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Abstract: There is an unmet clinical need to identify patients with early-stage non-small cell lung
cancer (NSCLC) who are likely to develop recurrence and to predict their therapeutic responses. Our
previous study developed a qRT-PCR-based seven-gene microfluidic assay to predict the recurrence
risk and the clinical benefits of chemotherapy. This study showed it was feasible to apply this
seven-gene panel in RNA sequencing profiles of The Cancer Genome Atlas (TCGA) NSCLC patients
(n = 923) in randomly partitioned feasibility-training and validation sets (p < 0.05, Kaplan–Meier anal-
ysis). Using Boolean implication networks, DNA copy number variation-mediated transcriptional
regulatory network of the seven-gene signature was identified in multiple NSCLC cohorts (n = 371).
The multi-omics network genes, including PD-L1, were significantly correlated with immune infiltra-
tion and drug response to 10 commonly used drugs for treating NSCLC. ZNF71 protein expression
was positively correlated with epithelial markers and was negatively correlated with mesenchymal
markers in NSCLC cell lines in Western blots. PI3K was identified as a relevant pathway of prolifera-
tion networks involving ZNF71 and its isoforms formulated with CRISPR-Cas9 and RNA interference
(RNAi) profiles. Based on the gene expression of the multi-omics network, repositioning drugs were
identified for NSCLC treatment.

Keywords: non-small cell lung cancer; prognostic gene signature; multi-omics; CRISPR-Cas9; RNA
interference; Boolean implication networks; chemotherapy; immune checkpoint inhibitor; radiother-
apy; drug reposition

1. Introduction

Lung cancer has the second highest cancer incidence rate and the top cancer-related
mortality worldwide. An estimate from the American Cancer Society shows that, in 2021,
there were 235,760 lung cancer cases (119,100 men and 116,660 women) in the US [1]. In the
US, 60–65% of newly diagnosed lung cancer cases are never-smokers or former smokers [2].
About 84% of all known lung cancers cases are non-small-cell lung cancer (NSCLC) [3].
Major histological subtypes of NSCLC include lung adenocarcinoma (LUAD, 50% of
NSCLC cases), squamous cell carcinoma (LUSC, 30%), and large cell carcinoma (5–10%) [4].
The overall 5-year survival rate after initial diagnosis for NSCLC is less than 15% due to
extensive invasion, limited therapeutic response, recurrence, and metastasis [5]. Patients
with NSCLCs that are in stage II and above are treated with chemotherapy. Patients in stages
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III and IV are treated with additional radiotherapy [6]. Although adjuvant chemotherapy
for stage II and stage III disease improves overall survival rate by 10–15% [7], early-stage
NSCLC has a dismal prognosis, with a 5-year mortality rate of 40% in stage I, 66% in
stage II, and 75% in stage IIIA, as a result of recurrence [8]. These data suggest that many
early-stage tumors harbor occult recurrence despite chemotherapy. The FDA recently
approved atezolizumab for stage II and IIIA NSCLC after platinum-based chemotherapy
in patients with PD-L1 > 1% [9]. There is an unmet clinical need to identify early-stage
NSCLC patients who are likely to develop recurrence and to predict the clinical benefits
of chemotherapy, with or without subsequent immunotherapy depending on their PD-L1
expression levels.

Our previous study developed a qRT-PCR-based seven-gene microfluidic assay for
NSCLC prognosis and prediction of chemotherapeutic benefits, including ABCC4, CCL19,
SLC39A8, CD27, FUT7, DAG1, and ZNF71 [10]. This gene assay can inform selection
of specific chemotherapy for individual patients to improve cancer care. Zinc finger
protein 71 (ZNF71) protein expression quantified with AQUA was identified as a good
prognostic marker of NSCLC [10]. As a transcriptional repression domain, the Krüppel-
associated box (KRAB) is commonly found in human zinc finger protein-based transcription
factors, specifically KRAB zinc finger proteins (KRAB-ZFPs) [11–13]. KRAB-ZFPs-mediated
transcriptional repression is involved in cell proliferation, differentiation, apoptosis, and
cancer [14]. Emerging evidence links epithelial to mesenchymal transition (EMT) to tumor
progression, metastasis, and resistance to cancer therapy [15–18]. We reported that ZNF71
KRAB isoform was associated with EMT in NSCLC tumors and cell lines [19].

Revelation of genomic and transcriptomic landscape has shed lights to NSCLC sub-
types and treatment [20]. An examination of TCGA multi-omics data showed that these
seven prognostic genes have more DNA copy number variations (CNV) than mutations
in NSCLC tumors (Figures A1–A7). Here, we sought to investigate 1) the feasibility of
applying the seven-gene signature for NSCLC prognosis using next-generation sequencing
(NGS) data of TCGA; and 2) the potential functional mechanisms involving the molecular
networks of these seven genes. In order to understand how the molecular networks enfold
these seven prognostic genes, we developed a novel Boolean implication network method-
ology for modeling whole-genome copy number variation (CNV) and gene expression
profiles (n = 371) in NSCLC tumors. CRISPR-Cas9 (n = 78) and RNAi (n = 92) screening data
were used to identify proliferation genes in the multi-omics network associated with the
seven-gene panel. The identified network genes were further examined for their association
with response to radiotherapy in TCGA patient tumors (n = 966) and 10 commonly used
NSCLC therapeutic regimens in the Cancer Cell Line Encyclopedia (CCLE) NSCLC panel
(n = 117). In myeloid dendritic cells, macrophages, neutrophils, CD4+ T cells, CD8+ T cells,
and B cells, immunological infiltration linked to the discovered genes was studied. The
association between mRNA expression and protein expression of these network genes in
NSCLC CCLE panel and TCGA tumors was analyzed.

EMT is highly dynamic and reversible. EMT is still unknown and controversial as
to its role in cancer outcome [21,22]. There was a reported link between KRAB-ZFPs and
EMT [23]. Tripartite motif containing 28 (TRIM28) protein is a universal co-factor for
KRAB-ZFP transcription factors [24]. TRIM28 contributes to EMT and might be involved in
lung cancer metastasis [25]. We previously reported that ZNF71 KRAB was associated with
EMT and patient outcomes [19]. Nevertheless, the function of ZNF71 KRAB in EMT is not
known. To better understand the molecular mechanisms of ZNF71 and its isoforms, this
study investigated the correlation between ZNF71 protein expression and EMT markers in
NSCLC cell lines. Furthermore, molecular networks formulated with proliferation genes
co-expressed with ZNF71, ZNF71 KRAB, and ZNF71 KRAB-less isoforms in NSCLC tumors
were constructed with the Boolean implication network algorithm, respectively. The gene
expression of these proliferation networks was further analyzed with L1000 Connectivity
Map (CMap) [26,27] to identify matched functional pathways in shRNA knockdown,
CRISPR-Cas9 knockout, or overexpression assays in NSCLC cell lines. Finally, the 14-
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gene EMT classifier constructed in our previous study for characterizing NSCLC tumor
EMT states [19] was combined with the identified multi-omics network of the seven-gene
signature to generate mechanistic hypotheses and discover repositioning drugs to reverse
EMT, to enhance drug sensitivity, and to inhibit ICIs and NSCLC proliferation. Such a
revelation will provide insight for designing therapeutic strategies for NSCLC intervention
in future research.

2. Results
2.1. A Multi-Omics Network of the Seven-Gene NSCLC Prognostic and Predictive Signature

Our previous retrospective longitudinal clinical studies developed a seven-gene qRT-
PCR microfluidic assay for NSCLC prognostic and prediction of chemotherapeutic bene-
fits [10], including ABCC4, CCL19, SLC39A8, CD27, FUT7, DAG1, and ZNF71. Here, we
sought to investigate whether it is feasible to apply this seven-gene signature in NGS
data for NSCLC prognosis. TCGA-LUAD (n = 515) and TCGA-LUSC (n = 501) datasets
were combined as TCGA NSCLC data (n = 923), keeping patient samples with sufficient
survival information. The combined TCGA NSCLC dataset was randomly partitioned into
a training (n= 462) and a testing set (n= 461) for building and validating the prognostic
model, respectively. A multivariate Cox model was built using the seven prognostic genes
in the training set to calculate coefficients for the gene covariates and the risk-score for
each patient. This model was applied to the testing set using the same gene coefficients
and cutoff for patient stratification. In Kaplan–Meier analysis, the patients who had a
risk-score less than −0.74 survived significantly longer than the patients who had a risk-
score equal or greater than −0.74 in both training and testing sets (p = 0.016, HR: 1.454
[1.072, 1.971] in training set, p = 0.049, HR: 1.366 [1.001, 1.864] in the testing set; Figure 1A,B)
in Kaplan–Meier analysis. More details were included in Supplementary File S1.

