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ABSTRACT
Estimation of species sensitivity distributions (SSDs) is a crucial approach to predicting
ecological risks and water quality benchmarks, but the amount of data required to
implement this approach is a serious constraint on the application of SSDs to chemicals
for which there are few or no toxicity data. The development of statistical models
to directly estimate the mean and standard deviation (SD) of the logarithms of log-
normally distributed SSDs has recently been proposed to overcome this problem.
To predict these two parameters, we developed multiple linear regression models
that included, in addition to readily obtainable descriptors, the mean and SD of the
logarithms of the concentrations that are acutely toxic to one algal, one crustacean, and
one fish species, as predictors. We hypothesized that use of the three species’ mean and
SDwould improve the accuracy of the predictedmeans and SDs of the logarithms of the
SSDs. We derived SSDs for 60 chemicals based on quality-assured acute toxicity data.
Forty-five of the chemicals were used for model fitting, and 15 for external validation.
Our results supported previous findings that models developed on the basis of only
descriptors such as log KOW had limited ability to predict the mean and SD of SSD
(e.g., r2 = 0.62 and 0.49, respectively). Inclusion of the three species’ mean and SD, in
addition to the descriptors, in the models markedly improved the predictions of the
means and SDs of SSDs (e.g., r2 = 0.96 and 0.75, respectively). We conclude that use of
the three species’ mean and SD is promising for more accurately estimating an SSD and
thus the hazardous concentration for 5% of species in cases where limited ecotoxicity
data are available.

Subjects Ecotoxicology, Marine Biology, Aquatic and Marine Chemistry, Environmental
Contamination and Remediation, Environmental Impacts
Keywords Species sensitivity distribution, Quantitative structure–activity relationship,
Hazard/risk assessment, Predictive toxicity, Ecological risk assessment

INTRODUCTION
In the ecological risk assessment of chemicals, the use of species sensitivity distributions
(SSDs) is fundamental to deriving ‘‘safe’’ concentrations such as the predicted no effect
concentration (PNEC) and water quality benchmarks, as well as the potentially affected
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percentages of species (Vaal et al., 1997; Posthuma, Suter & Traas, 2002; Iwasaki et al.,
2015; Belanger et al., 2017; Carr & Belanger, 2019; Posthuma et al., 2019; Sorgog & Kamo,
2019). SSDs can be derived on the basis of acute or chronic toxicity data, or both. To derive
an SSD for a given chemical, a set of toxicity data is fitted to statistical distributions such as
a log-normal or log-logistic distribution. Therefore, toxicity results for multiple species are
required, and the minimum sample sizes (i.e., the minimum number of species required)
typically vary between five and 10, depending on the regulatory jurisdiction (Belanger
et al., 2017). This data-demanding feature is a critical barrier to the application of SSD
to chemicals for which there are few, or no, toxicity data (Hoondert et al., 2019; Hiki &
Iwasaki, 2020).

To address this data-demand issue, the development of statistical models with
physicochemical descriptors to estimate the mean and standard deviation (SD) of the
logarithms of log-normally distributed SSDs has recently been proposed (Hoondert et
al., 2019). Development of separate models for the mean and SD of the logarithms of
SSDs rather than models that estimate the hazardous concentration for X% of species
(HCx; typically, HC5) based on an SSD is valuable for two different reasons. First, both
of these parameters are required to estimate the fraction of species affected by a given
concentration of a toxic substance as well as the concentration that is hazardous for a
given percent of the species (Posthuma, Suter & Traas, 2002). Second, the mean and SD
have inherently different statistical properties (e.g., the SD of the logarithms of the SSD is
related to inter-species differences in sensitivity). Although the results are preliminary, the
coefficients of determination (R2) of models developed for the SDs of the logarithms of the
SSDs were less than 0.4 (Hoondert et al., 2019). However, the parameters that characterize
SSDs can bemore robust than the concentrations that are acutely toxic to individual species
(Iwasaki et al., 2015). A modeling approach aimed at characterizing SSDs therefore seemed
worth pursuing.

