
Citation: Williams, R.E.; Mruk, K.

Aquatic Freshwater Vertebrate

Models of Epilepsy Pathology: Past

Discoveries and Future Directions for

Therapeutic Discovery. Int. J. Mol. Sci.

2022, 23, 8608. https://doi.org/

10.3390/ijms23158608

Academic Editors: Jacek Z. Kubiak

and Malgorzata Kloc

Received: 6 May 2022

Accepted: 30 July 2022

Published: 3 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

Aquatic Freshwater Vertebrate Models of Epilepsy Pathology:
Past Discoveries and Future Directions for Therapeutic Discovery
Rachel E. Williams and Karen Mruk *

School of Pharmacy, College of Health Sciences, University of Wyoming, Laramie, WY 82071, USA;
rwilli54@uwyo.edu
* Correspondence: kmruk@uwyo.edu

Abstract: Epilepsy is an international public health concern that greatly affects patients’ health
and lifestyle. About 30% of patients do not respond to available therapies, making new research
models important for further drug discovery. Aquatic vertebrates present a promising avenue for
improved seizure drug screening and discovery. Zebrafish (Danio rerio) and African clawed frogs
(Xenopus laevis and tropicalis) are increasing in popularity for seizure research due to their cost-effective
housing and rearing, similar genome to humans, ease of genetic manipulation, and simplicity of drug
dosing. These organisms have demonstrated utility in a variety of seizure-induction models including
chemical and genetic methods. Past studies with these methods have produced promising data and
generated questions for further applications of these models to promote discovery of drug-resistant
seizure pathology and lead to effective treatments for these patients.
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1. Introduction

Epilepsy is a current public health concern with more than 50 million people affected
around the world [1]. This disease takes a toll on the health and lifestyle of affected
patients in the form of discrimination, comorbidities, and the constant stress of managing a
chronic disease [2]. About 70% of patients attain adequate seizure control with available
medications, but up to one-third of patients do not respond to available treatments [2–7].
The search for new epilepsy treatments requires biological models that can mirror the
complexity of the human nervous system and allow researchers to discover new drug
targets and drug molecules. Aquatic vertebrates provide promising alternative models for
seizure modeling and drug screening and development. Zebrafish (Danio rerio) and Xenopus
species of frog are two emerging aquatic models for seizure physiology and drug screening.

Classification and Etiology of Seizures

Seizures are bursts of excessive electrical activity in the brain. Uncontrolled electrical
activity can lead to temporary abnormalities in both behavior and states of awareness. The
International League Against Epilepsy (ILAE) has developed a standardized classification
system for seizures [8] (Figure 1). Clinicians use guidelines for first-line treatment based
on the seizure classification [9,10]. Overall, anti-seizure therapeutics vary based on the
molecule’s pharmacokinetic properties, potential drug–drug interactions, side effects, and
toxicities; however, most work mechanistically to suppress seizures [11]. Despite the large
number of anti-seizure compounds on the market, drug-resistant epilepsy occurs in up to
30% of patients, refs. [2–7] and initial treatment fails in an additional 30% of patients due to
intolerable side effects [12]. Discovery of therapeutic compounds that could affect disease
progression is a required new direction for anti-seizure therapeutic discovery [13].
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nerstones in biomedical research. They offer many advantages over the traditionally used 
mammalian models. Both zebrafish and frogs can be more easily raised and housed in 
large numbers, particularly at larval stages [24,25]. The transparency of zebrafish embryos 
and Xenopus tadpoles permits live imaging at the organismal level with a number of tis-
sue-specific transgenic lines available to permit tracking of cellular dynamics in vivo 
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An additional challenge in developing effective therapies for seizures is that there
are many underlying causes for seizures. For example, most seizures in newborns are
often classified as acute symptomatic seizures and are usually due to a brain injury [14]. In
contrast, neonatal-onset epilepsies are reported in ~12% of newborns with seizures and can
be associated with genetic mutations [15–19], brain malformations [20,21], and metabolic
disorders [22,23]. Model organisms that are amendable to genetic manipulations, brain
imaging, and high-throughput screening of new compounds are critical for discovery of
new therapeutics with different properties.