The Boolean implication network approach was used to create a multi-omics associa-
tion network of ABCC4, CCL19, SLC39A8, CD27, FUT7, DAG1, and ZNF71. The following
genes were selected to build the network. First, the genome-scale analysis identified genes
that had significant (p < 0.05, z-tests) co-expression with at least two of the seven original
genes in both the GSE31800 and GSE28582 NSCLC patient cohorts. Second, genes with
a significant (p < 0.05, z-tests) CNV-mediated gene expression (GE) associated with at
least two of the seven original genes in both GSE31800 and GSE28582 cohorts were identi-
fied. Third, we screened for genes in both GSE31800 and GSE28582 that had a significant
(p < 0.05, z-tests) co-occurrence of DNA copy number aberrations with at least two of the
seven original genes, but no genes were discovered. In addition, proliferation genes were
defined as genes with a significant dependency score in 50% of the tested NSCLC cell lines
in CRISPR-Cas9 (n = 78) or RNAi (n = 92). ERH, IFITM3, NFS1, and KRT17 were identified
as NSCLC proliferation genes. The final multi-omics network (Figure 1C) contained genes
having an association with at least two of the seven prognostic genes, with each edge
indicating an observed co-expression or CNV-mediated gene expression dysregulation in
NSCLC tumors in multiple patient cohorts. PD-L1 (CD274) was co-expressed with multiple
signature genes. Down-regulation of CD274 was associated with up-regulation of DAG1,
and down-regulation of DAG1 was associated with up-regulation of CD274. Up-regulation
of CD274 was associated with up-regulation of CCL19 and down-regulation of CD27 (Sup-
plementary File S2 datasheet 2). It was reported that X-ray irradiation induced miR-574-3p
expression in NSCLC A549 cells, which, in turn, suppressed enhancer of rudimentary
homolog (ERH) protein production and delayed cell growth [28]. Interferon-induced
transmembrane protein 3 (IFITM3) protein expression was expressed in the cytoplasm
of metastatic lung adenocarcinoma tumor tissues and was correlated with higher tumor
grade [29]. Single-cell sequencing profiles of IFITM3 and ISG15 characterize an interferon
signaling cluster of macrophages in metastasis-bearing lungs [30]. NFS1 cysteine desul-
furase is under positive selection in lung adenocarcinomas and protects cancer cells from
ferroptosis, a non-apoptotic form of cell death, in response to oxidative damage [31]. Ker-
atin 17 (KRT17), reported to promote lung adenocarcinoma via enhancing cell proliferation
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and invasion [32], showed a paradoxical anti-metastatic role of KRT17 both in vitro and
in vivo in cancer xenografts in a single-cell lineage study [33]. These reports in the literature
support the relevance of the identified multi-omics network of the seven-gene signature
in NSCLC.
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Stage III and IV NSCLC patients receive radiation therapy [6]. To identify genes as-
sociated with the response to radiotherapy, TCGA-LUAD and TCGA-LUSC stage III and 
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nificant differential expression (p < 0.05, two sample t-tests) in genes identified in the 

Figure 1. The 7-gene signature and associated multi-omics network. Kaplan–Meier analysis of 7-gene
signature in training (A) and testing (B) sets randomly partitioned from the combined TCGA-LUSC
and TCGA-LUAD data. Patients were grouped by risk-scores with the cutoff value of −0.74. The
plots show the survival outcome of the first 10 years after surgery. (C) The multi-omics network
of the 7-gene signature in NSCLC tumors. All proliferation genes in the networks were identified
from CRISPR-Cas9/RNAi screening data in CCLE NSCLC cell lines, with more details provided in
Supplementary File S2. (D) Genes associated with radiotherapy response. In TCGA-LUSC and TCGA-
LUAD, these genes showed significantly different expression levels (p < 0.05, two-sample t-tests)
between the long survival group (>58 months; n = 144) and the short survival group (<20 months;
n = 186). Analysis was conducted on stage III or IV patients who had received radiotherapy.

Stage III and IV NSCLC patients receive radiation therapy [6]. To identify genes
associated with the response to radiotherapy, TCGA-LUAD and TCGA-LUSC stage III
and IV patients who had received radiotherapy were included in the analysis. There
was significant differential expression (p < 0.05, two sample t-tests) in genes identified
in the multi-omics network (Figure 1C), including SERPINB5, TTC16, and CD27. These
differences were observed in the short survival (<20 months) and long survival (>58 months)
patient groups (Figure 1D). There was a higher level of expression of CD27 and TTC16
among the short-survival patients, and higher levels of SERPINB5 expression among the
long-survival patients.
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The correlation of the expression of 65 genes (DEFB103A was not available) from the
final network with immune infiltration in TCGA-LUAD (n = 515) and TCGA-LUSC (n = 501)
patients was assessed with TIMER 2.0 (Figure 2A,B) [34–36]. The immune infiltration
analysis included myeloid dendritic cells, macrophages, neutrophils, CD4+ T cells, CD8+ T
cells, and B cells. All the available genes in the 7-gene network had a significant correlation
with immune infiltration in at least one examined cell types.
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(Figure 2C). (A) The correlation of gene expression with immune infiltration level in TCGA-LUAD pa-
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This study also examined the association with drug activities of 10 commonly used
therapeutic regimens for treating NSCLC, including carboplatin, cisplatin, paclitaxel (Taxol),
pemetrexed, docetaxel, gemcitabine, vinorelbine, etoposide, gefitinib, and erlotinib. There
were three histological subtypes for the CCLE NSCLC cell lines: adenocarcinoma, squa-
mous cell carcinoma, large cell carcinoma, and adenosquamous carcinoma. Our study
selected genes associated with drug response based on their differential expression of
mRNA and protein in sensitive and resistant NSCLC cell lines. In the identified seven-gene
network (Figure 1C), numerous genes were associated with drug sensitivity or resistance
to the studied drugs in the CCLE NSCLC panel (Tables 1 and 2).

Table 1. Genes (shown in Figure 1C) with a significant differential mRNA expression (p < 0.05; two
sample t-tests) and a fold change < 0.5 or >2 in sensitive versus resistant CCLE NSCLC cell lines
(n = 117) to the studied drugs. Blue font indicates higher mRNA expression in sensitive cell lines,
and red font indicates high mRNA expression in resistant cell lines.

Drug PRISM GDSC1 GDSC2

Carboplatin IFITM3, ATP1B4, PRRX1, PRRX1

Cisplatin FUT7 POF1B, ZNF671, ZBED2, C10orf10

Docetaxel ERH, KLHL6 KLHL6, IFITM3, C10orf10 SERPING1

Erlotinib KLHL6, TRIM29, IFITM3, CCR2,
TNFSF12-TNFSF13, ATP1B4

IFITM3, SERPINB5, PRDM1,
RGS17, CD80, AKR1C1,

TRIM29

DEFB103A, CSPP1, TRIM29,
SERPINB5, AKR1C2, KLHL6,
ATP1B4, SERPING1, DSG3

Etoposide PRDM1, TRIM29 ATP1B4, SERPING1,
ABCA13, ARSE

Gefitinib DEFB103A, PTAFR, ZEB1, ERH,
F13A1

DEFB103A, KLHL6, TRIM29,
RGS17, ATP1B4, PRRX1

CSPP1, KLHL6, TRIM29, ATP1B4,
SERPING1, ARSE

Gemcitabine ARSE, GPX2, RGS17, LAIR1,
TRIM22 SERPING1 ARSE, C10orf10

Paclitaxel PTAFR, TRIM29,RAB25, ESRP1
SERPINB5, KLHL6, CD80, SH2D1A CD27 C10orf10

Pemetrexed SH2D1A

Vinorelbine FUT7,TNFSF12-TNFSF13, DSG3

Table 2. Genes (shown in Figure 1C) with a significant differential protein expression (p < 0.05; two
sample t-tests) and a fold change < 0.5 or >2 in sensitive versus resistant CCLE NSCLC cell lines
(n = 63) to the studied drugs. Blue font indicates higher protein expression in sensitive cell lines, and
red font indicates higher protein expression in resistant cell lines.

