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Abstract
Background To investigate the temporal characteristics of clinical variables of hospital-acquired acute kidney injury (AKI) 
in COVID-19 patients and to longitudinally predict AKI onset.
Methods There were 308 hospital-acquired AKI and 721 non-AKI (NAKI) COVID-19 patients from Stony Brook Hospital 
(New York, USA) data, and 72 hospital-acquired AKI and 303 NAKI COVID-19 patients from Tongji Hospital (Wuhan, 
China). Demographic, comorbidities, and longitudinal (3 days before and 3 days after AKI onset) clinical variables were 
used to compute odds ratios for and longitudinally predict hospital-acquired AKI onset.
Results COVID-19 patients with AKI were more likely to die than NAKI patients (31.5% vs 6.9%, adjusted p < 0.001, 
OR = 4.67 [95% CI 3.1, 7.0], Stony Brook data). AKI developed on average 3.3 days after hospitalization. Procalcitonin 
was elevated prior to AKI onset (p < 0.05), peaked, and remained elevated (p < 0.05). Alanine aminotransferase, aspartate 
transaminase, ferritin, and lactate dehydrogenase peaked the same time as creatinine, whereas d-dimer and brain natriuretic 
peptide peaked a day later. C-reactive protein, white blood cell and lymphocyte showed group differences − 2 days prior 
(p < 0.05). Top predictors were creatinine, procalcitonin, white blood cells, lactate dehydrogenase, and lymphocytes. They 
predicted AKI onset with areas under curves (AUCs) of 0.78, 0.66, and 0.56 at 0, − 1, and − 2 days prior, respectively. When 
tested on the Tongji Hospital data, the AUCs were 0.80, 0.79, and 0.77, respectively.
Conclusions Time-locked longitudinal data provide insight into AKI progression. Commonly clinical variables reasonably 
predict AKI onset a few days prior. This work may lead to earlier recognition of AKI and treatment to improve clinical 
outcomes.
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model · Chronic kidney disease

Introduction

Coronavirus disease 2019 (COVID-19) [1, 2] caused by 
the novel severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) has evolved into a global pandemic with  
devastating morbidity and mortality. The widespread out-
breaks with recent spikes across the globe and the likelihood 

of recurrences have strained and will continue to strain 
healthcare resources. COVID-19 infection causes dispro-
portional inflammatory responses and cytokine storm that 
often result in multiple organ failure. Acute kidney injury 
(AKI) has become a hallmark of COVID-19 infection and 
is associated with high incidence of critical illness and 
mortality in COVID-19 patients [1–12]. Kidneys could be 
damaged directly by the virus per se or indirectly by host-
immune responses (i.e., hypoxia, thrombosis, cytotropic 
and cytokine-mediated immune responses, amongst others) 
[13–15]. Whether direct damage of the kidney and whether 
renal infection is common in patients with less severe 
COVID-19 is not yet established [13].

Although a few studies have found some clinical vari-
ables, usually at hospital admission, to be associated with 
high likelihood of in-hospital AKI [16–18], predicting AKI 
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using only clinical variables at admission is likely inaccu-
rate because patients came into hospitals at different stages 
of disease severity or they might already have community-
acquired AKI. To our knowledge, there has been no sys-
tematic evaluation of the temporal characteristics of clinical 
variables leading up to in-hospital AKI in COVID-19 and 
how these temporal characteristics are judiciously used to 
inform clinical decision-making. The association of AKI 
evolution with respect to other clinical laboratory variables 
in the context of COVID-19 disease remains poorly under-
stood. The ability to recognize AKI early and anticipate AKI 
development could improve patient management that include 
hemodynamic support, renal replacement therapy, and avoid 
non-steroidal anti-inflammatory drugs, nephrotoxins, and 
contrast [6–12], ultimately improving clinical outcomes.

The goal of this study was thus to investigate the temporal 
characteristics of clinical variables associated with hospital-
acquired AKI in COVID-19 patients and to predict hospital-
acquired AKI onset. We analyzed the temporal progression 
of different clinical variables with time lock to AKI onset 
and developed a mathematical model to predict hospital-
acquired AKI at different days prior to onset. Association of 
treatments (invasive mechanical ventilation, anticoagulant, 
and steroids) with hospital-acquired AKI was also explored. 
This study was done using data from two hospital systems. 
To our knowledge, this is the first systematic documenta-
tion of the longitudinal clinical variables leading up to AKI 
onset and the first longitudinal prediction of AKI onset in 
COVID-19.

Methods

Study population and data collection

Our study followed the Transparent Reporting of a Multi-
variable Prediction Model for Individual Prognosis or Diag-
nosis (TRIPOD). All methods were carried out in accord-
ance with relevant guidelines and regulations, including 
those of stated in the “Declaration of Helsinki.” Data came 
from two sites: The Stony Brook University Hospital (Stony 
Brook, New York, USA) data were used for training, while 
the Tongji Hospital (Wuhan, China) data were used for test-
ing purposes.

Stony Brook data

The Stony Brook data came from Stony Brook Univer-
sity Hospital (Stony Brook, NY), a 624-bed facility, for 
exempted informed consent and HIPAA waiver from the 
Institutional Research Board (IRB 2020-00207). Figure 1 
shows the patient selection. Our COVID-19 Persons Under 
Investigation Registry of patients through the Emergency 

Department consisted of 6,678 persons clinically sus-
pected of COVID-19 infection from February 7, 2020 to 
June 30, 2020, of which 2892 were tested positive using 
real-time polymerase chain reaction test for severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) on a 
nasopharyngeal swab specimen. Data of these cohort have 
been used previously for studies of different research ques-
tions [19–27]. All COVID-19 patients in this study were 
in-patient.

