed in 
integrating AI into clinical practices. We have 
reviewed the existing achievements (figure 1) 
and possible challenges (figure  2) in the 
three stages: data preparation, modelling 
and prediction as well as model deployment 
and application. Finally, we discussed the 
differences between mental health and other 
domains as well as the special considerations 
in ‘AI plus psychiatry’.

A tip of the iceberg: effectively use the 
massive medical data
It was estimated that a hospital produces 
roughly 50 petabytes of electronic health 
data daily on average,1 including electronic 
health records (EHRs), radiological imaging, 
genomic sequencing, pathological images 
and other related information.

Traditional approaches often face chal-
lenges in fully utilising and analysing the 
vast and complex healthcare data, while the 
development of AI has injected new vitality 
into the paradigm of ‘data-driven discovery’. 

For instance, in psychiatric disorders, natural 
language processing (NLP) techniques can 
analyse patients’ speech, text and social 
media data to assist in the early diagnosis 
and monitoring of mental illnesses.2 In 
neurodegenerative diseases, AI models can 
automatically detect and locate brain abnor-
malities and monitor disease progression 
through brain imaging.3 In oncology, deep 
learning algorithms can use genomic data to 
predict tumour susceptibility, personalised 
treatments and drug responses.4 With the 
development of large language models, AI 
techniques have further enhanced their capa-
bility to integrate and analyse complex data 
more generally.

Despite the abundance of medical data, 
its utilisation remains a mere tip of the 
iceberg. There are three key reasons for the 
insufficient usage: data quality, data secu-
rity and privacy as well as data sharing and 
collaboration.

The quality of data determines the model 
performance. AI functions as a processing 
tool rather than a creator that can beautify 
the data. If the data quality is poor, the model 
will ultimately face the dilemma of ‘garbage 
in, garbage out’. An extreme example is that 
any model would lose its efficacy when faced 
with totally randomly generated data.

Nevertheless, improving medical data 
quality is not an easy task. The sheer volume 
of medical data and various data acqui-
sition approaches make it impossible to 
achieve perfection. Some algorithm-based 
approaches are proposed to efficiently 
process the imperfections in data. Recently, 
deep learning methods have shown their 
advantages in detecting and removing arte-
facts from radiological5 6 and pathological 
imaging.7 The trained convolutional neural 
network (CNN), when applied to medical 
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Figure 2  Existing difficulties in ‘AI plus medicine’ and possible solutions. API, application programming interface. LLM, large 
language model.

Figure 1  Prosperities and various applications of artificial intelligence in the medical domain.

imaging data, can significantly reduce image artefacts and 
improve the visualisation of critical anatomical structures. 
Apart from imaging quality, accurate labelling is another 
crucial part. It is reported that the proportion of incor-
rectly labelled data ranges from 8% to 38% across several 
real-world datasets.8 Therefore, methods for label quality 
control and cleaning should also be given attention. For 
instance, researchers have proposed Annotation Quality 
Assessment (AQuA),9 a benchmarking tool for label quality 
assessment, which can be easily integrated into labelling 

workflows, enabling flexible, versatile and comprehen-
sive data annotation quality evaluation. Besides, ‘active 
label cleaning’,10 which ranks instances according to esti-
mated label correctness and labelling difficulty of each 
sample, has been reported to aid with model training 
and enhance performance. Conclusively, efforts should 
be made to promote a virtuous cycle between AI model 
development and data management (ie, high-quality data 
aid the construction of reliable AI models, and AI models 
facilitate better data management).
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In addition to high-quality data, protecting data 
privacy and ensuring compliance are crucial, especially 
in healthcare. The Governance Model for AI in Health-
care (GMAIH)11 provides principles for fairness, trans-
parency, trustworthiness and accountability in model use 
and deployment. Researchers should standardise data 
collection and model development, including anonymi-
sation and minimisation, and establish a robust manage-
ment process based on GMAIH or similar guidelines. 
Third-party audits are also necessary to regulate AI system 
compliance and security.

Concerns for data privacy have led to a dilemma 
known as ‘data silos’,12 that is, the isolation of data 
among different medical institutions. Anonymisation can 
conceal identities but is limited to personally identifiable 
information. Differential privacy, by adding noise to data 
queries, balances deidentification and utility, enabling 
meaningful analysis while protecting sensitive informa-
tion. For instance, researchers have proposed a differ-
ential privacy deep learning framework called ‘deepee’,13 
which can be integrated with the PyTorch deep learning 
framework. The framework maintains the excellent 
performance of the AI model for pneumonia classifica-
tion and liver tumour segmentation while ensuring strict 
privacy protection.

