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Three faces of node importance in network epidemiology: Exact results for small graphs
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We investigate three aspects of the importance of nodes with respect to susceptible-infectious-removed (SIR)
disease dynamics: influence maximization (the expected outbreak size given a set of seed nodes), the effect
of vaccination (how much deleting nodes would reduce the expected outbreak size), and sentinel surveillance
(how early an outbreak could be detected with sensors at a set of nodes). We calculate the exact expressions of
these quantities, as functions of the SIR parameters, for all connected graphs of three to seven nodes. We obtain
the smallest graphs where the optimal node sets are not overlapping. We find that (i) node separation is more
important than centrality for more than one active node, (ii) vaccination and influence maximization are the most
different aspects of importance, and (iii) the three aspects are more similar when the infection rate is low.
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I. INTRODUCTION

One of the central questions in theoretical epidemiology
[1–3] is how to identify individuals that are important for an
infection to spread [4,5]. What “important” means depends on
the particular scenario—what kind of disease spreads and what
can be done about it. In the literature, three major aspects of
importance have been discussed. First, influence maximization
is aimed at identifying the nodes that, if they are sources of the
outbreak, would maximize the expected outbreak size � (the
number of nodes infected at least once) [6,7]. Second, vacci-
nation is aimed at finding the nodes that, if vaccinated (or, in
practice, deleted from the network), would reduce the expected
outbreak size the most [5]. Third, sentinel surveillance is aimed
at finding the nodes that are likely to get infected early [8,9].
These three notions of importance do not necessarily yield the
same answer as to which node is most important. In this work,
we investigate how the ranking of important nodes for these
three aspects differs and why (see Fig. 1).

In this paper, we evaluate the three aspects of importance
with respect to the susceptible-infectious-removed (SIR)
disease-spreading model [1–3,10] on small connected graphs
(all connected graphs from three up to seven nodes). The main
reason we restrict ourselves to small graphs is that it allows us
to use symbolic algebra, and thus exact calculations [11]. In
this way we can discover, e.g., the smallest graph where the
three aspects of importance disagree about which node is most
important; cf. Ref. [12]. We argue that graphs of seven nodes
are still large enough to illustrate the effects of distance.

Nevertheless, large networks are important to study. A
possible future extension of this work will be to address
the relationship between the three importance measures for
larger networks. In the related Ref. [13], the difference
between influence maximization and vaccination problems on
(some rather large) empirical networks is studied. The authors
compare the top results of heuristic algorithms to identify
influential single nodes, whereas in this paper we will consider
the influence of all nodes, and also all sets of two and three
nodes. (The terminology of Ref. [13] is a bit different from
ours—they call important nodes for vaccination “blockers”
and important nodes for influence maximization “spreaders”.)
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We will proceed by discussing our setup in greater detail:
our implementation of the SIR model, how to analyze the
three aspects of importance, network centrality measures that
we need for our analysis, and our results, including the smallest
networks where different nodes come out as most important.

II. PRELIMINARIES

In this section, we provide the background to our analysis.
The basis of our analysis is graphs G(V,E) consisting of N

nodes V and M links E.

A. Importance

As mentioned earlier, there are three ways to think of
importance in theoretical infectious disease epidemiology.
Influence maximization was first studied in computer science
with viral marketing in mind [6,7]. As was mentioned,
a node is important for influence maximization if it is a
seed of an infection that could cause a large outbreak. For
epidemiological applications, therefore, it might be interesting
if one could immunize people against a disease before an
outbreak happens. We will simply measure the expected
outbreak size �(S) (the expected number of nodes to catch
the disease), with S as the set of source nodes, and we will
rank the set of nodes according to their �.

For vaccination, we will use the average outbreak size from
one random seed node to estimate the importance of a node
[1,2,14,15]. One could rephrase it as a cost problem [16]. We
assume the vaccinees are deleted from the network before the
outbreak starts. The node with the smallest � is the one that is
most important for the vaccination problem.