Drug PRISM GDSC1 GDSC2

Carboplatin TGM5

Cisplatin TRIM29 CD274, HLA-F LY75, PRRX1, F13A1, CTSH

Docetaxel SERPINB5 AKR1C2, SERPINB5 AKR1C2, AKR1C1, CPNE8

Erlotinib ARSE, HLA-DMB, TRIM22, LY75, TGM5 AKR1C1 POF1B, SERPINB5, F13A1

Etoposide HLA-F, ABCA13, TGM5 SERPINB5

Gefitinib SLC39A8

Gemcitabine TGM5, HNMT, CTSH, HLA-F, SERPINB5, CDH3,
HNMT, ABCA13, AKR1C2, GPX2, AKR1C1 SERPINB5, AKR1C1 AKR1C1

Paclitaxel SERPINB5, CDH3, HLA-F, SLC39A8 PRRX1, LY75, CTSH, TRIM29

Pemetrexed

Vinorelbine SERPINB5, AKR1C2,
AKR1C1, F13A1, HLA-F CTSH
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are the majority of the KRAB repression domain. As the longest exon, exon 4 codes for the 
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Figure 3. The correlation between mRNA and protein expression of genes in the multi-omics network
(shown in Figure 1C). (A) The bar chart shows the correlation coefficients of mRNA and protein
expression from the same gene in NSCLC cell lines. The asterisk (*) indicates the significance level
(* p < 0.05, ** p < 0.01, *** p < 0.001). (B) The proportion of genes having a significant correlation of
mRNA and protein expression in NSCLC cell lines (p < 0.05, Pearson’s correlation). The proportion of
genes having a significant correlation between mRNA and protein expression is significantly higher
in identified 7-gene network than the remaining genes in the genome (two-tailed proportion z-test,
p < 0.05). (C) CDH3 had a significant positive correlation between mRNA and protein expression in
combined TCGA-LUSC and TCGA-LUAD patient tumors (n = 685).

Next, we examined the correlation between mRNA expression and protein expression
of the seven-gene network in NSCLC cell lines and patient tumors. In CCLE NSCLC cell
lines (n = 63), 41 genes in the seven-gene network had both mRNA and protein expression
measurements. A total of 34 out of 41 genes had significant correlation between mRNA
expression and protein expression in NSCLC cell lines (p < 0.05, Pearson’s correlation;
Figure 3A). TRIM29 had two corresponding protein expression quantifications, both signifi-
cantly correlated with its mRNA expression. The proportion of genes with a significant
mRNA and protein expression correlation is 82.9% in the identified seven-gene network,
which is significantly higher than 66.3% in the remaining 11,452 genes in the genome
(two-tailed proportion z-test p < 0.05, Figure 3B). In TCGA-LUAD and TCGA-LUSC tumors,
only CDH3 and CD274 had both mRNA expression and protein expression. The protein
expression of CDH3 was positively correlated with its mRNA expression in TCGA NSCLC
patient tumors (p < 0.05, Pearson’s correlation; Figure 3C), consistent with the observation
in CCLE NSCLC cell lines (Figure 3A).
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2.2. Gene Co-Expression Networks of ZNF71 and Isoforms

In the study cohorts, ZNF71 was associated with a more favorable survival outcome
among patients who received cisplatin, carboplatin, and Taxol, indicating its linkage with
chemosensitivity [10]. While ZNF71 mRNA expression was not associated with survival in
NSCLC patient tumors analyzed in qRT-PCR, a higher ZNF71 protein expression measured
with AQUA linked to a longer overall survival in two separate NSCLC cohorts (n = 291)
using tissue microarrays [10]. The ZNF71 antibody (Abcam; ab87250) used in our previous
study [10] was discontinued. Protein level of overexpressed ZNF71 (GeneTex, Cat. No.
GTX116553) was detected in our previous study [19].

Gene ZNF71 gene is composed four exons, in which exons 1 and 2 encode the 180nt
5′UTR and the first 11 amino acids of the protein. The next 43 amino acids (aa) in exon 3
are the majority of the KRAB repression domain. As the longest exon, exon 4 codes for the
remainder of the protein, such as the putative 13-zinc-finger DNA binding domain and
the predicted ~4 kb 3′UTR. It is possible to splice out the third KRAB-containing exon to
produce a shorter in-frame protein encoded by exon 4, i.e., an alternative KRAB-less isoform.
Nearly half of the 800 C2H2-type ZNF genes in humans contain a single, evolutionarily
conserved KRAB region, which could be spiced in alternative fashion [11–13]. Our study
demonstrated that ZNF71 KRAB expression was associated with EMT in cell lines and
tumors from NSCLC patients [19].

ZNF71 protein expression was not available in the CCLE database [37]. Here, ZNF71
protein expression (GeneTex, Cat. No. GTX116553) was detected in A549 and H441 cell
lines in whole cell lysate and nuclear fractions isolated from the same cell lines (Figure 4),
consistent with its function as a transcription factor. ZNF71 protein expression was posi-
tively correlated with epithelial markers, including E-cadherin and Cytokeratin, and was
negatively correlated with mesenchymal markers, including ZEB1 and Vimentin in Western
blots. These results are consistent with the observed positive association between elevated
ZNF71 protein expression and a good prognosis of NSCLC [10].
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Figure 4. Correlation of expression of ZNF71 with EMT markers in five NSCLC cell lines. Western
blotting analysis of ZNF71, mesenchymal and epithelial markers in the indicated cell lines. PCNA
and Tubulin—loading controls. WCL—whole cell lysate, Nuclear and Cyto—nuclear and cytoplasmic
fractions isolated from the same cell lines.

To illustrate the molecular networks of ZNF71 and its isoforms, the expression of
ZNF71 overall and isoforms was analyzed in the NGS dataset GSE81089 of NSCLC tu-
mor samples (n = 197) [38]. Proliferation networks of ZNF71, ZNF71 KRAB, and ZNF71
KRAB-less were constructed, respectively, with the Boolean implication network algorithm.
First, genes that had a significant co-expression (p < 0.05, z-tests) with ZNF71, ZNF71
KRAB, or ZNF71 KRAB-less in GSE81089 were identified in the genome-scale analysis,
respectively. Next, the proliferation genes which meet the criteria were selected based
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on CRISPR-Cas9/RNAi screening data in CCLE NSCLC cell lines (more details were pro-
vided in Supplementary File S3). These proliferation genes were pinpointed in the gene
co-expression networks to form the proliferation networks. There were six categories of
the constructed proliferation networks: (1) when ZNF71 was up-regulated or not down-
regulated (Figure 5A); (2) when ZNF71 was down-regulated or not up-regulated (Figure 5B);
(3) when ZNF71 KRAB was up-regulated or not down-regulated (Figure 5C); (4) when
ZNF71 KRAB was down-regulated or not up-regulated (Figure 5D); (5) when ZNF71 KRAB-
less was up-regulated or not down-regulated (Figure 5E); and (6) when ZNF71 KRAB-less
was down-regulated or not up-regulated (Figure 5F). The gene expression signatures con-
taining up- and down-regulated NSCLC proliferation genes from these six networks were
input into CMap, respectively, to identify significant (p < 0.05) perturbagen signatures and
functional pathways. The common significant (connectivity score > 0.9) functional path-
ways were summarized for ZNF71 (Table 3), ZNF71 KRAB (Table 4), and ZNF71 KRAB-less
(Table 5). More details were provided in Supplementary File S3.