Moreover, federated learning (FL) makes cross-centre 
data communication possible. In contrast to traditional 
approaches that require centralised data storage for 
model training, FL ensures the data are stored locally, 
but the model parameters are shared among centres. 
For example, a study14 trained an FL model using data 
from 20 global medical institutions to forecast the future 
oxygen demand of patients with COVID-19 using vital 
signs, laboratory data and chest X-rays. Compared with 
single-site models, the FL model achieved a 16% higher 
average area under the curve and 38% better generalis-
ability across sites.

Beginning AI trainee: build trustworthy models for 
surveillance, diagnosis and prognosis
Owing to the extensive medical data, deep learning has 
flourished in the field of healthcare. A series of diverse 
backbone networks (ie, universal architecture) have 
emerged, each of which excels in handling specific types 
of medical data. CNN is a widely used automatic feature 
extractor that can be applied to different modalities, such 
as X-ray, computed tomography (CT), magnetic reso-
nance imaging (MRI) and ultrasound. Transformers have 
demonstrated remarkable efficacy in multiple tasks, such 
as EHR processing, healthcare question-answering (QA), 
image classification and object detection. Recurrent 
Neural Network (RNN) is designed for sequential data, 
such as time series data (eg, electrocardiograms, elec-
troencephalograms and longitudinal monitoring data), 
multi-phased data (eg, contrasted MRI and CT series), as 
well as video medical imaging (eg, endoscopic videos). 
Graph Neural Network (GNN) is a powerful tool for 

learning complex relationships and interactions between 
nodes in a graph structure, such as medical knowledge 
graphs, pathology images and gene interaction networks.

Several works have provided strong support for the 
powerful capabilities of AI in medical prediction prob-
lems. An AI model for pancreatic cancer early screening 
via non-contrast CT reached a sensitivity of 92.9% and a 
specificity of 99.9% through over ten thousand training 
and validation samples.15 Besides, AI algorithms special-
ised for Gleason grading have been validated to demon-
strate pathologist-level performance on independent, 
cross-continental cohorts, where the algorithms achieved 
agreements of over 0.85 with expert uropathologists.16 
Furthermore, AI-based biomarkers extracted from H&E 
slides have also demonstrated the ability to stratify stage II 
and III colorectal cancer patients into distinct prognostic 
groups within large, independent patient cohorts.17 
These exciting results enthuse researchers to believe that 
AI-based precise medicine is entering its prime time.

Though quite a few AI models are being developed, 
most of them have not been applied in clinical prac-
tice, that is, they are not qualified enough to be trainee 
doctors. We consider that this is mainly attributable to 
two reasons: one is the insufficient number of training 
samples, which affects the model’s accuracy; the other is 
the lack of transparency and interpretability of the model.

The lack of extensive training data results in instability 
and unreliability of the AI model, making it difficult to 
reach the same level as clinicians who have grown and 
trained through years of dedicated study and practice. 
Most AI models are trained on small sample sizes (typi-
cally only a few hundred, with a small proportion of a few 
thousand) from retrospective cohorts. Consequently, the 
models tend to suffer from overfitting to specific datasets, 
resulting in a lack of robustness and generalisability when 
applied to external validation or prospective cohorts. 
We encourage researchers to fully use public datasets in 
the process of training AI models. Additionally, if appro-
priate, researchers should consider adopting data-sharing 
approaches such as FL, which allows them to integrate 
sample data from multiple institutions to increase the 
sample size.

While high accuracy is crucial, transparent decision-
making processes and interpretability are also vital 
components. Most AI models are black-box structured, 
with their decision-making processes being opaque. 
Heatmaps are commonly used to visualise the attention 
regions of a deep learning model, helping researchers 
better understand the model’s decision-making process. 
Moreover, integrating medical prior knowledge can be 
another approach to improve the reliability of the AI 
models. This approach can use the rich experience and 
knowledge accumulated by experts and convert it into a 
form that AI can learn and apply in order to make up for 
the limitations of relying solely on data-driven training.

Furthermore, we should carefully integrate AI tools 
into the medical field, seeking a balanced collaboration 
between doctors and AI rather than completely relying 
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on AI’s decisions. Google has proposed a framework 
called ‘Complementarity-Driven Deferral to Clinical 
Workflow’(CoDoC),18 which is an AI system that learns to 
decide between the prediction results from deep learning 
models and clinicians. This helps AI systems identify their 
own limitations, thereby improving clinical reliability. For 
example, in the breast cancer X-ray identification task, 
the AI model that integrated CoDoC reduced the false 
positive rate by 25% while maintaining the same true 
positive rate. This demonstrates the potential benefits 
of a complementary approach, where AI and clinicians 
work together to enhance the accuracy and reliability of 
medical diagnoses.