Sentinel surveillance assumes a response after the outbreak
already started (compared to influence maximization and
vaccination, where the action affecting the nodes in question
is assumed to take place before the outbreak happens). A node
is important for sentinel surveillance if it gets infected early so
that the health authorities can activate their countermeasures.
This is usually determined by the lead time—the expected
difference between the time a sentinel node gets infected, or
the outbreaks dies out, and the infection time of any node in
the graph [8]. We will instead measure the average discovery
time time τ (i) from the beginning of the infection until a node
i gets infected or the outbreak dies [9]. The node with the
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FIG. 1. Illustration of the three different notions of importance
we explore in this work. Panel (a) shows an example of an SIR
outbreak in a seven-node network. Panels (b)–(d) show how this
outbreak influences maximization (a), vaccination (b), and sentinel
surveillance, respectively. The idea of influence maximization (b) is
that a node is important if the outbreak originating at it is expected
to be large. The idea of vaccination (c) is that a node is important
if removing it would reduce significantly the average outbreak size.
The idea of sentinel surveillance (d) is that a node is important if a
sensor on it would detect the outbreak early. The shades of the nodes
in (c) and (d) are proportional to their contribution. In a stochastic
simulation, one would average the values over many runs and, for (c)
and (d), many seeds of the outbreak. In this work, however, rather
than running simulations, we calculate the exact expectation values
of these quantities.

smallest discovery time is then considered most important for
sentinel surveillance. If the purpose of the surveillance is just to
discover the outbreak—not to rid the population of the disease
as early as possible—one could measure τ (i) conditioned on
the outbreak reaching a sentinel before it dies out. We will
briefly discuss such a conditioned τ and refer to it as τ ′.

For all of the three problems mentioned above, one can
consider sets of nodes rather than individuals. There can be
more than one source (for influence maximization), vaccinee,
or sentinel. We will, in general, call these sets active nodes and
denote their number as n. We will try to find the optimal sets
of active nodes (and call them optimal nodes). Note that this is
not the same as ranking the nodes in order of importance and
taking the n most important ones—such a “greedy” approach
can in many cases fail [7,15].

Note that for vaccination and sentinel surveillance, we
use one source node of the infection. This is the standard
approach in infectious disease epidemiology simply because
most outbreaks are thought to start with one person [3,17].

B. SIR model

We will use the constant infection and recovery-rate version
of the SIR model [17]. In this formulation, if a susceptible node

i is connected to an infectious node j , then i becomes infected
at a rate β. Infected nodes recover at a rate ν. Without loss of
generality, we can set ν = 1 (equivalently, this means we are
measuring time in units of 1/ν). Let C be a configuration (i.e., a
specification of the state—S, I, or R—of every node), MSI is the
number of links between S and I nodes, and NI is the number
of infected nodes. Then, the rate of events (either infections or
recoveries) is βMSI + NI, which gives the expected duration
of C as

�t = 1

βMSI + NI
. (1)

Proceeding in the spirit of the Gillespie algorithm, the
probability of the next event being an infection event is
βMSI�t , and the probability of a recovery event is NI�t [2,18].

C. Exact calculations of � and τ

Exactly calculating the outbreak size and time to discovery
or extinction is, in principle, straightforward. Consider the
change from configuration C into C ′ by an infection event
(changing node i from susceptible to infectious). This can
happen in mi ways, where mi is the number of links between i

and an infectious node. Thus the probability for the transition
from C to C ′ is βmi�t . The probability that the next event will
be a recovery event is simply �t . To compute the probability
of a chain of events, one simply multiplies these probabilities
over all transitions. To compute the expected time for a chain
of events, one sums the �t for all configurations of the chain.

We will illustrate the description above with an example.
See Fig. 2. The probability of the outbreak chain 7 is (multiply
the probabilities of the transitions)

p7 = β

2β + 1
× 1

2β + 2
× β

β + 1
= β2

2(β + 1)2(2β + 1)
.

(2)

The expected duration of the infection chain is

τ7 = 1

2β + 1
+ 1

2β + 2
+ 1

β + 1
= 8β + 5

2(β + 1)(2β + 1)
,

(3)

giving a contribution

p7τ7 = 8β3 + 5β2

4(β + 1)3(β + 2)2
(4)

of chain 7 to τ . Then these contributions need to be summed
up for all chains, and averaged over all starting configurations.
For the example in Fig. 2, this gives

τ = 3β2 + 7β + 2

6β3 + 15β2 + 12β + 3
. (5)

The expressions of � and τ are fractions of polynomials. For
the largest networks we study (seven nodes), these polynomials
can be of order up to 43 with up to 54-digit integer coefficients.