AKI was defined by KDIGO criteria [28, 29] with either 
a 0.3 mg/dl increase in serum creatinine within 48 h or 1.5 
times the lowest reading during hospitalization due to lack 
of data prior to hospitalization, which served as a baseline 
[11, 30]. Patients in our cohort did not declare ESRD and, 
therefore, to our knowledge, we excluded all ESRD patients 
on dialysis. Non-AKI COVID-19 patients were those whose 
blood creatinine level did not rise above the threshold 
defined by KDIGO criteria during the entire time of their 
hospital stays.

Exclusion included patients with no creatinine reading 
(N = 73), < 18 years old (N = 23), still in the hospital at the 
time of this analysis (N = 21) and had community-acquired 
AKI (N = 295) defined as patients who had AKI within 24 h 
of admission by KDIGO standards [28, 29]. The final sam-
ple size used in this analysis was 1029 patients meeting the 
inclusion/exclusion criteria. Urine output was not used due 
unavailable urine data.

Demographics and chronic comorbidities, longitudinal 
vital signs, laboratory blood tests, and blood gases were 
extracted from electronic medical records. Demographic 
data included age, gender, ethnicity and race. Chronic 
comorbidities included smoking, diabetes, hypertension, 

COVID Positive
(N=2892)

Hospitalized 
(N=1029)

Excluded: 
No Cr Readings (73)
<18 years old (23)
Pts still in Hospital (21)
C-AKI Pts (295)
Not Hospitalized (1451)

General 
Admission 

(974)

Direct ICU 
admission

(55)

NAKI
(40)

AKI
(111)

NAKI
(681)

AKI
(197)

Non-
upgrade

(878)

ICU 
Admission 

(151)

Upgraded 
to ICU
(96)

Fig. 1  Flowchart of patient selection of acute kidney injury (AKI) 
patients and non-AKI (NAKI) patients of the Stony Brook data. Pts 
patients, ICU intensive care unit, Cr creatinine, C-AKI community-
acquired AKI)
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asthma, chronic obstructive pulmonary disease (COPD), 
coronary artery disease, heart failure, cancer, immunosup-
pression and chronic kidney disease. Longitudinal labora-
tory tests included creatinine (Cr), procalcitonin (PROCAL), 
aspartate transaminase (AST), alanine aminotransferase 
(ALT), ferritin (FERR), lactate dehydrogenase (LDH), white 
blood cell count (WBC), C-reactive protein (CRP), lympho-
cytes count (LYMPH), D-dimer (DDIM), brain natriuretic 
peptide (BNP), estimated glomerular filtration rate (eGFR), 
and albumin concentration. Longitudinal vital signs included 
heart rate (HR), diastolic blood pressure (DBP), systolic 
blood pressure (SBP), respiratory rate (RR), pulse oxygen 
saturation (SpO2), and temperature (temp). Longitudinal 
blood gas variables include pO2, pCO2, and pH. In addition, 
we also collected the treatment onset of invasive mechanical 
ventilation (IMV), prophylactic and therapeutic anticoagu-
lants and steroids relative to AKI onset.

We time-locked the time-series laboratory test variables 
to the day of AKI onset. Laboratory test variables were plot-
ted across time with time lock (t = 0) to AKI onset, along 
with data 3 days before and 3 days after AKI onset. For 
comparison, time-series data for NAKI patients were time 
locked (t = 0) to 3 days after ED admission, along with data 
3 days before and 3 days after that time point. The 3 days 
post-ED admission was chosen because COVID-19 patients 
on average developed AKI 3.3 days after ED admission (see 
Results). For ease of comparison, individual laboratory test 
values were also normalized to the NAKI group at t = 0 for 
individual patients.

Note that many patients developed AKI after 1, 2 or 
3 days post-admission and thus these patients did not con-
tribute to − 3, − 2, or − 1 day prior to onset. Removing data 
of patients with onset of 1, 2 or 3 days post-admission did 
not alter the temporal characteristics of the time courses of 
all clinical variables.

Tongji Hospital data

The Tongji Hospital (Wuhan, China) data were obtained 
from Jan 10, 2020 to Feb 24, 2020 (N = 485, of which 375 
met the inclusion and exclusion criteria) with approval of 
their institutional review board and waiver of informed con-
sent [27, 31]. This dataset was used for “testing.”

Prediction model

We built logistic regression models to predict outcomes at 
each day prior to AKI onset. Prediction was performed using 
individual variables and combination of a few top predictors, 
and at a few time points prior to AKI onset. We time-locked 
to the day of onset. We performed prediction up to 3 days 
prior because AUC performance dropped close to chance 
at and beyond 3 days prior. Prediction performance was 

evaluated by the area under the curve (AUC) of the receiver 
operating characteristic (ROC) curve.

Statistical analysis

All statistical analyses were performed using Python pack-
ages (Sklearn and Statsmodels, Python Software Founda-
tion, Wilmington, DE) and SAS software (Analytics Soft-
ware and Solution, Cary, NC). Frequencies and percentages 
for categorical variables between the AKI and NAKI 
groups were compared using χ2 tests. Continuous variables, 
expressed as median (IQR), were compared between groups 
using nonparametric Mann–Whitney U tests. Mortality rates 
were compared between groups with χ2 tests adjusted with 
covariates. Differences between AKI and NAKI group for 
clinical variables in time series graphs was analyzed via lin-
ear mixed model and least squares means test with Tukey’s 
adjustment. P values < 0.05 were considered statistically sig-
nificant unless otherwise specified. P values and odd ratios 
for mortality were adjusted for age, ethnicity, and significant 
comorbidities.