The functional pathways associated with the identified proliferation networks of ZNF71,
KRAB, and KRAB-less isoforms were largely different, although with some overlaps, i.e.,
CP_FGFR_INHIBITOR between ZNF71 and KRAB, and PID_CIRCADIAN_PATHWAY for
ZNF71 and KEGG_CIRCADIAN_RHYTHM_MAMMAL for KRAB-less. When the up-
regulated and down-regulated proliferation genes in each network (Figure 5) were uploaded
to CMap separately, significant (p < 0.05, connectivity score > 0.9) perturbagen signatures
and functional pathways were identified (Supplementary File S3 datasheet 14), showing
that KD_AHSP_PATHWAY, KD_PHOSPHOLIPASES, and KD_PI3K_SIGNALING were
commonly associated with ZNF71, KRAB, and KRAB-less proliferation networks. These
results generated hypotheses for future mechanistic studies of ZNF71 and its isoforms.

Table 3. The common significant (p < 0.05, connectivity score > 0.9) functional pathways from CMap
using ZNF71 up-regulated network genes (Figure 5A) and ZNF71 down-regulated network genes
(Figure 5B) as input.

src_set_id
ZNF71 Upregulated Network Genes ZNF71 Downregulated Network Genes

Cell Line Type Cell Line Type

BIOCARTA_CTL_PATHWAY
A549 TRT_SH.CGS A549 TRT_SH.CGS

HCC515 TRT_SH.CGS HCC515 TRT_SH.CGS

CP_FGFR_INHIBITOR
(PD-173074, dovitinib, brivanib, orantinib) A549 TRT_CP A549 TRT_CP

KD_RNA_POLYMERASE_ENZYMES
(POLR2A, POLR2C, POLR2D, POLR2E,
POLR2F, POLR2I, POLR2K)

A549 TRT_SH.CGS HCC515 TRT_SH.CGS

KEGG_GALACTOSE_METABOLISM HCC515 TRT_SH.CGS HCC515 TRT_SH.CGS

PID_CIRCADIAN_PATHWAY A549 TRT_SH.CGS A549 TRT_SH.CGS

PID_INTEGRIN2_PATHWAY HCC515 TRT_SH.CGS A549 TRT_SH.CGS

PID_S1P_S1P2_PATHWAY HCC515 TRT_SH.CGS HCC515 TRT_SH.CGS

REACTOME_CHYLOMICRON_MED
IATED_LIPID_TRANSPORT HCC515 TRT_SH.CGS HCC515 TRT_SH.CGS

REACTOME_JNK_C_JUN_KIN
ASES_PHOSPHORYLATION_AND_AC
TIVATION_MEDIATED_
BY_ACTIVATED_HUMAN_TAK1

HCC515 TRT_SH.CGS HCC515 TRT_SH.CGS

REACTOME_PURINE_RIBONU
CLEOSIDE_MONOPHOSPH
ATE_BIOSYNTHESIS

A549 TRT_SH.CGS
A549 TRT_SH.CGS

HCC515 TRT_SH.CGS

SULFONYLUREA
(glipizide, glibenclamide, gliquidone) HCC515 TRT_CP HCC515 TRT_CP
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Figure 5. ZNF71 gene level, ZNF71 KRAB, and ZNF71 KRAB-less co-expression networks in patient
cohort GSE81089. The green color indicates up-regulation or non-downregulation, and the red
color indicates downregulation or non-upregulation. All proliferation genes in the networks were
identified from CRISPR-Cas9/RNAi screening data in CCLE NSCLC cell lines, with more details
provided in Supplementary File S3. (A) Proliferation genes that had a significant (p < 0.05, z-tests)
co-expression with up-regulated ZNF71. (B) Proliferation genes that had a significant (p < 0.05,
z-tests) co-expression with down-regulated ZNF71. (C) Proliferation genes that had a significant
(p < 0.05, z-tests) co-expression with up-regulated ZNF71 KRAB isoform. (D) Proliferation genes
that had a significant (p < 0.05, z-tests) co-expression with down-regulated ZNF71 KRAB isoform.
(E) Proliferation genes that had a significant (p < 0.05, z-tests) co-expression with up-regulated ZNF71
KRAB-less isoform. (F) Proliferation genes that had a significant (p < 0.05, z-tests) co-expression with
down-regulated ZNF71 KRAB-less isoform. Details provided in Supplementary File S3.
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Table 4. The common significant (p < 0.05, connectivity score > 0.9) functional pathways from
CMap using ZNF71 KRAB upregulated network genes (Figure 5C) and ZNF71 KRAB downregulated
network genes (Figure 5D) as input.

src_set_id
KRAB Upregulated Network Genes KRAB Downregulated Network Genes

Cell Line Type Cell Line Type

BIOCARTA_CTL_PATHWAY HCC515 TRT_SH.CGS
HCC515 TRT_SH.CGS

A549 TRT_SH.CGS

BIOCARTA_GLYCOLYSIS_PATHWAY HCC515 TRT_SH.CGS A549 TRT_SH.CGS

BIOCARTA_SET_PATHWAY A549 TRT_OE A549 TRT_OE

CP_CCK_RECEPTOR_ANTAGONIST
(devazepide, LY-225910, SR-27897) HCC515 TRT_CP HCC515 TRT_CP

CP_FGFR_INHIBITOR
(PD-173074, dovitinib, brivanib,
orantinib)

A549 TRT_CP HCC515 TRT_CP

KD_INTEGRIN_SUBUNITS_BETA
(ITGB1, ITGB4, ITGB5) A549 TRT_XPR A549 TRT_XPR

PID_DNA_PK_PATHWAY A549 TRT_SH.CGS A549 TRT_SH.CGS

REACTOME_NFKB_IS_ACTIVATED_
AND_SIGNALS_SURVIVAL A549 TRT_SH.CGS HCC515 TRT_SH.CGS

REACTOME_REGULATION_
OF_COMPLEMENT_CASCADE HCC515 TRT_SH.CGS HCC515 TRT_SH.CGS

SODIUM/GLUCOSE_COTRANS
PORTER_INHIBITOR
(maackiain, phloretin)

A549 TRT_CP A549 TRT_CP

SULFONYLUREA
(glipizide, glibenclamide, gliquidone) HCC515 TRT_CP HCC515 TRT_CP

TGF_BETA_RECEPTOR_INHIBITOR HCC515 TRT_CP HCC515 TRT_CP

Table 5. The common significant (p < 0.05, connectivity score > 0.9) functional pathways from
CMap using ZNF71 KRAB-less upregulated network genes (Figure 5E) and ZNF71 KRAB-less
downregulated network genes (Figure 5F) as input.

src_set_id
KRAB-Less Upregulated Network Genes KRAB-Less Downregulated Network Genes