Pandora’s box: carefully embrace the emerging 
foundation models
The development of Generative Pre-trained Transformer 
(GPT) models has been a significant milestone in deep 
learning, demonstrating the potential of large-scale pre-
training and fine-tuning techniques for understanding 
massive real-world data. Foundation models like GPT have 
significantly advanced the field of NLP and computer 
vision and subsequently have rapidly expanded into the 
medical domain.

In healthcare, compared with ‘specialist’ models that 
focus on single tasks, foundation models can integrate 
multi-modal medical data, including imaging, EHRs 
and multimedia health consultation data, to be a ‘gener-
alist’ to assist clinicians in various multitask prediction 
scenarios, such as diagnosis, treatment assessment and 
disease surveillance. Through iterative optimisation of 
trillions of parameters on extensive medical datasets, 
foundation models can grow from an ‘AI-medical trainee’ 
to an ‘AI-general doctor’.19

These trained AI doctors have achieved remarkable 
performance in various aspects, including medical exam 
QA, real-life clinical dialogues, report identification 
and visual understanding. For instance, Med-Pathways 
Language Model (Med-PaLM), a general instruction-
prompt large language model, yields promising perfor-
mance on long-form QA scenarios that have been rated 
a recognition score of 92.6% by a group of clinicians, 
which is comparable to real-world clinician-generated 
answers (92.9%).20 Alongside its precise general medical 
QA capabilities, Med-PaLM exhibits a remarkable ability 
to assess psychiatric functioning in various mental disor-
ders. Notably, it achieves an accuracy exceeding 0.8 in 
predicting depression scores based on standardised 
assessments, with no significant difference compared 
with clinical assessors.21 Besides, RadBERT, a family of 
bidirectional encoder representations from transformers 
(BERT)-based language models tailored to radiology, 
demonstrate appreciable performances on abnormality 
identification, report coding and content summarisation 
(with accuracies all above 95%).22

Apart from language models such as Med-PaLM 
and RadBERT, large vision models and multimodal 

foundation models also have exhibited versatile medical 
prediction capabilities and superb generalisation ability 
with no-new (ie, zero-shot learning) or limited (ie, few-
shot learning) training sample on a new task. Localize 
and Segment Anything Model for 3D Medical Image—a 
two-stage methodology that first performs prompt-based 
(ie, clinical cues like organ names or specific anatomical 
structures) position identification and then delineates 
the boundary—achieves precise automated segmentation 
with zero-shot learning on 38 distinct organs.23 Pathology 
language-image pretraining (PLIP), goes beyond uni-
modal text or image data and adopts a multimodal 
approach by combining image and text understanding. 
PLIP exhibits superb zero-shot learning capability and 
achieves precise performance in various types of infer-
ences, such as histopathological tissue classification, text-
to-image and image-to-image retrieval.24

In conclusion, these medical foundation models, with 
large parameters trained on extensive medical data, 
can exhibit emergent intelligence to achieve favourable 
performances compared with small-parameter single-task 
models. Consequently, they can better provide healthcare 
consultations and decision-making.

Though prospects are rosy, applying large models into 
clinical settings remains fraught with challenges. In the 
healthcare setting, there are more specialised terminol-
ogies and a lower tolerance for errors compared with 
other application domains. Large AI models should 
serve as objective medical assessors rather than casual 
storytellers. Therefore, evaluating the reliability becomes 
crucial to minimise potential security risks to ensure their 
positive contribution to clinical practice. It is particularly 
important to address the potential issue of ‘hallucination’ 
in large language models, where the models may ‘uncon-
sciously’ generate fabricated, inconsistent or erroneous 
information.25

The mitigation of hallucinations in healthcare is a multi-
pronged process, where both inner (ie, the model itself) 
and outer (ie, human intervention) approaches should 
be adopted. For inner ways, fine-tuning for specific tasks 
can aid the model in becoming an expert in a particular 
domain, thereby reducing the generation of fabricated 
false information. Besides, in situations where the model’s 
output is uncertain, providing prompts such as ‘I don't 
know’ can help minimise the occurrence of hallucinations. 
For outer ways, human-in-the-loop can assist. During the 
model development process, domain experts can monitor 
and then make timely corrections to erroneous outputs. 
This facilitates a feedback loop that allows the model to 
enhance its performance through reinforcement learning.