Results

Stony Brook data

In the Stony Brook data, the general floor cohort, had 197 
AKI and 681 NAKI patients (22.4% AKI prevalence), with 
the mortality rate of 14.7% and 6.0%, respectively. The ICU 
cohort had 111 AKI and 40 NAKI patients (73.5% AKI 
prevalence), with the mortality rate of 61.3% and 22.5%, 
respectively. Overall, AKI patients had a markedly higher 
mortality rate than NAKI patients (31.5% vs 6.9%, adjusted 
p < 0.001, adjusted OR of 4.67 [95% CI 3.1, 7.0]. The overall 
AKI prevalence rate was 23.0%.

Table 1 summarizes patient demographics and comor-
bidities of the Stony Brook data. The median age of hospital-
acquired AKI cohort was older than that of the NAKI cohort 
(p < 0.001). Sex was not significantly different between 
groups. Ethnicity (p = 0.003), but not race (p = 0.66), was 
significantly different between groups. Smoking, diabetes, 
hypertension, coronary artery disease, cancer, chronic kid-
ney disease (p < 0.05), but not asthma, COPD, and immuno-
suppression (p > 0.05), were significantly between groups. 
AKI patients generally had more comorbidities.

The majority of patients developed AKI within a few days 
of hospital admission, averaging 3.3 days (median = 2 days). 
There were 36.2%, 21.4%, 15.5%, 6.6%, 5.3%, 3.6%, 3.3%, 
and 8.2% of COVID-19 patients developed AKI after 1, 2, 
3, 4, 5, 6, 7, > 7 days of hospitalization, respectively (Fig. 2).

Figure 3 depicts the time series of laboratory tests rela-
tive to AKI onset of the Stony Brook data. Laboratory 
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Table 1  Demographic 
information of the Stony Brook 
dataset

Demographic characteristics, comorbidities of AKI versus NAKI patients. Group comparison of categori-
cal variables in frequencies and percentages used χ2 test or Fisher exact tests. Group comparison of contin-
uous variables in medians and interquartile ranges (IQR) used the Mann–Whitney U test. Overall mortality 
p values were adjusted for demographics and comorbidities (see “Methods”)

Patients, No. (%)

NAKI (n = 721) AKI (n = 308) p value

Demographics
Age, median (range), y 59 (47, 73) 70 (55, 80) < 0.001
Sex 0.139
 Male 409 (56.7%) 190 (61.7%)
 Female 312 (43.3%) 118 (38.3%)

Ethnicity 0.003
 Hispanic/Latino 197 (27.3%) 62 (20.1%)
 Non-Hispanic/Latino 419 (58.1%) 214 (69.5%)
 Unknown 105 (14.6%) 32 (10.4%)
 Race 0.66
  Caucasian 384 (53.3%) 177 (57.5%)
  African American 52 (7.2%) 26 (8.4%)
  Asian 22 (3.1%) 10 (3.3%)
  American Indian/Alaska Native 1 (0.1%) 1 (0.3%)
  Native Hawaiian or other Pacific Islander 1 (0.1%) 0
  More than One Race 4 (0.6%) 1 (0.3%)
  Unknown/not reported 257 (35.6%) 93 (30.2%)

 Comorbidities
  Smoking history 0.010
   Current smoker 27 (3.7%) 18 (5.8%)
   Former smoker 160 (22.2%) 77 (25.0%)
   Never smoked 505 (70.0%) 189 (61.4%)
   Unknown 29 (4.1%) 24 (7.8%)
  Diabetes 159 (22.1%) 108 (35.0%) < 0.001
  Hypertension 302 (41.9%) 196 (63.6%) < 0.001
  Asthma 46 (6.4%) 21 (6.8%) 0.794
  Chronic obstructive pulmonary disease 57 (7.9%) 33 (10.7%) 0.144
  Coronary artery disease 91 (12.6%) 73 (23.7%) < 0.001
  Heart failure 38 (5.3%) 55 (17.9%) < 0.001
  Cancer 59 (8.2%) 40 (13.0%) 0.017
  Immunosuppression 47 (6.5%) 30 (9.7%) 0.072
  Chronic kidney disease 45 (6.2%) 58 (18.8%) < 0.001
  Number of comorbidities < 0.001
   0 275 (38.1%) 57 (18.5%)
   1 205 (28.4%) 71 (23.1%)
   2 136 (18.9%) 70 (22.7%)
   3 69 (9.6%) 60 (19.5%)
   4 26 (3.6%) 31 (10.1%)
   5 5 (0.7%) 15 (4.9%)
   6 4 (0.6%) 4 (1.3%)
   7 1 (0.1%) 0
  Overall mortality (unadjusted) 50 (6.9%) 97 (31.5%) < 0.001
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values were normalized to the NAKI group at t = 0 by 
individual patients. In the NAKI cohort, Cr remained low 
and time invariant. In the AKI cohort, Cr spiked 4.5 times 
from baseline at t = 0 and returned toward baseline but 
above NAKI level.

Procalcitonin was elevated one day prior to AKI onset, 
peaked the same time as Cr and remained elevated. AST, 
ALT, ferritin, LDH showed similar temporal patterns as 
Cr. CRP, WBC, lymphocyte, eGFR showed divergence 
between groups starting − 2 days prior. Note that lym-
phocyte counts and eGFR of AKI were below those of 
NAKI, in contrast to most other variables. d-Dimer ele-
vated − 1 day prior but peaked a day later than Cr. BNP 
peak lagged Cr by 1 day.