Cell Line Type Cell Line Type

ABL_KINASE_INHIBITOR A549 TRT_CP HCC515 TRT_CP

BIOCARTA_BLYMPHOC
YTE_PATHWAY A549 TRT_SH.CGS A549 TRT_SH.CGS

KD_CYCLINS
(CCNL1, CCND1, CCNA1, CCNH) HCC515 TRT_SH.CGS A549 TRT_OE

KEGG_CIRCADIAN_RHY
THM_MAMMAL A549 TRT_SH.CGS A549 TRT_SH.CGS

REACTOME_TRAF3_DEPEN
DENT_IRF_ACTIVATION_PATHWAY A549 TRT_SH.CGS A549 TRT_SH.CGS

2.3. Functional Pathways Associated with the Seven-Gene Multi-Omics Network and Discovery of
Repositioning Drugs

ZNF71 KRAB was reported to be associated with EMT in our previous study [19]. Pro-
tein expression of ZNF71 was positively correlated with epithelial markers and negatively
correlated with mesenchymal markers in the nuclear fraction of NSCLC cells (Figure 4). The
identified seven-gene multi-omics network (Figure 1C) and 14 EMT markers were used to
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discover connected perturbagen signatures and repositioning drugs with potential implica-
tions in improving NSCLC treatment. The following mechanisms of action were considered
to reverse EMT, to enhance drug sensitivity, to induce immune response, and to inhibit
NSCLC proliferation through (1) up-regulation of epithelial markers; (2) up-regulation of
drug sensitive genes; (3) down-regulation of mesenchymal markers; (4) down-regulation of
proliferation genes; and (5) down-regulation of CD27 and PD-L1 (CD274). The 14-gene EMT
classifier was used in our previous study [19] to define the EMT states of NSCLC tumors,
including three mesenchymal markers (ZEB1, VIM, and FN1) and 11 epithelial markers
(CDH1, EPCAM, ESRP1, ESRP2, DDR1, CTNNB1, CD24, CLDN7, KRT8, KRT19, and RAB25).
The drug sensitive genes were selected if a gene’s mRNA expression was sensitive to one or
more of the studied 10 NSCLC therapeutic regimens and was not resistant to any studied
drugs in PRISM or GDSC1/2 datasets. The drug sensitive genes and the epithelial markers
were excluded from the list if they were also proliferation genes. Here, the proliferation
genes referred to those with a significant dependency score (<−0.5) in CRISPR-Cas9 or
RNAi in more than 10 NSCLC cell lines. The proliferation gene list also excluded the
epithelial markers (Figure 6A).

With the above defined up- and down-regulated gene lists, significant (p < 0.05,
connectivity score > 0.9) functional pathways were identified with CMap (Table 6). The
details of results were provided in Supplementary File S2, sheet 4. Specifically, shRNA
knock-down of the following pathways matched the seven-gene multi-omics network, in-
cluding KD_APOLIPOPROTEINS, KD_CYCLINS, KD_LYSINE_ACETYLTRANSFERASES,
KD_NON_HOMOLOGOUS_END_JOINING, KD_V_TYPE_ATPASES, and OE_NFKB_AC
TIVATION (Table 6). After checking the gene co-expression networks in NSCLC patient tu-
mors in GSE31800 and GSE28582, XRCC5 from KD_NON_HOMOLOGOUS_END_JOINING
pathway was found to have the same gene co-expression patterns in patient tumors as in
shRNA knock-down in A549 cell line (Figure 6B; Table 6). A co-downregulation between
XRCC5 and CDCA3, ERH, and KRT17, respectively, was found in both NSCLC tumors and
LINCS L1000 CMap NSCLC cell lines (Figure 6B).

Table 6. The identified significant (p < 0.05, connectivity score > 0.9) functional pathways from
shRNA knock-down experiments in CMap using the up-regulated and down-regulated gene lists in
Figure 6A as input.

src_set_id Cell_Iname Pert_Type Genes

KD_APOLIPOPROTEINS A549 TRT_SH.CGS APOB, APOC2, APOE

KD_CYCLINS
A549 TRT_SH.CGS CCNL1, CCND1,

CCNA1, CCNHHCC515 TRT_SH.CGS

KD_LYSINE_ACETYL
TRANSFERASES A549 TRT_SH.CGS KAT6B, KAT6A,

NCOA3

KD_NON_HOMOLO
GOUS_END_JOINING A549 TRT_SH.CGS RAD50, FEN1,

XRCC4, XRCC5

KD_V_TYPE_ATPASES HCC515 TRT_SH.CGS ATP6V1A, ATP6V0C,
ATP6V0B, ATP6V1F

OE_NFKB_ACTIVATION HCC515 TRT_SH.CGS

CD40, FADD, LTBR,
TNFRSF10A,
TNFRSF10B,

TNFRSF1A, BCL10

Based on the designed mechanisms of action, 39 repositioning drugs were identified
with CMap (p < 0.05, Supplementary File S4, datasheet 7). From this list, drugs that
have lower average IC50 and EC50 in CCLE NSCLC cell lines were selected for potential
inhibition of the growth of lung cancer cells with a safer dose. In the original PRISM
drug screen, eight doses ranging from 0.0006 µM to 10 µM were tested on most of the
compounds [39]. Five small molecules (dasatinib, FK-888, homosalate, lestaurtinib, and
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penfluridol) had a small average IC50 or EC50 value (smaller than or close to 1 µM) in
the PRISM drug screen and were selected for drug repurposing (Figure 6C, more details
provided in Supplementary File S4). Dasatinib is a targeted therapy used to treat chronic
myelogenous leukemia and acute lymphoblastic leukemia. FK 888 is a selective, high-
affinity tachykinin NK1 receptor antagonist [40]. Homosalate is an organic compound
commonly used in sunscreen that absorbs shortwave UVB rays, which helps prevent DNA
damage and decreasing the risk of skin cancer. Lestaurtinib is a tyrosine kinase inhibitor
and is structurally related to staurosporine. It has undergone clinical trials for the treatment
of various cancers, including leukemia [41] and refractory pediatric neuroblastoma [42].
Penfluridol is a first-generation antipsychotic drug used to treat schizophrenia [43]. These
results provided evidence for future drug repurposing study to improve NSCLC treatment
in combination with clinical therapies.
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Figure 6. Identification of functional pathways associated with the 7-gene multi-omics network and
discovery of repositioning drugs. (A) Selection of significant functional pathways and repositioning
drugs based on the identified 7-gene multi-omics proliferation network with CMap. (B) Confirmed
co-expression network of XRCC5 in NSCLC patient tumors in GSE31800 or GSE28582 showing
concordant co-expression patterns after shRNA knock-down of XRCC5 in A549 cell line. The red
color indicates down-regulation or non-upregulation of genes. The double line indicates that the
co-expression relations (p < 0.05, z-tests) observed in patient tumors were confirmed in shRNA
knockdown experiments in LINCS L1000 CMap NSCLC cell lines. (C) Small molecules that had a
low average concentration of drug response in the CCLE NSCLC cell lines. Measurements with a
drug activity value larger than 10 µM were considered outliers and were removed from the plot.
Dasatinib EC50 measurements had 2.38% of outliers. FK-888 EC50 measurements had 14.49% of
outliers. Homosalate EC50 measurements had 7.25% of outliers. Penfluridol had 1.25% of outliers in
both IC50 and EC50 measurements. Detailed information was provided in Supplementary File S4.
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3. Discussion

In both males and females, lung cancer remains the leading cause of cancer-related
death. Lung cancer is difficult to manage clinically due to its complex etiology and a
lack of biomarkers for the selection of therapy in individual patients. A National Cancer
Institute report shows that 56% of lung cancer cases are diagnosed at the distant (metastatic)
stage [44]. Novel biomarkers can aid the selection of appropriate chemotherapy and im-
munotherapy for treatment of advanced NSCLC. For early-stage NSCLC, it remains a
challenge to improve patient survival due to the varying performance of lymphadenec-
tomy and insufficient understanding of molecular features harboring recurrence [45]. The
development of clinically applicable prognostic biomarkers for early-stage NSCLC could
offer a solution by identifying tumors prone to recurrence. Thus, a significant unmet need
exists for a reliable diagnostic method to (1) identify stage I NSCLC who might benefit
from adjuvant chemotherapy; and (2) select specific therapeutic regimens that a NSCLC
patient might respond to.

We sought to meet these critical needs with the development of a qRT-PCR based
seven-gene microfluidic assay for early-stage NSCLC prognosis and prediction of benefits
of chemotherapy [10]. The seven-gene assay was constructed from the feasibility-training
cohort with 83 patients based on accurate patient stratification (p = 0.0043), and it has been
validated in independent patient cohorts including a clinical trial JBR.10 [46] (n = 248, p
< 0.0001) according to Kaplan–Meier analysis. In both training (p = 0.035) and validation
(p = 0.0049) sets, patients who received adjuvant chemotherapy had significantly better
disease-specific survival than patients who did not receive chemotherapy in the predicted
chemotherapy-benefit group. Patients receiving chemotherapy in either set did not show a
survival benefit in the predicted non-benefit group [10]. The ability of this gene assay to
predict the recurrence risk and recommend early implementation of chemotherapy in stage
I NSCLC patients can potentially improve patient care. In this study, we showed that it
is feasible to apply this seven-gene panel for NSCLC prognosis using NGS profiles of the
TCGA patient tumors randomly partitioned into training and testing sets. In future studies,
the development of an NGS-based seven-gene assay will need to be defined with specific
NGS data generation protocols, data processing methods, and model parameters from the
training set that are validated in external patient cohorts for potential clinical applications.