2. Aquatic Freshwater Vertebrate Animal Model Advantages

Both zebrafish (Danio rerio) and frogs (Xenopus laevis and Xenopus tropicalis) are cor-
nerstones in biomedical research. They offer many advantages over the traditionally used
mammalian models. Both zebrafish and frogs can be more easily raised and housed in
large numbers, particularly at larval stages [24,25]. The transparency of zebrafish embryos
and Xenopus tadpoles permits live imaging at the organismal level with a number of tissue-
specific transgenic lines available to permit tracking of cellular dynamics in vivo [26,27].
High-throughput screens are possible for both drug discovery and toxicology [28–34]. A
number of compounds identified in zebrafish screens are in early clinical trials further un-
derscoring the translational potential of conducting drug screens in zebrafish [35]. With the
advent of whole-genome sequencing, both zebrafish and Xenopus have stood out as model
organisms among their mammalian counterparts. Over 70% of human genes have at least
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one zebrafish orthologue [36], with the Xenopus genome including orthologs of ~80% of
human disease genes [37]. More recently, methods to increase the genome editing efficiency
of the Clustered Regularly Interspaced Short Palindromic Repeat– (CRISPR–) Cas9 system
in zebrafish [38–43] and Xenopus [44–48] have led to new human disease models.

Although zebrafish and Xenopus do not have the same level of regulatory recognition
as their mammalian counterparts, government agencies such as the National Toxicology
Program are now funding programs to increase the utility of aquatic vertebrates as pre-
clinical models [49]. Indeed, a number of academic and pharmaceutical companies have
teamed up with contract research service (CRO) companies that focus on zebrafish and
Xenopus for preclinical drug development [50]. A growing list of drug treatments that have
recently entered clinical trials after research starting in zebrafish is reviewed in [35].

2.1. Aquatic Freshwater Vertebrates as Seizure Models

Xenopus laevis oocytes have a long history of contributing to epilepsy research. Intact
oocytes are a versatile expression system for functional investigation of ion channels and
transporters [51]. As early as the 1980s, laboratories isolated RNA from mammalian brains,
injected total RNA into oocytes, and recorded membrane currents [52–57]. Later, laborato-
ries cloned and injected ion channel mRNA to characterize how genetic mutations linked
to epilepsy affect the biophysical properties of specific channels [58,59]. Furthermore, treat-
ment with epileptogenic agents identified the role voltage-gated potassium (Kv) channels
and N-methyl-D-aspartate (NMDA) receptors play in seizure generation [60,61].

At the organismal level, zebrafish larvae have been used to model seizure disorders for
some time while Xenopus tadpoles are a more recently developed aquatic vertebrate gaining
notoriety in the field. Both of these organisms have advantages as models for seizures
versus traditional mammalian models. In addition to the efficient rearing, low housing costs,
and transparency described above, the central nervous system (CNS) of the zebrafish and
Xenopus have similar organization to the human CNS [62–69]. Zebrafish and Xenopus have
myelinated axons and are used as models for demyelination [70–75]. Aquatic freshwater
vertebrate models of demyelination are particularly useful given that children with epilepsy
have abnormal myelin development [76,77] and patients with demyelinating disease also
suffer from seizures [78]. Lastly, zebrafish and Xenopus use gamma-aminobutyric acid
(GABA) and glutamate receptors to control CNS activity including signaling required
for movement [79–83]. Therefore, the process of seizure induction between freshwater
aquatic vertebrates and humans are likely conserved, as GABA and glutamate are the main
neurotransmitters contributing to the pathophysiology of epilepsy.