Most vitals and blood gases (HR, DBP pressure, SBP, 
SpO2, temperature, pO2, pCO2 and pH) and albumin were 
similar between groups across these time points, except that 
RR was consistently elevated and pH was consistently lower 
in the AKI group.

Table 2 shows the ORs of the top five individual variables 
for developing AKI for − 1 day prior of the Stony Brook 
data. Creatinine and procalcitonin concentrations had the 
largest ORs by far, followed by white blood cell count, lac-
tate dehydrogenase and lymphocyte count.

We performed prediction of AKI onset at multiple time 
points. Figure 4 shows ROC curves of individual top vari-
ables and the combined five top variables at different days 
prior to AKI onset of the Stony Brook data. Figure 5 shows 
the prediction performance indices (AUCs) of individual top 
variables and the combined five top variables at different 
days prior to AKI onset of the Stony Brook data. AUCs were 
high at 0 and − 1 day before AKI onset, and decreased − 2 
and − 3 days before AKI onset. The combined five top vari-
ables yielded the best AUC compared to individual predic-
tors across all time points studied.

Table 3A summarizes the other performance metrics of 
the predictive model using the combined top five variables. 

The best model using the combined five top variables pre-
dicted AKI onset with AUC of 0.78, 0.66, and 0.56 at 0, − 1, 
and − 2 days prior, respectively.

For external validation, a logistic regression model 
trained on the Stony Brook hospital data were tested on the 
Tongji Hospital data using the significant variables: proc-
alcitonin, creatinine, white blood cells, lactate dehydroge-
nase lymphocytes. Of the 375 patients, 201 survived and 174 
died (46.4% mortality rate) and 72 had hospital-acquired 
AKI (19.2% AKI prevalence rate). The results are shown 
in Table 3B. The AUC for predicting AKI onset were 0.93, 
0.80, and 0.88 at 0, − 1, and − 2 days prior to onset.

AKI onset association with treatments

We also explored the possible association of treatments 
with AKI onset in the Stony Brook data. More AKI patients 
had IMV (32.1% vs 2.4%, p < 0.001), noninvasive mechani-
cal ventilation (12.0% vs 4.2%, p = 0.006), prophylactic 
(p < 0.001) and therapeutic anticoagulants (p = 0.002) and 
steroids (32.1% vs 9.6%, p = 0.006) than NAKI patients 
(Table 4). A total of 16.2% of AKI patients needed con-
tinuous renal replacement therapy (1.6%) or hemodialysis 
(9.4%), with 5.2% needing both.

We also analyzed the differences in onset times between 
AKI development and the initiation of IMV, anticoagulant, 
steroid and dialysis treatment (Fig. 6). For most patients, 
IMV was initiated − 1 day prior to AKI onset. Anticoagulant 
treatment was initiated − 1 to − 3 days prior to AKI onset. 
Steroid treatment was initiated − 2 to 0 days before AKI 
onset but were comparatively more spread out. For all treat-
ments, treatment initiation day is not significantly associated 
with mortality (p > 0.05).

The eGFR was 78.3 ± 5.5 (SEM) mL/min/1.73m2 for AKI 
and 99.1 ± 1.9 mL/min/1.73m2 for NAKI patients for survi-
vors at discharge.

Discussion

This study investigated the temporal characteristics of clini-
cal variables associated with AKI development during hos-
pitalization in COVID-19 patients at two hospitals. The key 
findings are: (1) COVID-19 patients with hospital-acquired 
AKI acquired it within 3.3 days after hospitalization on 
average, and patients with hospital-acquired AKI showed 
a markedly higher mortality rate than NAKI patients. (2) 
Creatinine peaked 4.5 times from baseline and returned 
toward baseline but remained above NAKI level. (3) Pro-
calcitonin elevated prior to AKI onset, peaked the same 
time as creatinine and remained elevated. AST, ALT, fer-
ritin, LDH peaked the same time as Cr, whereas d-dimer and 
BNP lagged by a day. CRP, WBC, lymphocyte and eGRF 
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Fig. 2  Histogram of patients developed AKI after hospitalization in 
days of Stony Brook data



114 J. Y. Lu et al.

1 3

0.6

0.8

1

1.2

1.4

Albumin (g/dl)

0.9

0.95

1

1.05

1.1

PH

0.5

0.7

0.9

1.1

1.3

1.5

PCO2

(

0.5

0.7

0.9

1.1

1.3

1.5

PO2
0.9

0.95

1

1.05

1.1

SpO2 (%)

0.5

0.7

0.9

1.1

1.3

1.5

SBP (mmHg)
0.5

0.7

0.9

1.1

1.3

1.5

DBP (mmHg)

0.5

0.7

0.9

1.1

1.3

1.5

HR (bpm)
0
5

10
15
20
25
30

BNP (pg/ml)

0

1

2

3

4

DDIM (ng/ml)

0.6

0.8

1

1.2

1.4

LYMPH (%)

0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7

CRP (mg/dl)

0.5

0.7

0.9

1.1

1.3

1.5

WBC x 103/mL
0

0.5

1

1.5

2

LDH (U/L)

0
0.5

1
1.5

2
2.5

3
3.5

FERR (mg/ml)

0

0.5

1

1.5

2

2.5

ALT (U/L)

0
1
2
3
4
5
6

-3 -2 -1 0 1 2 3

AST (U/L)

0
2
4
6
8

10
12

-3 -2 -1 0 1 2 3

PROCAL (ng/ml)