The major concept that we tested here was to make use of the mean and SD of toxicity
values for three biological species chosen (randomly) from three biological groups (algae,
crustaceans, and fish), in addition to readily obtainable descriptors, to improve the model
prediction of SSDs. This idea is similar to the application of QAAR (quantitative activity–
activity relationship) and QSAAR (quantitative structure–activity–activity relationship)
models (Furuhama, Hayashi & Yamamoto, 2019). Acquiring at least one set of toxicity
data from each of algae, crustaceans, and fish may not be feasible for many chemicals,
but these biological groups are often the most representative in terms of data availability
(Aurisano et al., 2019). Given the difficulties in predicting SSD parameters on the basis
of readily obtainable descriptors alone (Hoondert et al., 2019), an approach that lies in
between prediction based on ‘‘only descriptor-based’’ models and prediction based only
on experimentally obtained toxicity data could be promising.

Here, acute toxicity data were used to estimate SSDs because of the paucity of quality-
assured acute toxicity data. Our specific aims were threefold (Fig. 1). We first aimed to
develop and test linear regression models with readily obtainable descriptors, such as the
log10-transformed octanol–water partition coefficient (log KOW), to predict the means
and SDs of acute log-normal SSDs. By doing this, we evaluated the previous conclusions
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Figure 1 A summary schematic of model development in the present study. Three types of predictive
models were used to estimate means and standard deviations (SDs) of the logarithms of log-normally dis-
tributed species sensitivity distributions based on measured toxicity data.

Full-size DOI: 10.7717/peerj.10981/fig-1

of Hoondert et al. (2019) about model performance. Second, we aimed to develop linear
regression models with predictors of means and SDs estimated on the basis of toxicity
values for three species chosen from three biological groups (algae, crustaceans, and fish).
Finally, we aimed to develop and test linear regression models with predictors of means
and SDs based on the three species’ toxicity data, as well as the descriptors, to predict the
means and SDs of SSDs. Although several studies have derived SSDs based on three species’
toxicity data and have assessed the associated uncertainties of HC50 and HC5, particularly
in the field of life-cycle impact assessment (Van Zelm et al., 2007; Golsteijn et al., 2012;
Douziech et al., 2020), to our knowledge no attempt has been made to develop and test the
models by the combined use of the two different types of predictors (i.e., descriptors and
three species’ mean and SD).

MATERIALS AND METHODS
Data collection
All acute toxicity data (e.g., the 50% effect concentration [EC50] and median lethal
concentration [LC50]) were collected from datasets used for initial environmental risk
assessments (IERAs) of chemicals; these have been performed annually from 2002 by
the Ministry of Environment (MoE), Japan (MoE Japan, 2018). We obtained some of
the datasets (2002–2014) from the National Institute of Advanced Industrial Science and
Technology (AIST)-Multi-purpose Ecological Risk Assessment and Management Tool
(AIST-MeRAM; Copyright No: H28PRO-2007; Lin et al., 2020), and we obtained the more
recent datasets from original pdf documents (MoE Japan, 2018). In IERAs, the quality
of the toxicity data collected is examined by referring to international or domestic test
guidelines or by evaluating the test conditions, test species, and physicochemical properties
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of the chemical being tested. The quality is assigned to one of four categories (Reliable
without restriction, Reliable with restrictions, Not reliable, and Not assignable) in accord
with OECD (2007) and Klimisch, Andreae & Tillmann (1997). Here, we used the toxicity
data assigned to the former two categories, which were also used to derive PNECs in the
original IERAs, to minimize undesired variability in toxicity data and thereby to accurately
estimate the means and SDs of SSDs. The acute toxicity measures analyzed were dominated
by EC50s and LC50s, but they also included other similar measures (e.g., median tolerance
limit (TLm) and 50% inhibitory concentration (IC50)). To estimate the SSD of a chemical,
if multiple toxicity data were available for a single species, the calculated geometric mean
was used (Iwasaki et al., 2015; Hiki & Iwasaki, 2020).

To estimate log-normally distributed SSDs, we also used the following criteria: (1)
toxicity data for ≥8 species, including at least one species from each of the three biological
groups (algae, crustaceans, and fish) were available; (2) the assumption of normality of SSD
was not rejected by the Shapiro–Wilk test (α= 0.05 with Holm’s P-value adjustment; Hiki
& Iwasaki (2020)); and (3) all the information about the predictors below was acquired,
excluding that for inorganic substances. Application of these criteria yielded a total of 60
chemicals to be analyzed (see Table S1 in the Supplementary File for the list of chemicals).
Use of a relatively large numbers of species (10–55) has been advocated for accurate
estimation of SSDs (Newman et al., 2000; Carr & Belanger, 2019; Hiki & Iwasaki, 2020),
but a relatively small numbers of species (<10) has been used previously, and a minimum
sample size of 5 has been suggested (TenBrook et al., 2009). However, if 10 species had
been used as the threshold in the present study, the number of chemicals analyzed would
have been reduced by almost a factor of two. We therefore used a minimum sample size
of 8 species as a tradeoff between the number of chemicals analyzed and the uncertainties
in the estimated SSDs. We were able to estimate 29 SSDs with data on 8 or 9 species, and
we could estimate 31 SSDs with information for at least 10 species (see Table S1 in the
Supplementary File for more details).