Within this seven-gene assay, we recently found that ZNF71 KRAB isoform is asso-
ciated with EMT in NSCLC tumors and cell lines, i.e., expressed higher in top 50% of
ZEB1 expressing cells [19]. ZNF71 protein expression was positively correlated with ep-
ithelial markers, including E-cadherin and Cytokeratin, and was negatively correlated
with mesenchymal markers, including ZEB1 and Vimentin in NSCLC cell lines in Western
blots. These results were consistent with the observed positive association between ZNF71
protein expression and prolonged NSCLC patient survival [10]. Together, these results
supported the transcriptional repression role of the KRAB domain.

Approximately 3% of the human genome is composed of zinc finger proteins (ZFPs),
which are the largest transcription factor family in human cells and most eukaryotes [47,48].
ZFPs contain a repeating structure of two histidine and two cysteine amino acid residues
(i.e., C2H2) that coordinate a zinc ion, which is capable of binding to DNA, RNA, or cellular
proteins [49]. A number of biological functions have been predicted for ZFPs as a result of
their molecular structure, including DNA repair, protein degradation, signal transductions,
cell migration, apoptosis regulation, lipid binding, and transcription regulation [48,49].
The KRAB-ZFPs family of transcriptional repressors plays a variety of roles, most im-
portantly the silencing of transposable elements [50]. KRAB-ZFPs are composed of an
N-terminal KRAB domain and a C-terminal C2H2-type zinc finger array. The recruitment
of KRAB-associated protein 1, also known as tripartite motif protein 28, KAP1/TRIM28,
plays an essential role in the repressor function of KRAB-ZEPs. KAP1/TRIM28 acts as
a scaffold complex comprised of histone methyl transferase (SETDB1), heterochromatin
protein-1 (HP-1), nucleosome remodeling and deacetylation (NuRD), and DNA methyl
transferase [13]. The constructed repressor complex triggers heterochromatin production
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when KRAB-ZFPs bind KAP1/TRIM28. KAP1/TRIM28 is a universal co-factor for KRAB-
ZFP transcription factors [24] and is involved in a variety of cellular functions, ranging
from promoting cell proliferation [51] to mediating anti-proliferative activities [52]. The
KAP1/TRIM28 protein is involved in tumorigenesis by formatting heterochromatin, me-
diating DNA damage response, inhibiting p53 activity, regulating EMT, and maintaining
stem cell pluripotency and genome stability [53]. TGF-β treatment induces KAP1/TRIM28
mRNA and protein expression. KAP1/TRIM28 deficiency blocks TGF-β induced EMT
and reduces cell migration and invasion. KAP1/TRIM28 regulates E-cadherin and N-
cadherin promoters, implying that KAP1/TRIM28 contributes to EMT and is involved
in lung cancer metastasis [25]. Upregulation of RB-associated KRAB zinc finger (BRAK)
and its association with poor prognosis in NSCLC was reported [51]. Zinc finger protein
668 (ZNF668) down-regulates Snail and upregulates E-cadherin and zonula occludens-1,
which, in turn, suppresses NSCLC invasion and migration [54]. ZNF668 protein expression
was downregulated in tumors compared with normal lung tissues and was negatively
associated with lymph node metastasis in NSCLC [54].

The role of ZNF71 and its isoforms in EMT is unclear. EMT may be linked to significant
splicing changes, and as a consequence, it could potentially skew splicing for inclusion of
the KRAB domain [55,56]. To better understand the functions of ZNF71 and its isoforms,
genome-scale co-expression networks containing all the genes with a statistically significant
co-expression association relation with ZNF71 overall, KRAB, and KRAB-less were con-
structed, respectively. Proliferation networks were dissected based on CRISPR-Cas9/RNAi
screening data in CCLE NSCLC panel. Significant functional pathways matching the up-
and down-regulation signatures of these proliferation networks were identified with L1000
CMap. The results showed that multiple different functional pathways were associated
with ZNF71, KRAB, and KRAB-less isoforms in shRNA knock-down or overexpression
assays in NSCLC cell lines, respectively. Three pathways, including KD_AHSP_PATHWAY,
KD_PHOSPHOLIPASES, and KD_PI3K_SIGNALING in shRNA knock-down assays of
NSCLC cell liens, were commonly associated with ZNF71, KRAB, and KRAB-less isoforms.
These results provided hypotheses of future molecular and cellular studies of ZNF71 and
its isoforms in NSCLC.

It has been found that the seven-gene panel interacted with major inflammatory and
cancer signaling hallmarks including TNF, PI3K, NF-κB, and TGF-β [10]. The protein ex-
pression of CD27 quantified with ELISA had a strong correlation with its mRNA expression
in NSCLC tumors [10]. As a new generation of immunotherapy target [57,58], CD27 is
currently being tested in phase I/II clinical trials for multiple tumor types with promising
results [59,60]. The treatment effectiveness of cancer vaccines and immunotherapy can be
improved by CD27 agonist antibodies, either alone or in combination with anti-PD1 anti-
bodies [61,62]. There was reported synergy between PD-1 blockade and CD27 stimulation
for CD8+ T-cell driven anti-tumor immunity [62], indicating the therapeutic potential of
CD27 in neoadjuvant PD-1 blockade in early-stage NSCLC [63].

Novel biomarker discovery is complicated by combinations of chemotherapy and
immunotherapy, and multiple intricate interactions relevant to immune responses should
be considered in this process [64]. The NSCLC tumor immune microenvironment can be
represented as a multi-dimensional component network of immune and stromal cells as
well as blood vessels, interacting with epithelial tumor cells in a convoluted manner. An
integrated analysis of genome-scale CNV and gene expression profiles in NSCLC tumors
was conducted using the Boolean implication network methodology to model this compli-
cated molecular machinery [65]. The presented Boolean implication network algorithm is
conceptually innovative and can model molecular circuits, such as feedback loops, which
are important in biological switches and signaling motifs that regulate large-scale cellular
processes [66]. The multi-omics network involving the seven-gene signature was dissected.
All the network genes, including PD-L1 (CD274), had a significant correlation with immune
infiltration in at least one immune cell type of TCGA NSCLC tumors, including myeloid
dendritic cells, macrophages, neutrophils, CD4+ T cells, CD8+ T cells, and B cells. Among
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the network genes, down-regulation of SERPINB5 by small interfering RNA increased
the resistance of NSCLC H460 cells to ionizing radiation as reported in the literature [67],
consistent with the observed association between SERPINB5 up-regulation and prolonged
survival in TCGA NSCLC patients receiving radiotherapy. Low XRCC5 protein expression
was more prevalent among squamous cell carcinoma compared with lung adenocarcinoma
compared with normal lung tissues in Lee et al. [68]. The cell division cycle-associated
gene (CDCA3), mRNA, and protein expressions were increased in NSCLC compared with
normal tissue, and high levels of CDCA3 was associated with poor prognosis in Adams
et al. [69].The mRNA and protein expressions of numerous network genes were associ-
ated with drug sensitivity or resistance to 10 commonly used therapeutic regimens for
treating NSCLC. These results further substantiate the potential clinical implications of the
multi-omics network of the seven-gene signature.

The multi-omics network genes had a higher percentage (82.9%) of correlated mRNA
and protein expression in CCLE NSCLC cell lines compared with the rest of the genome
(66.3%). The correlation between mRNA and protein expression levels in complex biological
systems is in general poor [70]. Many studies reported dysregulated gene expression as
evidence of the consequent dysregulation of protein expression. Nevertheless, this is
not necessarily true in many circumstances. Current RNA sequencing and reverse-phase
protein array technologies have revealed genome-scale mRNA and protein expression and
their correlation to better understand the transcriptional and translational processes. When
reverse-phase protein arrays or commercial antibodies are not available for a research
project, the mRNA expression can be used as a surrogate of the protein expression for genes
with highly correlated mRNA and protein expression levels.