0
1
2
3
4
5
6

-3 -2 -1 0 1 2 3

Cr (mg/dl) HA-AKI
No AKI

* * * ** *

* *

* ** ***

*** **

*

*

*

* *****

* *
*

*
* *

*

*

*

** * * *

*

****

*
* * ***

*
*

* *

*
*

*

*

*

*
*

*
*

**

*** *

*
*

*

*****
*

*

* *

*

* *

* *
*

*

*

*
*

0.5

0.7

0.9

1.1

1.3

1.5

RR

0.9

0.95

1

1.05

1.1

Temp (C)

(Days) (Days) (Days)

* * *

0.5

0.7

0.9

1.1

1.3

1.5

eGFR (ml/min)

*** ****



115Longitudinal prediction of hospital‑acquired acute kidney injury in COVID‑19: a two‑center…

1 3

showed differences between groups starting − 2 days prior. 
(4) Abnormal creatinine and procalcitonin had the highest 
odds ratios for developing AKI, followed by white blood 
cells, lactate dehydrogenase and lymphocytes. (5) The best 
predictive model using the combined five top variables pre-
dicted AKI onset with AUCs of 0.78, 0.66, and 0.56 at 0, 
− 1, and − 2 days prior, respectively (Stony Brook Hospital 
data). When tested on an external validation data (Tongji 
Hospital data), the AUCs were 0.93, 0.80, and 0.88 at 0, − 1, 
and − 2 days prior to onset, respectively.

Our incidence of AKI and mortality odds ratio for patients 
with hospital-acquired AKI is in general agreement with the 
literature [6–12]. Procalcitonin elevated prior to AKI onset, 
peaked the same time as Cr and remained elevated. Elevated 
procalcitonin is known to be a sign of a serious infection, 
including sepsis [32] and its elevation prior to AKI onset 
suggests it might be an early predictor of AKI in COVID-
19. AST, ALT, ferritin, LDH peaked the same time as Cr. 
Elevated AST, ALT and ferritin are suggestive of liver dam-
age. Increased levels in AST and ALT in COVID-19 are 
associated with the need for escalated care and higher rate 
of mortality [33]. Elevated ferritin is indicative of inflam-
mation and cytokine storm, amongst others [34]. Lactate 
dehydrogenase is a marker of cell death and multi-organ 
failure [35–37]. Taken together, these temporal profiles are 
consistent with multi-organ failure [35–37] that occurred at 
roughly the same time.

CRP, WBC and lymphocyte concentrations showed diver-
gence between groups very early on starting − 2 days prior 
and these variables could have predictive values. CRP is 
made by the liver and elevated level of CRP is a sign of 
inflammation [38]. Elevated white blood cell count is indica-
tive of cytokine and immune response, including in COVID-
19 infection [39]. Lymphocyte count is known to be lower 
in more severe COVID-19 patients and is associated with 
high mortality rate [20, 24, 40–42] and is associated with 
hospital-acquired AKI [43].

Interestingly, d-dimer concentration, an indicator of blood 
clots [44], elevated − 1 day prior but peaked a day later than 

Cr concentration, suggesting that potential embolic event 
might be present early but peaked in the later stage [10]. 
d-Dimer has been reported to be associated with COVID-
19 and high mortality. BNP, an indicator of heart damage, 
lagged Cr by 1 day. It is not surprising that most vitals and 
blood gases were not different between groups across time 
points because they were actively maintained within nor-
mal physiological ranges. The exceptions were RR which 
was consistently elevated and pH which was consistently 
lower in the AKI group, indicative of respiratory distress 
and acidosis.

Taken together, time-locked longitudinal data offered 
insights into disease pathophysiology. If the clinical vari-
ables at ED admission were averaged across patients without 
time lock, most of these clinically significant effects could 
likely be averaged out. It is important to emphasize that most 
of the clinical variables of NAKI patients were also abnor-
mal compared to normative healthy controls.

Predictive models

Abnormal creatinine (OR = 8.08), procalcitonin (OR = 1.92), 
white blood cell count (OR = 1.35), lactate dehydrogenase 
(OR = 1.21), and lymphocyte count (OR = 0.79) at − 1 day 
prior were associated with higher likelihood of AKI devel-
opment. The temporal progression of these clinical variables 
suggests some of these variables could predict AKI onset. 
We found that creatinine, procalcitonin, white blood cell, 
lactate dehydrogenase and lymphocyte levels individually 
predicted AKI onset moderately well, and their combination 
outperformed individual predictors. The overall prediction 
performance by AUC was good at day 0, and moderate at 
day − 1 and − 2. The moderate performance of the train-
ing dataset could be due to data asymmetry, low sensitivity, 
small sample size and unpredictability of AKI. Interestingly, 
AUCs of the validation data showed better performance than 
those of the training data. A possible explanation is that the 
Tongji Hospital cohort had worse disease severity where 
laboratory variables were more consistently abnormal. Fur-
ther validation studies are needed. Both datasets had low 
sensitivity and accuracy, but high specificity. The low sensi-
tivity could be due to data asymmetry and small sample size.

Although creatinine was used to define AKI onset, we 
decided to include it in the model for the purpose of com-
parison. While these clinical variables have previously been 
associated with critical illness and mortality in COVID-19 
patients [45], this is the first time that these clinical variables 
were used to predict AKI onset in a longitudinal fashion. 
These findings could help frontline physicians to identify 
patients needing early interventions to prevent AKI. Taken 
together, these findings suggest that AKI is likely a result 
of multi-organ failure contributing to higher mortality rate. 