The means and SDs of the logarithms of the log-normally distributed SSDs for 60
chemicals were calculated based on full datasets. The means and SDs were obtained by
calculating the means and sample SDs of the log10-transformed toxicity data. A sample SD
was equated to the square root of the sum of the squared deviations from the mean divided
by n –1, where n was the number of species. In the present study, we have referred to the
statistics that we calculated as SSD means and SDs, although they were actually the means
and SDs of the log10-transformed values. Those means and SDs were used as objective
variables in the later regression analysis. The log10-transformed values of HC5 were derived
by using Eq. (1):

HC5=mean−1.645×SD. (1)

The 95% confidence intervals of the log10-transformed HC5s based on SSDs derived
from measured toxicity values were also estimated according to Aldenberg, Jaworska &
Traas (2002) (see Sorgog & Kamo, 2019 for the R code). As with SSD means and SDs, we
hereafter referred to log10-transformed HC5s as HC5s.
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Predictors
Molecular weight (MW) obtained from the IERA reports, as well as log KOW (estimated on
the basis of KOWWIN v1.69), log10-transformed vapor pressure at 25 ◦C (units: mm Hg;
MPBPWIN v1.43; hereafter, log VP), and the calculated rating value for the time required
for primary biodegradation (BIOWIN4; BIOWIN v4.10)—all of which were estimated by
using the EPI (Estimation Programs Interface) Suite v4.11 (US EPA, 2017)—were used as
predictors in the regression analyses. These predictors were selected on the basis of the
results of Hoondert et al. (2019) and Iwasaki & Hayashi (2020). Water solubility was not
used, because it was estimated from log KOW (US EPA, 2017) and was highly correlated
with log KOW (r =−0.96). As predictors for the regression analyses, we also used two
binary variables (Class 3 and Class 4) concerning whether a given chemical was categorized
as Class 3 (reactive chemicals) or Class 4 (specifically acting chemicals) on the basis of
the Verhaar mode-of-action classification (Verhaar, Van Leeuwen & Hermens, 1992), as
estimated by using the OECD QSAR Toolbox (v4.4.1; https://qsartoolbox.org/). This is
because accumulated evidence indicates that the means and SDs of SSDs for Class 3 and
4 chemicals differ from those of other chemicals (Vaal et al., 1997; Hendriks et al., 2013;
Hiki & Iwasaki, 2020). Because the influences of chemical classes other than Class 3 and
Class 4 were not evident in those studies, we chose not to include a categorical variable
representing the Verhaar mode-of-action classification to save the degree of freedom.
Of the 60 chemicals that we studied, 27% were assigned to Class 1 (narcosis or baseline
toxicity), 8% to Class 2 (less inert compounds), 37% to Class 3, 12% to Class 4, and 17%
to Class 5 (unclassified; see Table S1 for the raw data).

For each chemical, we also calculated the mean and SD of the toxicity data for an
alga, crustacean, and fish and hereafter refer to these 3-species-based predictors as the
3-species mean and SD, respectively. For purposes of this calculation, we first produced
3000 bootstrapped sample sets of 3-species means and SDs for each chemical by randomly
choosing three species that had been tested (i.e., choosing one species from each of the three
biological groups by non-parametric bootstrapping). The median value of the 3-species
means and the corresponding SD were then selected for each chemical, and these were
used as predictors based on the 3-species data in the later analysis. Note that the three
species adopted here were also included to calculate the means and SDs of SSDs, which
were used as objective variables in the regression analysis. The use of the 3-species mean
and SD as predictors in the regression analysis is unconventional, because the toxicity
data used for calculating the predictors were also utilized to calculate objective variables.
However, it should be plausible given the limited availability of toxicity data and our focus
on examining the utility of the predictors in estimating SSDs.