2.2. Advantages of Aquatic Freshwater Vertebrates as Seizure Models

A major advantage of zebrafish larva and Xenopus tadpoles is the ability to visualize
the nervous system during seizure activity in real time. Using calcium imaging, scientists
can look at both excitatory and inhibitory activity throughout the brain, identify areas of
high activity, and assess the rate of spread of the seizure to other parts of the brain [84–91].
Calcium imaging can be combined with a variety of electrophysiological approaches to get
a direct correlation between neuronal activity and electrical field potential [92–95]. With
recent advantages in calcium imaging, it is now also possible to get single cell resolution in
an acute zebrafish seizure model [96].

In addition to their transparency, the aquatic nature of these organisms allows for easy
drug delivery by dosing the water they reside in. Specific concentrations of drugs can be
delivered by creating various baths and placing the desired animals in the solution. Drug
exposure using this method allows for control of dose, frequency, and length of exposure
more so than administering a drug orally or parenterally. The ability to cultivate large
numbers of larvae or tadpoles allows for high-throughput screening options for drugs [97].
By dosing the water and allowing zebrafish and Xenopus to behave freely, the data are not
confounded by anesthetics or invasive surgical procedures as found in mammalian models
providing cleaner results due to freedom from interference in the neural circuits [98]. Taken
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together, aquatic vertebrates provide an animal platform with improved control of dose-
and timing-related phenomena.

Perhaps the largest advantage aquatic freshwater vertebrates have in modeling seizures
is their genetic tractability. Recent studies have found approximately 900 genes associated
with epilepsy [99], making genetic animal models of seizures ever more useful for studying
the disease. The ease of genetic manipulation in zebrafish and Xenopus affords them a major
advantage over mammalian models as mutations in multiple types of proteins can be made
in combination. For example, genetic seizure disorders are highly variable and prone to
drug resistance [100]. However, it is less understood whether resistance is due to mutations
that cause changes in the pharmacokinetics and pharmacodynamics of the therapeutic
molecules or inherent differences in the pathophysiology of the seizure. The extensive
genetic toolkit available in aquatic freshwater vertebrates permits modeling of knock-
down [101–107], knockout [39,44,46,48,108–116], ectopic, and overexpression [38,117–121]
of seizure-associated genes in combination with metabolic enzymes, transporters, and other
proteins required for absorption, distribution, degradation, and excretion of therapeutics.
A unique aspect of Xenopus is that their large eggs and embryos can be genetically modi-
fied by injecting the embryo on only one side at the two-cell stage, providing an internal
control [120]. This causes the alteration to occur only on the injected side, so the resulting
phenotype can be compared to the contralateral side for off-target effects. Seizure activity
can be monitored by similar behaviors in both species in combination with calcium imaging
and electrophysiology.

Lastly, researchers in both model organism communities use a similar rating scale
for seizures. The rating scale consists of five categories ranging from barely noticeable
locomotor changes (category 1) to C-shaped contractions (category 5) [98,122–124]. Al-
though zebrafish can exhibit some human symptoms, such as tonic-like behavior, this
scoring system does not directly relate to the ILAE classification. Instead, this scoring
system provides a method for standardization of experimental technique, which allows the
data to be reproducible and translatable across laboratories and different aquatic species.
Other behavioral metrics used to analyze seizure activity include total distance traveled
and thigmotaxis.

2.3. Disadvantages of Aquatic Freshwater Vertebrates as Seizure Models

Like most model organisms, both zebrafish and Xenopus have disadvantages. Adults
develop pigment, making live imaging more difficult in older animals. Genetic mutants
which lack pigment may alleviate live imaging limitations of adult animals. As techniques
are developed to image brain activity in older animals, the use of juvenile and adult
models of seizure disorders should increase. Indeed, a genetic model of juvenile myoclonic
epilepsy in older zebrafish has demonstrated convulsive seizure generation in response to
light [125]. More recently, an EEG system was developed for adult zebrafish, permitting a
direct comparison between zebrafish and mammalian models [126].