Fig. 3  Time courses of normalized laboratory tests of HAKI and 
NAKI COVID-19 patients of the Stony Brook data. Normalization 
was relative to No AKI at t = 0 for individual patient. For HA-AKI 
patients, t = 0 represents day of AKI onset (Cr first peaked), and for 
No AKI patients 3 days after hospital admission. Abbreviations: Cr, 
creatinine. BNP, brain natriuretic peptide. ALT, alanine aminotrans-
ferase. AST, aspartate transaminase. PROCAL, procalcitonin. CRP, 
C-reactive protein. LDH, lactate dehydrogenase. WBC, white blood 
cell. DBP, diastolic blood pressure. SBP, systolic blood pressure. 
FERR, ferritin. LYMPH, lymphocyte count. DDIM, d-dimer. HR, 
heart rate. RR, respiratory rate. SpO2, pulse oxygen saturation. PO2, 
arterial oxygen pressure. PCO2, arterial carbon dioxide pressure. The 
* represents a significant difference based on the linear mixed model 
in mean measures between two groups at each time point. Error bars 
are SEM

◂
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Time-locked longitudinal data can provide insight into AKI 
progression that may lead to earlier recognition of AKI, 
intervention and improvement in clinical outcomes.

Association with treatments

Significantly more AKI patients had IMV, anticoagulants 
and steroids than NAKI patients. For most patients, IMV 
was initiated − 1 day prior to AKI onset. Anticoagulant 
treatment was initiated − 1 to − 3 days prior to AKI onset. 
Although glomerular hemorrhage could lead to AKI [46], 
over-anticoagulation has also been associated with AKI [47, 

48] and thus it is possible that higher dose of anticoagu-
lant could unintentionally contribute to AKI in COVID-19 
patients. The use therapeutic anticoagulants in COVID-19 
patients warrant further study [48, 49]. Steroid treatment 
was initiated − 2 to 0 days before AKI onset but were com-
paratively more spread out. A recent post hoc analysis of a 
placebo-controlled, randomized trial suggests that intraop-
erative steroids might lower the risk of renal replacement 
therapy for AKI after cardiac surgery [50]. It is important to 
note that these observations are associations, not cause and 
effect. For example, IMV and higher dose of anticoagulant 
might be needed in more severe COVID-19 patients and thus 
they were also more likely to develop AKI in the hospital. 
Other explanations are possible.

Finally, the eGFR was 78.3 ± 5.5 (SEM) mL/min/1.73m2 
for AKI and 99.1 ± 1.9 mL/min/1.73m2 for NAKI patients 
for survivors at discharge, where normal eGFR for adults 
is > 90 mL/min/1.73m2 according to the National Kidney 
Foundation. This observation suggests kidney function had 
not yet returned to normal at discharge.

The strengths and novelties of our study include large 
sample size and the use of longitudinal variables with 
time-locked to AKI onset to characterize the progression 
of relevant clinical variables between AKI and non-AKI 

Table 2  The top five individual variables with highest odds ratios 
(ORs) and 95% confidence level [95% CI] for hospital-acquired AKI 
at -1 day prior to AKI onset of the Stony Brook dataset

OR [95% CI] P value

Creatinine 8.08 [4.21, 15.5] < 0.001
Procalcitonin 1.92 [.78, 4.73] 0.16
White blood cells 1.35 [1.05, 1.73] 0.018
Lactate dehydrogenase 1.21 [.943, 1.54] 0.14
Lymphocytes 0.79 [.62, 1.54] 0.05

Fig. 4  ROC curves at different days prior to AKI onset for individual and top earliest predictors of AKI of the Stony Brook data
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COVID-19 patients. The comparison of the temporal 
dynamics of various clinical variables is important because 
it reveals insights into leading indicators of AKI onset in 
the context of COVID-19, which has not been previously 
studied. We also developed and tested longitudinal predic-
tive models to predict AKI onset a few days prior to onset 
using data from two hospitals, in contrast to essentially all 
published papers to date that reported AKI data in COVID-
19 patients at a single time point at admission.

Limitations

This study had several limitations. We did not have data 
on proteinuria and hematuria, which have been associ-
ated with in-hospital mortality. Future studies should 
include urine analysis in the predictive modeling. As with 
all observational studies, other residual confounders may 
exist that were not accounted for in our analysis. Note that 

Fig. 5  AUC at different days 
prior to AKI onset for individ-
ual and top earliest predictors of 
AKI of the Stony Brook data
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Table 3  Performance metrics of the combined top five predictors of 
hospital-acquired AKI patients at different days prior to AKI onset on 
the (A) Stony Brook Hospital dataset and (B) Tongji Hospital data

AUC Accuracy Specificity Sensitivity

A
 Day 0 of AKI onset 0.78 0.80 0.96 0.62
 − 1 day 0.66 0.79 0.97 0.35
 − 2 day 0.56 0.77 0.98 0.14
 − 3 day 0.51 0.83 0.99 0.04

B
 Day 0 of AKI onset 0.93 0.65 1.0 0.59
 − 1 day 0.80 0.90 0.94 0.58
 − 2 day 0.88 0.90 0.93 0.58
 − 3 day 0.78 0.89 0.94 0

Table 4  Treatments for AKI 
and NAKI patient cohorts

Group comparison of categorical variables in frequencies and percentages used χ2 test or Fisher exact tests
CRRT  continuous renal replacement therapy

Patients, No. (%)

NAKI (n = 721) HAKI (n = 308) p value

Invasive mechanical ventilation 17 (2.4%) 99 (32.1%) < 0.001
Noninvasive mechanical ventilation 30 (4.2%) 37 (12.0%) 0.006
Anticoagulants
 Prophylactic 212 (29.4%) 153 (49.7%) < 0.001
 Therapeutic 59 (8.2%) 86 (27.9%) 0.002
 Steroids 69 (9.6%) 99 (32.1%) 0.006

Dialysis
 CRRT dialysis 0 5 (1.6%)
 Hemodialysis 0 29 (9.4%)
 CRRT dialysis and hemodialysis 0 16 (5.2%)
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many patients developed AKI after 1 day post-admission 
and thus they did not contribute to − 3 and − 2 day prior to 
onset. Removing data of patients with onset of 1 or 2 days 
post-admission did not significantly affect the temporal 
characteristics of all time courses. Some of the perfor-
mance indices of prediction were moderate and further 
testing on larger and independent datasets are needed. 
Future prospective studies are warranted.