Model evaluation
All statistical analyses were performed by using R 3.6.3 (R Core Team, 2020). All the
associated data and the R code are available in the Supplementary File. For model
development and evaluation, 45 chemicals were randomly chosen from the 60 chemicals
and used as training data, and the remaining chemicals were used as test data for out-of-bag
model evaluation. Themedian values and ranges of SSDmeans and SDs and the descriptors

Iwasaki and Sorgog (2021), PeerJ, DOI 10.7717/peerj.10981 5/16

https://peerj.com
https://qsartoolbox.org/
http://dx.doi.org/10.7717/peerj.10981#supp-3
http://dx.doi.org/10.7717/peerj.10981#supplemental-information
http://dx.doi.org/10.7717/peerj.10981


Table 1 Summary information on the training and test data used for model development and evalua-
tion.

Variable Training data Test data

Number of chemicals 45 15
Number of Class 3 chemicals 15 7
Number of Class 4 chemicals 6 1
Number of species* 10 (8–19) 9 (8–21)
SSD mean* 0.92 (−2.71–4.50) 1.06 (−1.05–4.40)
SSD SD* 0.67 (0.25–1.65) 0.42 (0.26–1.39)
Molecular weight* 137 (56–391) 144 (61–221)
Log KOW

* 2.65 (−1.47–7.43) 2.18 (−1.61–3.93)
Log VP*

−1.54 (−6.56–2.42) −0.91 (−4.88–1.31)
Biodegradability* 3.56 (2.85–4.74) 3.58 (3.09–3.92)

Notes.
*Median and range (minimum and maximum) are shown.
SSD, species sensitivity distribution; Class 3 or 4, reactive chemicals or specifically acting chemicals, respectively, based on
the Verhaar mode of action classification (Verhaar, Van Leeuwen & Hermens, 1992); SD, standard deviation; log KOW , log10-
transformed octanolwater partition coefficient; log VP, log10-transformed vapor pressure at 25 ◦C (see ‘Materials and Meth-
ods’ for further details).

of the test data were generally within those of the training data, although the minimum
value of log KOW in the test data was slightly lower (Table 1).

To predict the means and SDs of the SSDs, we developed three types of the two linear
regression models, namely: (1) the best models with descriptors only; (2) the models
with the 3-species-based predictors only; and (3) the best models with both descriptors
and 3-species-based predictors. For the development of models (2) and (3), we used
the 3-species mean and SD to predict the means and SDs of the SSDs, respectively.
The 3-species mean (or SD) was therefore not used to predict the SSD SDs (or means).
Also, for model developments (1) and (3), models were selected on the basis of the
corrected Akaike information criterion (AICc; Burnham & Anderson, 2002; Burnham,
Anderson & Huyvaert, 2011) with the training data, by using the ‘‘dredge’’ function in
the R package ‘‘MuMIn.’’ The best models with the smallest AICc values were selected
among all possible models considered. Although our major focus was on selecting the
best models for parsimonious predictions, full-model-averaged standardized parameter
estimates were calculated by using the ‘‘model.avg’’ function of ‘‘MuMIn’’ to examine the
relative variable importance (Galipaud, Gillingham & Dechaume-Moncharmont, 2017). We
also performed complementary analyses by fitting the best models with both descriptors
and 3-species-based predictors to evaluate the robustness of the model selection results
based on the median estimates. In the analyses, instead of the median values of 3-species
means and SDs, we used five sets of 3-species means and SDs. The five sets were randomly
chosen from the 3000 bootstrapped samples, and we tested the hypothesis that the results
of model selection and fitting were unchanged by use of the five sets.

By referring to OECD (2017) and Furuhama, Hayashi & Yamamoto (2018), as internal
validation we calculated two commonly used statistics—the coefficient of determination
(r2) and the root mean square error (RMSE)—to evaluate the goodness of fit of individual
models, and we determined the leave-one-out cross-validated coefficient of determination
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(q2) to evaluate the model robustness by using the R package ‘‘caret’’ (Kuhn, 2008). In
addition, as external validation, we determined the RMSE (RMSEext) of the test data, the
squared correlation coefficient between the measured and predicted values (r2ext), and the
explained variance (Q2

ext) of the test data. We also used the developed models to predict the
means and SDs of SSDs and then the HC5s, which were compared with HC5s estimated
on the basis of toxicity data. To evaluate the uncertainty of the HC5s predicted from the
developed models, the 95% confidence intervals were calculated using non-parametric
bootstrapping (i.e., the 95% confidence intervals were equated to the 75th and 2925th of
3000 sorted HC5s based on the best models fitted to 3000 resampled datasets).