While these approaches offer certain avenues to 
enhance the reliability of large medical models, there is 
still a long way to go before they are truly applied in prac-
tice. Once the Pandora’s box is opened, it will be diffi-
cult to close it again. Therefore, we should recognise the 
hope brought by large models, but we must treat them 
with caution and actively address any potential issues that 
may arise.
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Castle in the air: land AI in clinical practice
Despite the rapid advancements of AI models in the 
academic domain, their practical implementation in 
clinical settings still lags. Apart from the accuracy, robust-
ness and stability, deployment and usability of AI models 
are crucial considerations when applying AI in hospi-
tals. Deploying AI models necessitates a comprehensive 
evaluation of factors such as time efficiency, computing 
resources, storage capacity and compatibility with the 
existing medical systems. Furthermore, visual interfaces 
are essential to improve usability, that is, clinicians can 
easily use the model, making AI a desirable assistant 
rather than a burden for doctors.

Model-as-a-Service (MaaS) has simplified the 
process of applying AI models in clinical settings. It 
adopts a plug-and-play approach, enabling hospitals 
or clinical institutions to access and use AI models 
through simple application programming interfaces 
without manually configuring and maintaining exten-
sive hardware infrastructure. In traditional local 
deployments, high-performance servers or graphics 
processing units are required to meet the compu-
tational demands of AI models, whereas, as MaaS is 
cloud-based, all hardware would be well-settled by 
service providers.

In addition, most AI models are only available in code 
format, which is hard for clinicians who lack program-
ming expertise to use. Encapsulating AI models into 
web-based interfaces or client programmes provides 
a user-friendly approach to ensure clinicians can 
directly access and use the models through browsers, 
which could largely enhance usability and operability.

Despite the potential conveniences MaaS provides, 
several issues remain to be addressed. In clinical 
applications, the timeliness and security of data trans-
mission are important. Particularly when dealing with 
radiological or pathological images (which can reach 
gigabyte-level file sizes), data transmission becomes a 
time-consuming task. Furthermore, transferring data 
to the cloud may introduce risks of privacy breaches; 
thus, appropriate data protection measures from 
both technique and policy levels should be adopted 
to safeguard the confidentiality and integrity of the 
transmitted data.

Discussion
Compared with other fields, AI faces some unique chal-
lenges in mental health. Primarily, the diagnosis and treat-
ment of mental disorders have subjectivity and complexity. 
Unlike cancer or cardiovascular diseases, which can be 
objectively diagnosed and monitored through laboratory 
tests or imaging, mental illnesses need a comprehen-
sive assessment of multiple factors, including feelings, 
subjective symptoms and the external social environ-
ment. Therefore, the gold standard for model training 
typically requires consensus among senior doctors. Then, 

the trained model can provide an objective evaluation to 
reduce the impact of human subjectivity.

Furthermore, in contrast to most physical diseases that 
primarily involve functional impairments or abnormali-
ties, most mental disorders affect an individual’s psycho-
logical and emotional state. Some patients may exhibit 
guardedness and reluctance to disclose their psycho-
logical issues and medical history to psychiatrists due to 
self-esteem concerns. AI models can provide anonymity 
and impartiality without making judgements or intro-
ducing bias on patients’ privacy or personal information. 
Serving as a bridge between psychiatrists and patients, 
AI can foster a circumstance where patients can feel free 
to express their concerns. Additionally, AI models are 
impervious to distractions, stress, fatigue and subjective 
emotions that can influence human therapists. There-
fore, AI may possess certain advantages in assisting with 
patient treatment.

Though AI models can provide some support, they 
cannot replace psychologists. The core limitation lies in 
the inherent absence of sympathy and empathy within AI 
models.26 Emotional engagements are vital in compre-
hending the psychological state of patients with mental 
disorders. In cases of severe mental health, human 
psychiatrists with emotional understanding are still 
rigidly needed to form an emotional connection with the 
patient. Therefore, it is essential to recognise the limita-
tions of AI models and treat them as auxiliary tools rather 
than substitutes for psychiatrists.

In conclusion, despite the thorns that lie ahead, AI 
researchers still choose to forge forward. We strongly 
believe in the vast prospects of AI models in healthcare. 
AI will serve as an assistant, enhancing the efficiency of 
healthcare professionals and providing patients with 
more precise, personalised and efficient medical services.
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