Molecular pathway and network approaches are promising for the discovery of novel
therapeutic targets and repositioning drug candidates [71]. Drug repositioning is essen-
tial for pharmaceutical research and development (R & D) due to the proven toxicity
profiles [71]. To design therapeutic strategies to reverse EMT, enhance drug sensitivity,
and inhibit NSCLC proliferation, significant functional pathways and repositioning drugs
were identified with L1000 CMap. The 14-gene EMT classifier to characterize NSCLC tu-
mors [10], the multi-omics network of the seven-gene signature, and CRISPR-Cas9/RNAi
screening data were used to generate up- and down-regulated gene lists as input to CMap.
ShRNA knock-down of the following pathways were linked to these mechanisms, in-
cluding KD_APOLIPOPROTEINS, KD_CYCLINS, KD_LYSINE_ACETYLTRANSFERASES,
KD_NON_HOMOLOGOUS_END_JOINING, KD_V_TYPE_ATPASES, and OE_NFKB_ACT
IVATION. Nuclear factor kappa B (NF-ÎB) is a master regulator in NSCLC pathogenesis
and progression [72,73]. Activated NF-ÎB signaling may influence the progression of a lung
tumor either positively via triggering immune surveillance [74] or negatively via promoting
inflammation and tumorigenesis [75]. Activation of NF-ÎB stimulates transcription of cyclin
D1, a key regulator of G1 checkpoint control [76]. NNK, a tobacco-specific nitrosamine,
can stimulate proliferation through activation of the NF-ÎB and subsequent upregulation
of cyclin D1 in a normal human bronchial cell [77]. Inhibition of NF-ÎB results in loss of
induction of EMT master-switch transcription factors in NSCLC [78]. NF-ÎB activation
has been associated with resistance to chemotherapeutics and tyrosine kinase inhibitors
in EGFR mutant lung cancer [72]. Protein expression of V-ATPase is associated with drug
resistance and higher tumor grade in NSCLC [79]. Dasatinib and lestaurtinib used for
leukemia treatment were identified as repurposing drugs for NSCLC. Homosalate, FK 888,
and penfluridol were discovered as potential repositioning drugs that can kill NSCLC cells,
maintaining the expression of drug sensitivity genes and epithelial markers, and inhibit
mesenchymal markers, proliferation genes, and ICIs for NSCLC treatment. We developed
a novel pipeline to identify repositioning drugs based on 1) network-based identification of
genes with prognostic and chemo-predictive implications, 2) pre-selection of repositioning
drug candidates using CMap, and 3) further selection of repositioning drugs that can
effectively kill NSCLC cells with the PRISM and GDSC1/2 drug activity databases. The
pipeline presented in this study can aid pharmaceutical R & D in determining disease
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relevance and designing of clinical trials of repositioning drugs to minimize the risk of
failures, to expedite drug development, and to reduce costs.

4. Materials and Methods
4.1. Patient Cohorts
4.1.1. TCGA NSCLC Patient Cohorts

The TCGA-LUAD (n = 515) and TCGA-LUSC (n = 501) data were obtained from
LinkedOmics [80] (http://linkedomics.org/, accessed on 28 April 2021). Normalized gene-
level reverse phase protein array data, gene expression, and patient clinical information
were available from the source.

4.1.2. NSCLC Patient Cohort GSE31800

A previous study [81] measured DNA copy number profiles in 271 samples from
NSCLC tumors (GSE31800). A total of 49 samples had matched custom microarray gene
expression profiles [81].

4.1.3. NSCLC Patient Cohort GSE28582

This study included a publicly available NSCLC patient cohort (n = 100) [82,83]
(GSE28582). All 100 samples had both SNP array profiled DNA copy number variation and
microarray gene expression data.

4.1.4. NSCLC Patient Cohort GSE81089

A total of 197 patients with sufficient survival information out of 199 NSCLC patient
tumor samples from GSE81089 [38] were included in this study. The transcripts per million
(TPM) reads of ZNF71 at the isoform level were generated from the raw RNA-seq data with
the Salmon method [84].

4.2. Data Pre-Processing
4.2.1. CNV Data Pre-Processing

The CNV data from GSE31800 [81] and GSE28582 [82,83] cohorts were matched with
the converted Hg38 chromosome locations. Details of the CNV data pre-processing were
provided in our previous study [65]. The pre-processed CNV data were categorized into 3
levels: 1 (amplification), −1 (deletion), and 0 (normal).

4.2.2. Gene Expression Data Pre-Processing

In order to categorize the level of gene expression, we used 27 housekeeping genes
(ACTB, B2M, CDKN1B, ESD, FLOT2, GAPDH, GRB2, GUSB, HMBS, HPRT1, HSP90AB1,
IPO8, LDHA, NONO, PGK1, POLR2A, PPIA, PPIH, PPP1CA, RHOA, RPL13A, SDCBP, TBP,
TFRC, UBC, YAP1, and YWHAZ) [10,85–88] to define the thresholds of gene expression
level. The total percentage of over-expression and under-expression samples for all the
housekeeping genes was fixed to be 30%, and the number n that meets the following
Equation (1) was computed for each gene [88,89]:

(number o f samples have expression > mean + n× std)
+(number o f samples have expression < mean− n× std)

= 30% o f total number o f samples
(1)

The averaged n value of all 27 housekeeping genes was 0.874 in the gene expression
data of GSE31800 and 0.977 in the gene expression data of GSE28582, respectively. These
n values were used to categorize each gene’s expression in each dataset. Details of gene
expression normalization using these housekeeping genes were provided in our previous
publication [65].

http://linkedomics.org/
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4.3. Boolean Implication Networks

In the present study, an implication network algorithm based on prediction logic [90]
was used. This algorithm was proposed by Guo et al. [91,92]. Details of the implication
network algorithm and its application in CNV and gene expression analysis were provided
in our previous study [65]. For an implication rule to be considered significant, it must have
a scope and precision values that are greater than the threshold values, as well as being the
largest among all the rules for the specific pair of variables. Based on the significance level
of statistical tests, the threshold for scope and precision will vary. Based on the sample
size, the threshold value was calculated using a one-tailed z-test using the ideal value of
z. The z value used for this study was 1.64 (95% confidence interval, α = 0.05, one-tailed
z-tests) [65].

4.4. Cancer Cell Line Encyclopedia (CCLE)

CCLE cell line RNA-seq data were obtained from DepMap 20Q2 (https://figshare.
com/articles/dataset/DepMap_20Q2_Public/12280541, accessed on 1 April 2021) [93].
Gene expression data quantified with the GTEx pipelines [94] were obtained from the
CCLE data portal (https://data.broadinstitute.org/ccle/CCLE_RNAseq_081117.rpkm.gct,
accessed on 1 April 2021). A total of 117 NSCLC cell lines were included in this analysis.

Proteomics data for CCLE were downloaded from the Gygi lab (https://gygi.hms.
harvard.edu/publications/ccle.html, accessed on 1 October 2021) [37]. A panel of 63 NSCLC
cell lines were included in this analysis.

4.5. CRISPR-Cas9 Knockout Assays

Project Achilles has quantified CRISPR-Cas9 gene knockout effects in CCLE [95,96]
available in version DepMap 20Q2 (https://figshare.com/articles/dataset/DepMap_20
Q2_Public/12280541, accessed on 1 April 2021) [93]. CERES [95] was used to process
the screening data for CRISPR-Cas9. Genes are defined as essential if their knockout
significantly impact the cellular growth in a cell line; otherwise, they are defined as non-
essential. In each cell line, gene knockout effects were normalized so that the median
non-essential gene knockout effect was 0, and the median essential gene knockout effect
was –1. Genome-scale CRISPR-Cas9 knockout results in 78 NSCLC cell lines were included
in this study. If a gene has a normalized dependency score less than –0.5 in a sample, it is
considered to have a significant effect in CRISPR-Cas9 knockout.