RESULTS
Predictors included in the best model developed with descriptors alone for SSD mean
were Class 4, log KOW, and Class 3, all of which had higher (negative) full-model-averaged
standardized parameter estimates than the other variables (<−0.19; Table 2). Similarly, the
best model developed with descriptors alone for SSD SD included only Class 4. However,
alongwithClass 4, LogVP andMWhadhigher full-model-averaged standardized parameter
estimates than the other variables (Table 2). Although the RMSE and RMSEext values of
these best models were both below approximately 0.8 for the SSD mean and below
approximately 0.2 for the SD (i.e., both within a factor of 10 of the values based only on
measured toxicity data), the r2 values were low (below approximately 0.6; Table 3 and
Fig. 2).

Incorporating the means or SDs of the toxicity values for three species markedly
improved the performances of the models (e.g., see changes in r2 values in Table 3;
Fig. 2). The best models for both descriptors and 3-species-based mean/SD were (see the
Supplementary File for more details):

SSD mean= 0.07+1.02×3-species mean−0.27×Class 4 (2)

SSD SD= 0.39+0.48×3-species SD+0.30×Class 4+0.02× log VP. (3)

Our finding that the differences in AICc values between models with descriptors alone
and those with the 3-species mean or SD were over 20 also indicated the substantial model
improvements with the latter (Table 3; also see Burnham, Anderson & Huyvaert, 2011;
Iwasaki & Hayashi, 2020). Particularly for the models for SSD mean, inclusion of only the
3-species mean as a predictor increased the r2 values from 0.62 to 0.96, and this was also
evident from the prominently high full-model-averaged standardized parameter estimates
of this predictor (i.e., 0.94; Table 2). Inclusion of only the 3-species SD also improved the
model fit in the prediction of SSD SD (e.g., r2 increased from 0.49 to 0.70; Table 3), and
model performance was further improved by including two descriptors (Log VP and Class
4; Tables 2 and 3). The best model for predicting SSDmean had RMSE and RMSEext values
of <0.5, and that for predicting SSD SD had RMSE and RMSEext values of <0.2 (Table
3). Moreover, when we selected and evaluated the best models by using five randomly
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Table 2 Full-model-averaged standardized parameter estimates for the four models selected for pre-
dicting the mean and standard deviation (SD) of species sensitivity distribution (SSD).

Predictor Model for SSDmean Model for SSD SD

Descriptors 3-species mean
+ descriptors

Descriptors 3-species SD
+ descriptors

3-species mean NA 0.938 NA NA
3-species SD NA NA NA 0.706
Biodegradability 0.009 0.006 −0.057 −0.012
Class 3 −0.191 0.002 0.004 0.005
Class 4 −0.580 −0.025 0.687 0.231
Log KOW −0.349 −0.003 0.020 0.005
Log VP 0.049 0.019 0.138 0.107
Molecular weight 0.016 −0.018 0.093 0.012

Notes.
Higher values of full-model-averaged standardized parameter estimates indicate higher relative importance of the variable in
the model that was developed. Underlined predictors are those included in the best models. NA, not applicable. See the foot-
note to Table 1 for further details about the predictors.

Table 3 Model evaluation for estimating the mean and standard deviation (SD) of species sensitivity distribution (SSD).

Statistics Models for SSDmean Models for SSD SD

Descriptors 3-species mean 3-species mean
+ descriptors

Descriptors 3-species SD 3 species SD
+ descriptors

AICc 121.7 20.0 19.5 5.0 −19.3 −22.4
Internal validation
r2 0.62 0.96 0.96 0.49 0.70 0.75
RMSE 0.82 0.28 0.27 0.24 0.18 0.17
q2 0.52 0.95 0.95 0.41 0.67 0.69
External validation
r2ext 0.78 0.84 0.86 0.34 0.79 0.75
RMSEext 0.58 0.50 0.47 0.28 0.16 0.17
Q2

ext 0.75 0.84 0.86 0.25 0.69 0.66
# of parameters 3 1 2 1 1 3

Notes.
AICc, corrected Akaike information criterion; r2, coefficient of determination; RMSE, root mean square error; q2, leave-one-out cross-validated coefficient of determination;
RMSEext, root mean square error in the test data; r2ext, squared correlation coefficient between measured and predicted values; Q2

ext, variance explained in the test data.

chosen bootstrapped samples, the statistics for model evaluation usually changed little
(particularly, the coefficients of variation in the three statistics for the internal validation
(r2, RMSE, and q2) were <6%), although the best models sometimes had one more, or one
less, predictor compared with the best models developed above (see Tables S2 and S3 in
the Supplementary File).