Although dosing the water is facile, uptake of the compounds through skin and
gills varies, creating pharmacokinetic challenges such as indirect measurements of drug
absorption into plasma. Though most studies in zebrafish do not measure blood con-
centration of compounds, these measurements could prove essential for translating the
therapeutic potential of aquatic vertebrate models to the clinic [127]. Given blood sam-
ples from both zebrafish and Xenopus are small, pooled samples may be necessary to get
the required pharmacokinetic data [128,129]. Small molecules with poor water solubility
are also not absorbed efficiently, limiting the chemical libraries that can be screened by
adding the molecule to the water. Furthermore, drugs which do not readily cross the
mammalian blood–brain barrier are also not observed in the zebrafish brain after water
administration [130].
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3. Current Aquatic Vertebrate Seizure Models

Chemical and genetic seizure induction are the most common options in the zebrafish
and Xenopus communities. Below we highlight the progress made toward understanding
seizure pathophysiology and treatment using these methods.

3.1. Chemical Induction of Seizures

Seizures in humans are due to hyperexcitability and hypersynchronous activity of
cortical neurons. Therefore, most chemically induced models of aquatic vertebrates are
generated using compounds that disrupt the inhibitory and excitatory balance in the brain
of the animal (Figure 2). Possible chemical induction agents include bicuculline, picrotoxin,
tetramethylenedisulfotetramine (TETS), kainic acid, pilocarpine, 4-aminopyridine (4-AP),
and pentylenetetrazole (PTZ) [98]. Most of the studies in aquatic organisms that have
utilized non-PTZ chemical induction methods are in zebrafish. Chemical induction agents
are advantageous due to rapid seizure induction and ease of use. They also facilitate high-
throughput screening by permitting rapid dose response studies in multiple animal ages to
determine desired characteristics prior to the main data-generating experiment. Zebrafish
studies have used animals as young as 2 days post-fertilization (2 dpf) up to adulthood
whereas the Xenopus community typically uses tadpoles at developmental stages 42–49.
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Bicuculline is a competitive GABAA antagonist [131] originally used to elucidate
details surrounding synapses and GABAA transmission [132,133]. It is a light-sensitive
molecule, which easily decomposes in solution, making it difficult to administer [131].
Therefore, studies using this compound are limited in free-swimming aquatic vertebrates.
One advantage of bicuculline is the ability to induce seizures in multiple models from
C. elegans to cats [134–136], providing a clear translational path from target identification in
aquatic organisms to mammals. In rats, natural product screens identified sakuranetin and
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melittin as protective against bicuculline-induced seizures [137,138]. However, exposure to
bicuculline does not cause significantly different electrical recordings than those generated
from other chemically induced seizures [134]. Given the difficulty working with bicuculline
and lack of unique electrical changes induced, its utility in aquatic vertebrates is still limited.

Picrotoxin is also a GABAA antagonist but unlike bicuculline, is a non-competitive
inhibitor [132,133]. In zebrafish larvae (5 dpf), picrotoxin exposure increased locomotion
in a dose-dependent manner. Similarly, Xenopus tadpoles also displayed concentration-
dependent seizures [98]. In addition, high doses increased thigmotaxis in zebrafish larvae,
which is a common measure for anxiety. Furthermore, higher doses of acute anti-seizure
medications are required to decrease locomotor seizure symptoms when induced with
this compound [94]. Therefore, picrotoxin may be advantageous in modeling treatment-
resistant seizures. Picrotoxin-treated adult zebrafish exhibited increased hyperactivity and
cortisol levels following seizure [139]. The data from larvae and adults are consistent with
studies where low doses of picrotoxin elevate anxiety and corticosterone in mice [140] and
lysosomal dysfunction in rats [141,142]. Therefore, the picrotoxin model in adult zebrafish
may provide a useful tool to probe seizure-induced effects on the endocrine system. The
seizure-inducing properties of picrotoxin makes it a credible chemical threat to humans. In
fact, the NIH Countermeasures Against Chemical Threats (CounterACT) program listed
picrotoxin as an agent of interest. In addition to seizure modeling, picrotoxin in zebrafish
is a good platform to screen symptoms and potential treatments for the use of picrotoxin
against human populations in warfare [94].