Conclusions

This study compared the clinical profiles between COVID-
19 patients with and without hospital-acquired AKI with 
respect to temporal progression of clinical variables, demo-
graphics, comorbidities, escalated care, mortality, and 
association with treatments. It also identified the top early 
predictors of in-hospital AKI and provided a mathematical 
model to predict AKI onset a few days prior, with cross-
validation using an independent dataset from another hos-
pital. This approach has the potential to provide frontline 
physicians with an objective tool to risk stratification and 
prediction of in-hospital AKI in COVID-19 patients in time-
sensitive and potentially resource-constrained environments.

Acknowledgements None.

Author contributions JL: analyzed and edited paper. WH: analyzed 
and edited paper. TD: designed, supervised, wrote paper, and approved 
final version.

Funding None.

Availability of data and materials The datasets used and/or analyzed 
during the current study are available from the corresponding author 
on reasonable request.

Declarations 

Ethics approval and consent to participate This retrospective single-
center study was approved by the Institutional Research Board of Stony 
brook University (IRB 2020–00207) with an exemption for informed 
consent and a HIPAA waiver.

Conflict of interest Authors declare no conflicts of interest.

References

 1. Shao M, Li X, Liu F, Tian T, Luo J, Yang Y. Acute kidney injury 
is associated with severe infection and fatality in patients with 
COVID-19: A systematic review and meta-analysis of 40 studies 
and 24,527 patients. Pharmacol Res. 2020;161:105107.

 2. Oliveira CB, Lima CAD, Vajgel G, Campos Coelho AV, San-
drin-Garcia P. High burden of acute kidney injury in COVID-19 
pandemic: systematic review and meta-analysis. J Clin Pathol. 
2020;7:89.

 3. Nadim MK, Forni LG, Mehta RL, Connor MJ Jr, Liu KD, Oster-
mann M, et al. COVID-19-associated acute kidney injury: con-
sensus report of the 25th Acute Disease Quality Initiative (ADQI) 
Workgroup. Nat Rev Nephrol. 2020;16(12):747–64.

 4. Brienza N, Puntillo F, Romagnoli S, Acute TL, Injury K, in Coro-
navirus Disease. Infected patients: a meta-analytic study. Blood 
Purif. 2019;2020:1–7.

 5. Farouk SS, Fiaccadori E, Cravedi P, Campbell KN. COVID-19 
and the kidney: what we think we know so far and what we don’t. 
J Nephrol. 2020;33(6):1213–8.

 6. Hamilton P, Hanumapura P, Castelino L, Henney R, Parker K, 
Kumar M, et al. Characteristics and outcomes of hospitalised 
patients with acute kidney injury and COVID-19. PLoS ONE. 
2020;15(11):e0241544.

 7. Fisher M, Neugarten J, Bellin E, Yunes M, Stahl L, Johns TS, 
et al. AKI in hospitalized patients with and without covid-19: a 
comparison study. J Am Soc Nephrol. 2020;31(9):2145–57.

 8. Ouyang L, Gong Y, Zhu Y, Gong J. Association of acute kidney 
injury with the severity and mortality of SARS-CoV-2 infection: 
A meta-analysis. Am J Emerg Med. 2021;43:149–57.

 9. Trabulus S, Karaca C, Balkan II, Dincer MT, Murt A, Ozcan SG, 
et al. Kidney function on admission predicts in-hospital mortality 
in COVID-19. PLoS ONE. 2020;15(9):e0238680.

 10. Wagner J, Garcia-Rodriguez V, Yu A, Dutra B, DuPont A, Cash 
B, et al. Elevated D-dimer is associated with multiple clinical 
outcomes in hospitalized Covid-19 patients: a retrospective cohort 
Study. SN Compr Clin Med. 2020;22:1–7.

 11. Hirsch JS, Ng JH, Ross DW, Sharma P, Shah HH, Barnett RL, 
et al. Acute kidney injury in patients hospitalized with COVID-19. 
Kidney Int. 2020;98(1):209–18.

 12. Chan L, Chaudhary K, Saha A, Chauhan K, Vaid A, Zhao S, et al. 
AKI in Hospitalized Patients with COVID-19. J Am Soc Nephrol. 
2021;32(1):151–60.

 13. Khan S, Chen L, Yang CR, Raghuram V, Khundmiri SJ, Knepper 
MA. Does SARS-CoV-2 Infect the Kidney? J Am Soc Nephrol. 
2020;31(12):2746–8.