Calculating � for the influence maximization or vaccina-
tion problems follows the same path as the τ calculation above.
The difference is that instead of multiplying by the expected
time of a chain, one would multiply by the number of recovered
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FIG. 2. Illustration of how to calculate the expected time τ to
discovery or extinction in a small network with one sentinel. The
probabilities of transitions are marked on the links (with black
text). The expected time to stay in a configuration is next to the
configurations (in orange). The final states (where there are either no
infectious nodes or a sentinel is infected) are enumerated by boldface
numbers.

nodes in that branch. Furthermore, there are no sentinels to stop
outbreaks, so trees (like Fig. 2) become larger.

In practice, our approach to analyzing network epidemi-
ological models is time-consuming. The major bottleneck
is the polynomial algebra (to be precise, calculating the
greatest common divisor needed to reduce the fractions of
polynomials to their canonical form). Because of this, we
could not handle networks of more than seven nodes. The
code was implemented in both Python (with the SymPy
library [19]) and C with the FLINT library [20]. It also
uses the subgraph isomorphism algorithm VF2 [21] as im-
plemented in the igraph C library [22]. Our code is available
at http://github.com/pholme/exact-importance, which also in-
cludes code to calculate τ ′ (mentioned above but not investi-
gated in the paper).

D. Centrality measures

To better understand how the network structure determines
what nodes are most important, we measure the average values
of static importance predictors. In general, there are many ways
to be the central means for a node—is it a node often passed by
things traveling over the network, or is it a node for which short
paths exist to other nodes? Different rationales give different
measures. These are typically positively correlated, but they
do not rank the nodes in the exact same way, and thus they
can complement each other [23]. We focus on three measures:
degree, closeness centrality, and vitality.

Degree centrality is simply the number of neighbors of a
node. If a node has twice the neighbors of another, it has twice
as many nodes to which to spread an infection. This makes it
more important for influence maximization and vaccination.
It also has twice as many nodes from which to get the
infections, which contributes to its importance for vaccination
and sentinel surveillance. On the other hand, degree is not
a global quantity—it could happen that the neighbors of a
high-degree node are so peripheral that a disease could easily
die out there. The simplest way of modifying the degree to
become a global measure is to operationalize the idea that a
node is central if it is the neighbor of many central nodes.
With the simplest possible assumptions, this reasoning leads
to eigenvector centrality, i.e., the centrality of node i can be
estimated as the ith entry of the leading eigenvector of the
adjacency matrix [10]. For the small graphs that we consider,
however, the eigenvector centrality is so strongly correlated
with degree (intuitively so, because “everything is local” in a
very small graph) that it makes little sense to include it in the
analysis.

Many centrality measures are based on the shortest
paths. Perhaps the simplest of these measures is closeness
centrality—using the idea that a node is central if it is on
average close to other nodes [10,23]. This leads to a measure
of the centrality of i as the reciprocal distance to all other
nodes in the network:

c(i) = N − 1∑
j �=i d(i,j )

. (6)

The main problem, in general, with closeness centrality may
be that it is ill-defined on disconnected graphs. In our work,
however, we consider only connected graphs.

We chose the third centrality measure—vitality—with the
vaccination problem in mind. Vitality is, in general, a class of
measures that estimate node centrality based on its impact on
the network if it is deleted [23]. In our work, we let vitality
denote the particular metric

v(i) = s(G) − 1

s(G \ {i}) , (7)

where s(G) is the number of nodes in the largest component
of G. This measure is thus in the interval [1,N − 1], and it
increases with i’s ability, if removed, to fragment the network.
Since vaccination is, in practice, like removing nodes from the
network, we expect v to identify important nodes for β close
to 1. For large graphs, we expect v to be very close to 1, so
we only recommend it for small graphs such as the ones we
used here. Another popular centrality measure—betweenness
centrality (roughly how many shortest paths there are in the
network that passes a node) [10]—is very strongly correlated
with vitality for our set of small graphs, and it is thus omitted
from the analysis.

E. Small distinct graphs

In our work, we systematically evaluate small distinct
(nonisomorphic) connected graphs. We use all such graphs
with 3 � N � 7. There are two such graphs with N = 3, six
with N = 4, 20 with N = 5, 112 with N = 6, and 853 with
N = 7. To generate these, we use the program GENG [24].
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FIG. 3. A small graph with special properties. It is the smallest graph where the three aspects of importance all have distinct nodes as the
most important. For β in the interval [(1 + √

5)/2,(3 + √
17)/4] ≈ (1.62,1.78), 6 is the most important node for influence maximization, 5

for vaccination, and 1 for sentinel surveillance. The curves are color-coded according to the graph to the left (with one curve and color per
automorphic equivalence class). The inset in panel (a) shows a zoomed and rotated view of some of the crossings of the curves (one of them
being the point where node 1 takes over from node 6 as the most important).