Similar to picrotoxin, TETS is also a non-competitive GABAA antagonist that is con-
sidered a potential chemical warfare agent. While TETS is a potent rodenticide, it also
causes human seizures with lasting neurological effects, leading to a worldwide ban [143].
The recurrent nature of seizures after TETS exposure in humans as well as the lack of a
targeted treatment make it attractive as a seizure-induction agent for research using aquatic
vertebrate models. Compared to picrotoxin, in zebrafish larvae less TETS is required to
evoke seizure behavior [94,144]. TETS also triggered high-frequency electrical discharges
which were different from electrical measurements following picrotoxin exposure. Ben-
zodiazepine treatment in larvae attenuated some of the electrical changes without a full
return to baseline, consistent with what is seen in human exposure. Future studies aimed
at identifying TETS-protective compounds in zebrafish will facilitate the development of
effective antidotes for this poison.

Kainic acid is an analog of glutamate, which promotes excitability leading to seizure
activity. It activates both kainate and AMPA receptors. One advantage of this drug is
that it causes focal seizures in both mammals and primates [145–147]. Kainic acid causes
cell death and damage to the brain, but zebrafish can regenerate brain cells [148]. Upon
regeneration, after kainic acid treatment, the brain becomes disorganized which leads to
a chronic spontaneous seizure state similar to epilepsy in humans. One study showed a
lack of response of this seizure model to clinically used anti-seizure medications [149]. This
lack of response underscores the potential of this model to identify drugs for treatment
of drug-resistant seizures. The major disadvantage of this model is that even in aquatic
organisms, kainic acid is not well absorbed and must be injected, making administration
more technically challenging and time intensive.

Pilocarpine induces seizures through activation of the cholinergic system in the brain,
specifically agonizing the muscarinic (M1) receptor. Activation of the cholinergic system
leads to activation of NMDA receptors and hyperexcitability [150]. Some evidence sug-
gests that pilocarpine seizures have different behavioral characteristics than PTZ-induced
seizures. This makes pilocarpine beneficial for modeling different types of seizures possibly
leading to new therapeutic options [150]. Multiple studies have used pilocarpine especially
to model seizures in adult zebrafish with emphasis on chronic seizure modeling through
repeated dosing [150,151]. Repeated dosing is particularly attractive because patients typi-
cally present with recurrent seizures, so modeling this will allow for better drug discovery
leading to treatment of recurrent versus acute seizures.
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4-AP is a voltage-sensitive potassium (K+) channel blocker. K+ channel inhibition by
4-AP results in increased cholinergic signaling in the CNS and neuromuscular junctions
resulting in clonic seizures [152]. 4-AP was originally used to repel and kill birds, and
it is toxic to mammals as well [153]. Despite its toxicity, 4-AP is used as a therapeutic
for multiple sclerosis and spinal cord injury patients [154–156]. Therefore, 4-AP-induced
seizures are a good model for seizure-threshold lowering therapeutics. In Xenopus, 4-AP
induces both behavioral and rhythmic high-amplitude electrical discharges [98]. Simi-
larly, zebrafish larvae also exhibit increased swimming activity when treated with 4-AP.
Recently, a screen to test the efficacy of current anti-seizure compounds was performed
in hippocampal-entorhinal slices of adult rats with 4-AP-induced seizures [152]. Given
the ease of drug application in aquatic vertebrates, it is possible to simultaneously ad-
minister a seizure-threshold lowering drug such as 4-AP at a low dose and screen for
seizure-protective compounds.