As was expected from results discussed above, the HC5 values predicted from SSD
means and SDs that were estimated on the basis of models with the 3-species mean/SD
and the best models developed with the 3-species mean/SD plus descriptors were highly
correlated with the HC5 values estimated on the basis of the measured toxicity data (r2

≥ 0.95; Fig. 3), unlike those based on the best models with descriptors alone (r2= 0.67).
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Figure 2 Mean and standard deviation (SD) of the logarithms of log-normally distributed species sen-
sitivity distributions (SSDs) estimated based onmeasured toxicity data alone or predicted frommod-
els developed in the present study. (A & B) Mean and SD predicted from best models developed with de-
scriptors alone. (C & D) Mean and SD predicted from models developed with the 3-species mean/SD. (E
& F) Mean and SD predicted from best models developed with the 3-species mean/SD plus descriptors.
See Tables 2 and 3 for details of best models and model evaluation, respectively. White and gray dots indi-
cate training data and test data, respectively.

Full-size DOI: 10.7717/peerj.10981/fig-2
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Figure 3 Log10-transformed hazardous concentrations for 5% of species (HC5s), estimated by species
sensitivity distributions based onmeasured toxicity data or estimated by using three types of models
(A–C; see Table 2 for more information). X- and y-axis error bars respectively indicate 95% confidence
intervals for HC5, as estimated by non-parametric bootstrapping, and those based on measured toxicity
data (see the text for the details). White and gray dots indicate training data and test data, respectively.
Values of r2 indicate squared correlation coefficients between the measured and predicted HC5 values. SD,
standard deviation.

Full-size DOI: 10.7717/peerj.10981/fig-3

Also, in the HC5 predictions based on those models with the 3-species mean/SD, only one
chemical (chloroform) was outside a factor of 10 compared with the HC5 values derived
from the measured data, whereas 15 chemicals were outside the range in the prediction
based on models with descriptors alone (Fig. 3).

DISCUSSION
Our results based on SSDs derived for 60 chemicals clearly showed that the models
developed on the basis of descriptors alone had limited ability to predict the mean and SD
of SSD and thereby HC5; for example, this is particularly apparent from our finding that,
when descriptors alone were used, the predicted HC5 values for 25% of chemicals deviated
by more than a factor of 10 from HC5 values estimated on the basis of the measured
toxicity data (Fig. 3). These results are generally consistent with the conclusion ofHoondert
et al. (2019) that uncertainties associated with prediction of the mean and SD of SSDs
and HC5 by using descriptors may be high (see Fig. S3 of Hoondert et al., 2019 for the
HC5 prediction). However, compared with our results, the variations not explained by the
models were somewhat larger in the work of Hoondert et al. (2019). This difference was
obvious from the r2 values of their best models (0.56 and 0.29, respectively; see also Iwasaki
& Hayashi, 2020), even though the predictors that they used were similar to ours, with the
exception of the two binary variables (Class 3 and Class 4). It is difficult to determine the
underlying reasons for this difference in predictive ability. Two apparent differences were
the quantity of data and whether the quality of each of the experimentally obtained toxicity
values was examined. Hoondert et al. (2019) analyzed SSDs based on acute toxicity data
for 558 chemicals, which was approximately 9 times the number of chemicals considered
in the present study; however, they did not take the quality of each of the experimentally
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obtained toxicity values into consideration although they differentiated the quality of SSDs
based on the inclusion of extrapolated toxicity data. Despite the clear trade-off, both kinds
of data should be valuable in developing predictive models that are well tested. There is a
need, however, for further testing of the utility of 3-species predictors with large datasets.