III. RESULTS

In our analysis, we will focus on when and why the three
cases of node importance rank nodes differently. We will
start with some extreme examples, and continue with general
properties of all small graphs.

A. Special cases

Inspired by Ref. [12], we will start with a special example
(Fig. 3). This is the smallest graph where the most important
single node (n = 1) is different for influence maximization,
vaccination, and sentinel surveillance. For [(1 + √

5)/2,(3 +√
17)/4] ≈ (1.62,1.78), node 6 is the most important node for

influence maximization, 5 is most important for vaccination,
and 1 is most important for sentinel surveillance. For small β

values, 6 is most important for all three aspects of importance.
In this region, the outbreaks die out easily. The fact that 5 and
6 have a larger degree than the others is, of course, helpful
for an outbreak to take hold in the population. Node 6 is
slightly more important as a seed node since the extra link in
its neighborhood helps the outbreak to persist longer [there are
the (6,7,4) and (6,4,7) infection paths that, although unlikely,
do not exist for diseases starting at 5]. This reasoning also

explains why 6 is most important for vaccination. For sentinel
surveillance and for low enough β, the outbreak would typi-
cally end by the outbreak becoming extinct rather than hitting
a sentinel. Thus, for low β, when an outbreak has the highest
chance of surviving if it starts at 6, then putting in a sentinel
is good because an outbreak is either instantly discovered or
will likely soon be extinct. With a conditional discovery time
τ ′, the curves are strictly decreasing (since the early die-off is
omitted), so 1 is the most important node for all β.

For larger β, node 1 becomes, relatively speaking, more
important for influence maximization and sentinel surveil-
lance. This is the most central node in aspects other than
degree. For vaccination, however, node 5 is most important
as it fragments the network most [the vitality is the same for
both nodes v(5) = v(1) = 2, but the size of the second biggest
component is larger if 1 is deleted]. So since 1 becomes more
important than 6 at a larger β value for influence maximization
compared with sentinel surveillance, there is an interval of beta
where the network of Fig. 3 has three distinct most important
nodes for the three aspects of importance that we investigate.

For two active nodes (n = 2), the smallest network with
no overlap between the optimal node sets is actually smaller
than for n = 1. This network, displayed in Fig. 4, has six
nodes and eight links. Note that N = 6 is the smallest number

34 14,23 12 56 3456

21

3

6

5

4

Influence
maximization

3

4

5

0.1 1 10

1

1.5

2

2.5

0.1 1 10

0.1

0.2

0.3

0.4

0.5

0.6

0.1 1 10
0.0

0.7

2

6

Sentinel
surveillance

Vaccination

β β β

Ω Ω τ

FIG. 4. A special graph for two active nodes. To the left, the colors highlight the automorphic equivalence classes. For β > 4.62, {1,2}
are the most important source nodes (influence maximization), {5,6} are the most important for vaccination, and finally {3,4} are the most
important for sentinel surveillance. The color bars indicate the most important node-pairs as a function of β, and the curves are showing the β

dependence of the objective quantities � and τ . The four node combinations that are optimal at some β value for some scenario are highlighted;
the others are gray.
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FIG. 5. The average pairwise Jaccard overlap between the sets of the most influential nodes for the three different aspects of importance.
Panels (a), (b), and (c) show the overlap for one, two, and three active nodes, respectively. For β larger than shown, the curves are constant.

of nodes to make three distinct sets of two nodes, so in that
sense the n = 2 example seems more extreme than the n = 1
counterpart, Fig. 3.

For large β values, 1 and 2 are the most important nodes
for influence maximization, 5 and 6 are most important for
vaccination, and 3 and 4 are most important for sentinel
surveillance. 5 and 6 are the nodes that, if deleted, break the
network into the smallest components, which explains why
they are most important for vaccination (at least for large β).
In addition to 5 and 6, 1 and 2 are the only pair of nodes
whose neighborhoods contain all other nodes. Nodes 1 and 2
both have degree 3, as opposed to 5 and 6, which have degrees
4 and 2, respectively. It is not clear whether that makes 1
and 2 better than 5 and 6 for influence maximization, or why.
Similarly, it is hard to understand why 3 and 4 are the best
nodes for sentinel surveillance. The neighborhoods of these
nodes do not even contain the entire graph.