4.6. RNAi Knockdown Assays

Project Achilles also contains genome-scale RNAi screening data of CCLE (https:
//depmap.org/R2-D2/, accessed on 1 April 2021) [97]. The average gene dependency
scores in each cell line for short hairpin RNA (shRNA) libraries were estimated using the
DEMETER2 method [97]. The gene dependency scores were standardized such that the
median of the across-cell-line average dependency scores of the positive control gene set
was –1, and the median of the averaged scores of the negative control gene set was 0. Same
as CRISPR-Cas9, if a sample has normalized dependence score less than –0.5, that indicates
it has a significant effect in RNAi knockdown. A total of 92 NSCLC cell lines were included
in the RNAi analysis.

4.7. Immune Infiltration Estimation

TIMER 2.0 [34–36] was used to compute the association of gene expression and im-
mune infiltration in multiple cell types using a variety of immune deconvolution methods.

4.8. PRISM Drug Response in CCLE

The PRISM molecular barcoding and multiplexed screening method quantified the
growth inhibitory activity of 4518 drugs in 578 human cancer cell lines [39]. The PRISM
dataset was obtained from the Cancer Dependency Map portal (https://depmap.org/
portal/download/, accessed on 1 April 2021). In this study, we focused on the activities

https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541
https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541
https://data.broadinstitute.org/ccle/CCLE_RNAseq_081117.rpkm.gct
https://gygi.hms.harvard.edu/publications/ccle.html
https://gygi.hms.harvard.edu/publications/ccle.html
https://figshare.com/articles/dataset/DepMap_20Q2_Public/12280541
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https://depmap.org/R2-D2/
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of nine drugs for treating NSCLC, including carboplatin, cisplatin, paclitaxel, docetaxel,
gemcitabine, vinorelbine, etoposide, gefitinib, and erlotinib. In the experiments, different
levels of doses were designed for the treatments by each drug. A cell line was directly
defined as resistant if its IC50 or EC50 value is higher than the maximum dose; a cell line
was defined as sensitive if its IC50 or EC50 value is lower than the minimum dose. The
remaining cell lines with IC50 or EC50 value in-between the minimum and maximum
doses were divided into groups of resistant, sensitive, or partial response. Details of drug
response categorization were provided in our previous studies [19,65].

4.9. Genomics of Drug Sensitivity in Cancer (GDSC1/2)

Drug screening data were available from the Genomics of Drug Sensitivity in Cancer
(GDSC) Project (https://www.cancerrxgene.org/downloads/bulk_download, accessed
on 15 April 2021) [98]. In more than 1000 human cancer cell lines, a broad spectrum of
anti-cancer therapeutic compounds was screened in the GDSC Project. Details of GDSC1/2
and drug response categorization were described in our previous publications [19,65].

4.10. Drug Repurposing Using Connectivity Map (CMap)

CMap uses transcriptional expression signatures to connect disease, cell physiology,
and therapeutics. CMap contains a library of over 1.5M mRNA expression profiles from
~5000 small-molecule compounds and ~3000 genetic reagents, screened in multiple cell
types. Using these screening data, CMap generates hypotheses of functional pathways and
repositioning drugs through the matching of gene expression signatures containing up-
regulated and/or down-regulated gene lists as database queries. CMap (https://clue.io/,
accessed on 1 October 2021) [26,27] was used to find perturbagen signatures and functional
pathways that connected with the input gene expression signatures.

4.11. Western Blots

NSCLC cell lines H441, H23, and H1299 (kind gift of Dr. Scott Weed, WVU), A549
and H1975 (kind gift of Dr. Ivan Martinez, WVU) were grown in DMEM (Corning, cat. #
15-018-CV) supplemented with 10% FBS (HyClone, UT, USA), 2mM L-glutamine (Corning,
Steuben County, NY, USA; cat. # 25-005-CI), and 1×Antibiotic Antimycotic Solution (Corning,
Steuben County, NY, USA; cat. # 30-004-CI). All cells were maintained at 37 ◦C in a 5% CO2
incubator. Whole/total cell lysates were prepared in nonreducing Laemmli buffer as described
in [99]. Nuclear-cytoplasmic fractionation was performed using ProteoJET Cytoplasmic and
Nuclear Protein Extraction Kit (Fermentas, cat. # K0311) as described in [51].

Protein concentration was quantified by Pierce BCA Protein Assay (ThermoFisher,
Waltham, MA, USA; cat # 23225). Lysates with equal amount of total protein were sepa-
rated on 4% to 12% Bis-Tris NuPAGE Novex gels (Invitrogen, Waltham, MA, USA) and
transferred to a polyvinylidene difluoride (PVDF) membrane. Protein bands were detected
using standard chemiluminescence techniques using GE Healthcare Amersham Imager 680.

ZNF71 antibody was purchased from GeneTex (Cat. No. GTX116553). The following
antibodies were included in Western blots: ZEB1 (Sigma, St. Louis, MO, USA; HPA027524),
Vimentin (V-9; Santa Cruz Biotechnology, Dallas, TX, USA; sc-6260), E-cadherin (BD Bio-
sciences, Franklin Lakes, NJ, USA; cat# 610181), pan-Cytokeratin (C11, Santa Cruz Biotech-
nology, Dallas, TX, USA; sc-8018), PCNA (eBioSciences, 14-6748-81), and Tubulin α (Sigma,
St. Louis, MO, USA; T9026). Standard chemiluminescence was used to detect the pro-
tein bands.

4.12. Statistical Methods

Rstudio version 1.4.1106 [100] was used as the main software in the statistical analysis
of this study. Student’s t-tests were used to assess differences in mRNA and protein
expression between two groups; statistical significance was defined as having a two-sided
p-value < 0.05. The multivariate Cox regression analysis was used to compute risk-scores.
Kaplan–Meier analysis was applied with the survival package in R to perform the survival

https://www.cancerrxgene.org/downloads/bulk_download
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analysis. In Kaplan–Meier analyses, log-rank tests were used to determine the difference
in survival probability between different groups. The relationship between two sample
groups were evaluated with Pearson’s correlation test. One-tailed two proportion z-test
was used to compare if two proportions are the same.

5. Conclusions

This study substantiated the feasibility of applying the seven-gene signature developed
with qRT-PCR microfluidic assay to TCGA NGS data for NSCLC prognosis. CNV mediated
transcriptional regulatory network of the seven-gene signature was identified in multiple
NSCLC cohorts using Boolean implication networks. The multi-omics network genes,
including PD-L1 (CD274), were significantly correlated with immune infiltration and drug
sensitivity or resistance to 10 commonly used therapeutic regimens for treating NSCLC.
Dasatinib, lestaurtinib, homosalate, FK 888, and penfluridol were discovered as potential
repositioning drugs that can kill NSCLC cells, maintain the expression of drug sensitivity
genes and epithelial markers, and inhibit mesenchymal markers, proliferation genes, and
ICIs for NSCLC treatment. ShRNA knock-down of NF-ÎB and cyclin D1 pathways were
identified as associated with the multi-omics network for designing therapeutic strategies
for NSCLC intervention. PI3K was identified as a potential pathway related to proliferation
networks involving ZNF71 and its isoforms for future mechanistic study. We acknowledge
that the identified functional pathways and repositioning are based on the matching
of the gene expression signatures with screening data in the CMap databases. Although
shRNA knockdown and overexpression experimental results were included in the similarity
matching in the CMap queries, these results from bioinformatics analysis will need to be
further validated in molecular and cellular experiments.

6. Patents

The seven-gene microfluidic assay was filed under US Non-Provisional Patent Pub.
No. US 2021-0254173 A1. The results in this study were filed under US provisional patent
application 63/265,649.
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Appendix A

The Cancer Genome Atlas (TCGA) datasets were used in the following results. The
Genomic Data Commons Data Portal was used to retrieve the percentage of DNA copy
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number variation (CNV) and mutation of the studied genes in multiple cancer types (https:
//portal.gdc.cancer.gov/, accessed on 15 October 2021). TCGA-LUAD symbolizes lung
adenocarcinoma in TCGA. TCGA-LUSC symbolizes lung squamous cell carcinoma in TCGA.
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