The most common chemical induction model in zebrafish and Xenopus is PTZ. PTZ is a
GABAA antagonist and as such PTZ-induced seizures are sensitive to drugs acting directly
on GABAA receptors. The PTZ model is ideal for its translation to mammalian models.
PTZ has been used to induce seizures in rodents [157], canines [158], and primates [159].
Using the PTZ model, early zebrafish studies focused on zebrafish larvae and their changes
in electrical activity [97]. Pharmacologically, PTZ seizures and identified anti-seizure
compounds from these screens in zebrafish larvae are consistent with results from rodent
studies [160,161]. The PTZ-induced seizure model in zebrafish larvae has also been used to
screen a variety of natural compounds for anti-seizure activity [162–165]. These screens
aimed to discover novel anti-seizure therapies for treating refractory seizure disorders.
While larvae may be more versatile for imaging and replicating developmental neural tissue,
adult zebrafish still have a role in anti-seizure drug research with potential applications
to older human patients. One study used adult zebrafish instead of larvae to screen the
anti-seizure properties of leaf extracts [166]. Taken together, the PTZ-zebrafish model is a
first-line drug-screening tool for discovery of anti-seizure medications. Further, the model
shows promise as a first line tool for identifying the adverse effects of seizure induction in
medications indicated for other diseases.

Xenopus models have also demonstrated efficacy as a drug-discovery tool for seizures.
Most Xenopus studies use PTZ for chemical seizure induction. In fact, the Haas laboratory
tested the different seizure-induction agents described above to determine the most consis-
tent seizure model in Xenopus [98]. PTZ is preferred for its wide therapeutic window and
consistent timing and intensity of seizure activity in the tadpole [98]. Similar to zebrafish,
the Xenopus community uses intracellular calcium variations to complement locomotor
assays. Furthermore, the PTZ-induced Xenopus seizure model exhibits electrical events
consistent with those seen in other vertebrates [167].

3.2. Genetic Induction of Seizures

Originally, genetic seizure models were generally limited to forward-genetic screens us-
ing N-ethyl-N-nitrosourea (ENU) mutagenesis. As genetic engineering techniques bloomed,
multiple models became available. For example, gene knockdown with antisense morpholi-
nos has been used to model autosomal dominant partial epilepsy with auditory features
and temporal lobe epilepsy [168,169]. Morpholino knockdown can also be used to probe
the mechanism of disease-linked genes in epilepsy formation [170]. Unfortunately, mor-
pholinos come with their own set of limitations including off-target effects, transient effects
that wane after days, and noted discrepancies between morphants and mutant phenotypes.

Given the growing list of concerns surrounding morpholinos, laboratories derived
genetic seizure models from clinically relevant mutations in humans that resulted in seizure
disorders. The Baraban laboratory published a phenotypic analysis of 40 single-gene mu-
tant zebrafish lines based on genes implicated in childhood epilepsy [171]. For example,
Dravet syndrome is due to mutations in the NaV1.1 voltage-gated sodium channel. A
phenotype-based screen in mutant zebrafish larvae identified clemizole as an anti-seizure
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compound [172]. In addition, zebrafish with mutations in the syntaxin binding protein,
stxbp1, also respond to clemizole [173]. These and future genetic models are expected to pro-
vide much needed information on the pathophysiology of childhood epilepsies and identify
new classes of anti-seizure compounds paving the way for patient-specific therapeutics.

Xenopus models are also genetically amendable. Using cRNA injection technology, a
Xenopus oocyte model was used to find a non-conventional seizure treatment with direct
application to a human patient [174]. This study directly demonstrates the translational
relevance of data from these aquatic vertebrates. A Xenopus model using CRISPR-Cas9-
mediated genome editing to deplete neurod2, a gene implicated in early infantile epileptic en-
cephalopathy, induces spontaneous seizures in tadpoles mimicking the human disease [175].
In addition to genetic manipulation, Xenopus tadpoles and oocytes have been used to de-
termine molecular details of clinically utilized and novel drug molecules [176–178]. For
example, the commonly used drug for absence seizures, ethosuximide, inhibits specific
G-protein activated inwardly rectifying potassium channels (GIRK) which has the potential
to affect other systems beyond the brain [179]. Another study demonstrated how multiple
compounds can interact pharmacodynamically to produce increased effects for seizure
treatment [180]. Additionally, the effects of polyamine synthesis during seizure activity
are controversial. Data from the Xenopus model support the hypothesis that polyamines
are protective against recurrent seizure activity which may indicate novel therapeutic
targets [181]. As there are data indicating polyamines are not protective in mammals [182],
further studies across species may be necessary to make a final determination as to the
protective effect of post-seizure polyamine generation.