We can see that the optimal sets of nodes in Fig. 4 do
not have links within themselves. This seems natural for
most networks and all three notions of importance. This
means that as n grows, the distance between the optimal
nodes will be larger than 1. This is an observation we will
make more quantitatively in the next section. Another such
observation is that for small β, the optimal nodes for the three
importance aspects are overlapping. In this parameter region,
most outbreaks die out before they reach a sentinel. If the
outbreak starts at a high-degree node in a highly connected
neighborhood, there is a larger chance for it to survive. For all
three importance aspects, it is important to have active nodes
where an outbreak would be likely to survive. Still, as evident
from Fig. 4, there are examples where the optimal nodes are
not overlapping.

B. β dependence

We will now move to a more statistical evaluation of all
graphs with 3–7 nodes. We will present average quantities over
all these graphs as functions of β. Other summary statistics,
including grouping the graphs according to size, give the same
conclusions.

Let u
a,b
i be the optimal sets for a given network, β, and

importance classes a and b. The first quantity we look at is the

pairwise overlap of sets of optimal nodes as measured by the
Jaccard overlap,

J (a,b) = |Ua ∩ Ub|
|Ua ∪ Ub| , (8)

where

Ua,b =
⋃

i

u
a,b
i . (9)

For example, in Fig. 4 at β = 2, we have

ua
1 = {1,4}, (10a)

ua
2 = {2,3}, (10b)

ub
1 = {3,4}, (10c)

where a is influence maximization and b represents sentinel
surveillance, giving

J (a,b) = |{1,2,3,4} ∩ {3,4}|
|{1,2,3,4} ∪ {3,4}| = 1

2
. (11)

As seen in Fig. 5, for n = 1, the overlap between the
optimal nodes for vaccination and sentinel surveillance has
a minimum as a function of β. The same is true for sentinel
surveillance versus influence maximization when n = 3. It
is hard to say why, beyond that, for individual graphs the
J (a,b,β) curves can of course be nonmonotonous as different
aspects of the graph structure determine the role of the nodes.
We note that (for a different spreading model and much
larger networks), Ref. [13] finds the Jaccard similarity between
influence maximization and vaccination to have a minimum as
a function of β.

C. Structural predictors

Next, we investigate the structural properties of the most
influential nodes and how they depend on β. In Fig. 6, we plot
the degree, closeness centrality, and vitality as a function of
β for all aspects of importance and n ∈ {1,2,3}. We start by
examining the case n = 1; see Figs. 6(a), 6(b), and 6(c). The
first thing to notice is the general impression that centralities
of the optimal nodes decrease with β. The only case with
an opposite trend is vitality [Fig. 6(c)], where the curves are
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FIG. 6. Average centrality values for the different aspects of centrality and the different numbers of active nodes. Panels (a), (d), and (g)
show the average degree; panels (b), (e), and (h) show closeness centrality; and panels (c), (f) and (i) show curves for vitality. Panels (a), (b),
and (c) show results for n = 1; (d), (e), and (f) for n = 2; and (g), (h), and (i) for n = 3.

increasing monotonically. If we first focus on the case with one
active node, this could be understood as the ability of nodes to
(if removed) fragment the network. This ability is captured by
vitality and becomes more important as β increases.

Continuing the analysis for n = 1, when β is low the
most important thing is for the outbreak to persist in the
population. If an active node has a high degree, it is likely
to be the source of a large outbreak, meaning it is important
for influence maximization (which was also concluded by
Ref. [13]). If a high-degree node is deleted, it would remove
many links that could spread the disease and thus be important
for vaccination [25]. It would also be important not to put a
sentinel on a low-degree node for sentinel surveillance and
low β as diseases reaching low-degree nodes would likely die
out. So panels Figs. 6(a) and 6(c) can be understood as a shift
from nodes of high degree to nodes of high vitality. Closeness
centrality—seen in Fig. 6(b)—is harder to explain. Values of
c increase with β for influence maximization but decrease
for vaccination. One way of understanding this is from the
observation that vitality is most important for vaccination
[as evident from Fig. 6(c)], and degree is most important for
influence maximization [as seen in Fig. 6(a)]. The results of

Fig. 6(b) then suggest that the high vitality nodes optimizing
the solution of the vaccination problem have a lower closeness
centrality. Indeed, for many of the graphs we study, the
highest vitality node has many degree-1 neighbors—cf. node
5 in Fig. 3—which does not necessarily contribute to the
closeness centrality. For influence maximization, it seems that
the optimal nodes are central in the closeness sense—the closer
to average the seed node is to the rest of the network, the higher
is the chance for the outbreak to reach the entire network.