Compared with the models with descriptors alone, the addition of a 3-species mean/SD
markedly improved the predictions of the mean and SD of SSD (see Table 3), as well as
of HC5. These results suggest that using not only descriptors but also the mean and SD of
toxicity data for three species, each of which belongs to one of the three commonly tested
biological groups (algae, crustaceans, and fish), is a promising way of producing a more
reliable SSD derivation in cases where limited ecotoxicity data are available. Douziech et al.
(2020) also demonstrated that HC5 values estimated on the basis of acute toxicity data for
three species of algae, daphnia, and fish were mostly within a factor of 10 of HC5 values
based on all measured toxicity values. Although the uncertainties associated with our
model estimates of HC5 were relatively small—particularly for those obtained by including
the 3-species mean/SD as a predictor (see the x-axis error bars in Fig. 3), this prediction
assumed that the means and SDs of SSDs calculated from the measured toxicity data for at
least 8 species were accurate. Caution is therefore required in the use of such model-based
estimates in ecological risk assessments because of the inherent uncertainties in HC5 values
based onmeasured toxicity data (y-axis error bars in Fig. 3; see also de Zwart 2002 andHiki
& Iwasaki, 2020) as well as the large uncertainties in HC5 values estimated on the basis of
3 species toxicity data (Douziech et al., 2020).

The binary predictor, Class 4 (specifically acting chemicals), was included in all four
best models, with relatively large negative full-model-averaged standardized parameter
estimates in the models predicting SSD means and relatively large positive full-model-
averaged standardized parameter estimates in the models predicting SSD SDs (see Table 2).
These results support previous empirical evidence that specifically acting chemicals are
generally more toxic than other classes of chemicals, and that inter-species sensitivity to
these chemicals varies more widely than that to other classes of chemicals (Vaal et al., 1997;
Hendriks et al., 2013; Hiki & Iwasaki, 2020); they also imply that such patterns cannot be
fully captured by using only the 3-species mean and SD. The variations in toxicity values
within the biological groups appeared to be relatively high for Class 4 chemicals (Fig. S1),
and this may have led to the importance of Class 4 in the models that we developed.
However, it is difficult to test this hypothesis robustly owing to the limited number of Class
4 chemicals in our study (a total of 7 chemicals). Another binary predictor, Class 3 (reactive
chemicals), was selected in the best model with descriptors alone for the SSD mean, and
not in the other best models, suggesting that inclusion of the 3-species mean could play an
alternative role for Class 3. The predictive abilities of the best models developed with the
3-species mean/SD plus descriptors were similar among Classes 1–5 based on the Verhaar
mode-of-action classification (see Fig. S2 for the differences between the predicted and
measured means and SDs of the SSDs).

Log KOW (or log P) is commonly used in QSAR (quantitative structure–activity
relationship) models to predict ecotoxicity (Furuhama et al., 2010;Mayo-Bean et al., 2017),
and it was indeed included in the best model with descriptors alone for SSD mean. Log
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VP was included in the best model with the 3-species SD plus descriptors (Table 2), and
its regression coefficient was positive but non-significant (P = 0.072). This may indicate
that the increased variation in species sensitivity (i.e., the SD of SSD) was associated
with the difficulty in toxicity testing of the more volatile chemicals. However, a clear
positive relationship between the SD of SSD and log VP was not apparent owing to the
large variation in the SD (Table S1). Note that although use of estimated values of these
descriptors is efficient, particularly if the number of chemicals of concern is large, there are
uncertainties associated with the estimated values (US EPA, 2007; Enoch et al., 2008) that
may have affected the development of themodel and the accuracy of its predictions. Further
tests of the developed models with experimentally obtained values of descriptors would
therefore be valuable, even though experimental results are associated with uncertainties
that can vary as a function of experimental conditions.

CONCLUSIONS
We demonstrated here that the use of measured toxicity data for three species selected
from the three commonly tested biological groups (algae, crustaceans, and fish) markedly
improved the model predictions for the means and SDs of log-normal SSDs based on acute
toxicity. Furthermore, the HC5s in SSDs predicted by using such models were generally
within a factor of 10 of the values based only on measured toxicity data for at least 8
species. Therefore, the use of 3-species toxicity data could be promising for predicting
the HC5 values from which PNECs are frequently derived in ecological risk assessments.
Note that our study was limited to log-normal SSDs based on acute toxicity data for 60
chemicals, whereas PNECs for long-term exposure to chemicals are derived from SSDs
based on chronic toxicity data. However, because, for a large proportion of chemicals,
collecting chronic toxicity data for three species would be much more difficult and less
feasible than collecting acute toxicity data for three species (Hoondert et al., 2019; Posthuma
et al., 2019), other prediction approaches, including the use of acute to chronic ratios for
SSDs (De Zwart, 2002; Hiki & Iwasaki, 2020) and in silico predictive models (Dyer et al.,
2008; Douziech et al., 2020; Takata et al., 2020), could be worth pursuing.
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