3.3. New but Less Established Aquatic Vertebrate Seizure Models

Not all anti-seizure drugs are active against multiple types of induced seizures. Screen-
ing of currently approved anti-seizure drugs showed differences in efficacy against PTZ-
induced seizures and one model of genetic seizures [183]. To identify new models for
anti-seizure efficacy, the Kurrasch laboratory developed zebrafish monitoring for seizure
activity using mitochondrial respiration [183]. This platform identified a new compound,
vorinostatcan that decreased seizures in both genetic and chemical induction models of
epilepsy. Unfortunately, locomotor seizure activity does not correlate well with increased
mitochondrial respiration, requiring more refinement of this model.

Zebrafish have also been used to model traumatic brain injuries and the subsequent
seizure pathology seen in humans [184]. Pre-treatment of injured zebrafish with sonic
hedgehog signaling inhibitors after injury rendered them resistant to anti-seizure com-
pounds. This combinatory model of injury and drug resistance has potential as a model for
drug-resistant epilepsies as these seizures are characteristically difficult to control. Trau-
matic brain injury models may prove useful for understanding other adult-onset acquired
seizure disorders. For example, one study evaluated the development of seizures in ze-
brafish after injury and then tested the effectiveness of anti-seizure therapeutics using a
T-maze setup to test cognitive ability before and after treatment [122]. This study highlights
the importance of using multiple types of data (electrophysiological and locomotion) to
track seizure activity and the effectiveness of potential treatments. Given the rise of another
aquatic vertebrate, Medaka (Oryzias latipes), for studying traumatic brain injuries [185], this
paradigm has the potential to expand our ability to model acquired seizure disorders in
both a pro-regenerative and less regenerative species.

4. Looking to the Future for Aquatic Seizure Models

Although the PTZ model remains the most characterized and commonly used chem-
ically induced seizure model from zebrafish to primates, aquatic vertebrates provide an
opportunity to develop and validate new chemically induced seizure models. Using a vari-
ety of compounds that act through distinct pathways to induce seizures provides a broader
set of models for screening anti-seizure therapeutics. These additional chemical models may
uncover different anti-seizure therapeutics that could benefit treatment-resistant epilepsies
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in humans. Similarly, studies have shown that not all clinically effective antiepileptic drugs
are active in a single seizure-induction model; therefore, aquatic vertebrates provide a
model in which to test potential new drug compounds against multiple induction models
before declaring them not useful. This leads to the possibility that a new pro-convulsive
agent, that has yet to be considered, could be the key to modeling treatment-resistant
seizure disorders.

In addition to chemically induced seizure models, aquatic vertebrates offer numerous
genetic options. Stable genetic models are available for specific epilepsies such as Dravet
syndrome and epilepsies linked to rare syndromes such as Angelman syndrome. Many
of these models serve as a starting point for future studies aimed at gaining mechanistic
insight into seizure generation and propagation. Furthermore, screening for anti-seizure
therapeutics in these models permits the discovery of gene-specific therapeutics opening
the door for personalized medicine in human patients.

Aquatic vertebrates permit the combination of different seizure models to determine
the differences in seizure pathology and thus provide a path toward novel therapeutic
options especially for drug-resistant epilepsies. The ease of housing, large clutches, trans-
parent nature, aquatic environment, and potential for high-throughput screening make
zebrafish and Xenopus ideal model organisms for research into the pathology and treatment
of seizure disorders. The plethora of genetic resources in these models promises to provide
new research opportunities and drug development directions. As genetic models are de-
veloped in new aquatic vertebrates, such as Medaka, the ability to compare evolutionary
development of seizures and mechanisms of drug-resistance across models exists [186].

Continued development of imaging and screening approaches in aquatic vertebrates
will increase the number and types of neurophysiological questions that can be addressed
when studying seizure generation and treatment. The combination of new tools and genetic
resources will accelerate the contribution of studies to translational research.
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