For n = 2 and 3, the picture is somewhat different than for
n = 1. In these cases, all centrality measures are decreasing
monotonically. The order of importance measures are all
the same, with vaccination having the largest values, and
influence maximization the smallest. It is no longer the case for
vaccination that the optimizing nodes have high vitality and
low closeness centrality (as it was for n = 1). Indeed, for the
vaccination case, the optimal nodes are usually independent of
β, which is why the curves for vaccination in Figs. 3(d)–3(i) are
almost straight. Naively, one would think that some centrality
measure needs to increase with β. However, as we will
argue further below, the optimal nodes would usually not
be close to each other. One could think of each node being
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FIG. 7. The average distance between optimal nodes when the
number of active nodes is n = 2 (a) and 3 (b).

responsible for (and centrally situated within) a region of the
network, and that that tendency is so strong that it overrides
all simple centrality measures. On the other hand, there are
group centrality measures that could perhaps increase with β

[26] (that could be a theme for another paper).

D. Distance between optimal nodes

The fact that all the curves of Figs. 6(d)–6(i) are nonincreas-
ing could be explained by the fact that the separation of the
optimal nodes increases with β. In Fig. 7, we try to make this
argument more quantitative by measuring the average (shortest
path) distance d between the optimal nodes. In the limit of
small β, these values come rather close to its minimum of 1,
but as β increases, so does d. Essentially, the pattern from
Fig. 7 is the reverse of Figs. 6(d)–6(i)—the vaccination curve
is almost constant, sentinel surveillance increases moderately,
but influence maximization increases much more.

A larger separation gives the sentinels the ability on average
to be closer to outbreaks anywhere in the network, while for
influence maximization a larger separation means that there are
more susceptible-infectious links (fewer infectious-infectious
links) in the incipient outbreak. For vaccination there is no
such positive effect of a larger separation that we can think

of, which is a part of the explanation as to why the optimal
sets are relatively independent of β for n > 1. The rest of the
explanation, i.e., why the trends for n = 1 are so much weaker
when n > 1, is not clear to us, and it is something we will
investigate further in the future.

IV. DISCUSSION

We investigated the average properties of the optimal nodes
for all our graphs. We found that the overlap between the
optimal nodes of the different importance aspects are largest
for small β. In the small-β region, a high degree seems most
important for all importance aspects. For larger β nodes, it
becomes more important for them to be positioned such that
they would fragment the network if they were removed, partic-
ularly for the vaccination problem (slightly less for the sentinel
surveillance problem, and much less for influence max-
imization). On the other hand, when the number of active nodes
increases, it becomes important for the nodes to be spread
out—the average distance between them increases. This effect
is large for influence maximization, intermediate for sentinel
surveillance, and very small for vaccination. The small effect
for vaccination can be understood since all that matters is to
fragment the network, and for that purpose the vaccine does
not necessarily have to be distant.

Most of the behavior discussed above seems quite natural.
For small β, the dominant aspect of the dynamics is how
fast an outbreak will die out. For large β, the outbreak will
almost certainly reach all nodes. For vaccination and sentinel
surveillance, this leads to a question of deleting nodes that
would break the network into the smallest components. (In
the former case, this is trivial since the size of the outbreak is
almost surely the size of the connected component to which
the seed node belongs. In the latter, we conclude this from the
monotonically increasing vitality).

As an extension, it would be interesting to confirm this work
in larger networks using stochastic simulations. This would
not allow for the discoveries of special graphs such as those
in Figs. 3 and 4, but it could reinforce the connection between
the different notions of centrality. We believe that many of
our conclusions hold for larger networks, an indication being
that our results are consistent with the results of Ref. [13]
(comparing the vaccination and influence maximization for
n = 1 in large empirical networks).
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