0

5

10

15

20

25

<-5 -5 -4 -3 -2 -1 0 1 2 3 4 5 >5

Pa
�e

nt
 C

ou
nt

 

Treatment Ini�a�on prior to AKI Onset

(B) Steroids

0

5

10

15

20

25

30

35

40

<-5 -5 -4 -3 -2 -1 0 1 2 3 4 5 >5

tnuoC tneitaP

(A) Invasive Mechanical Ven�la�on

0

10

20

30

40

50

60

<-5 -5 -4 -3 -2 -1 0 1 2 3 4 5 >5

Pa
�e

nt
 C

ou
nt

(C) An�coagulants

Fig. 6  Histogram of the treatment initiation prior to AKI onset for A 
invasive mechanical ventilation, B anticoagulants and C steroids of 
the Stony Brook data. For example, most of the patients were treated 

with invasive mechanical ventilation − 1 day prior to AKI onset. For 
all treatments, treatment initiation day is not significantly associated 
with mortality (p > 0.05)



119Longitudinal prediction of hospital‑acquired acute kidney injury in COVID‑19: a two‑center…

1 3

 14. Ahmadian E, Hosseiniyan Khatibi SM, Razi Soofiyani S, Abediazar S, 
Shoja MM, Ardalan M, et al. Covid-19 and kidney injury: Pathophysi-
ology and molecular mechanisms. Rev Med Virol. 2020;7:e2176.

 15. Adapa S, Chenna A, Balla M, Merugu GP, Koduri NM, Daggubati 
SR, et al. COVID-19 pandemic causing acute kidney injury and 
impact on patients with chronic kidney disease and renal trans-
plantation. J Clin Med Res. 2020;12(6):352–61.

 16. Xia P, Wen Y, Duan Y, Su H, Cao W, Xiao M, et al. clinicopatho-
logical features and outcomes of acute kidney injury in critically 
ill Covid-19 with prolonged disease course: a retrospective cohort. 
J Am Soc Nephrol. 2020;31(9):2205–21.

 17. Hectors SJ, Riyahi S, Dev H, Krishnan K, Margolis DJA, Prince 
MR. Multivariate analysis of CT imaging, laboratory, and demo-
graphical features for prediction of acute kidney injury in COVID-
19 patients: a Bi-centric analysis. Abdom Radiol. 2020;7:87.

 18. Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani 
L. Acute kidney injury in critically ill patients with COVID-19. 
Intensive Care Med. 2020;46(7):1339–48.

 19. Zhu J, Shen B, Abbasi A, Hoshmand-Kochi M, Li H, Duong TQ. 
Deep transfer learning artificial intelligence accurately stages 
COVID-19 lung disease severity on portable chest radiographs. 
PLoS ONE. 2020;15(7):e0236621.

 20. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, et al. 
Prediction model and risk scores of ICU admission and mortality 
in COVID-19. PLoS ONE. 2020;15(7):e0236618.

 21. Shen B, Hoshmand-Kochi M, Abbasi A, Glass S, Jiang Z, Singer 
AJ, et al. Initial chest radiograph scores inform COVID-19 status, 
intensive care unit admission and need for mechanical ventilation. 
Clin Radiol. 2021;76(6):473.

 22. Musheyev B, Borg L, Janowicz R, Matarlo M, Boyle H, Singh G, 
et al. Functional status of mechanically ventilated COVID-19 survi-
vors at ICU and hospital discharge. J Intensive Care. 2021;9(1):31.

 23. Lu JQ, Musheyev B, Peng Q, Duong TQ. Neural network analysis 
of clinical variables predicts escalated care in COVID-19 patients: 
a retrospective study. PeerJ. 2021;9:e11205.

 24. Li X, Ge P, Zhu J, Li H, Graham J, Singer A, et al. Deep learn-
ing prediction of likelihood of ICU admission and mortality in 
COVID-19 patients using clinical variables. PeerJ. 2020;8:e10337.

 25. Lam KW, Chow KW, Vo J, Hou W, Li H, Richman PS, et al. Con-
tinued in-hospital ACE inhibitor and ARB Use in hypertensive 
COVID-19 patients is associated with positive clinical outcomes. 
J Infect Dis. 2020;222(8):1256–64.

 26. Hou W, Zhao Z, Chen A, Li H, Duong TQ. Machining learn-
ing predicts the need for escalated care and mortality in 
COVID-19 patients from clinical variables. Int J Med Sci. 
2021;18(8):1739–45.

 27. Chen A, Zhao Z, Hou W, Singer AJ, Li H, Duong TQ. Time-
to-death longitudinal characterization of clinical variables and 
longitudinal prediction of mortality in COVID-19 patients: a 
two-center study. Front Med. 2021;8:661940.

 28. Khwaja A. KDIGO clinical practice guidelines for acute kidney 
injury. Nephron Clin Pract. 2012;120(4):c179–84.

 29. Ad-hoc working group of E, Fliser D, Laville M, Covic A, 
Fouque D, Vanholder R, et al. A European Renal Best Practice 
(ERBP) position statement on the Kidney Disease Improving 
Global Outcomes (KDIGO) clinical practice guidelines on acute 
kidney injury: part 1: definitions, conservative management 
and contrast-induced nephropathy. Nephrol Dial Transplant. 
2012;27(12):4263–72.

 30. Pelayo J, Lo KB, Bhargav R, Gul F, Peterson E, DeJoy IR, et al. 
Clinical characteristics and outcomes of community- and hospital-
acquired acute kidney injury with COVID-19 in a US inner city 
hospital system. Cardiorenal Med. 2020;10(4):223–31.

 31. Yan L, Zhang HT, Goncalves J, Xiao Y, Wang M, Guo Y, et al. An 
interpretable mortality prediction model for COVID-19 patients. 
Nat Machine Intelligence. 2020;2:283–8.

 32. Kellum JA, Nadim MK, Forni LG. Sepsis-associated acute kidney 
injury: is COVID-19 different? Kidney Int. 2020;98(6):370–1372.

 33. Hundt MA, Deng Y, Ciarleglio MM, Nathanson MH, Lim JK. 
Abnormal liver tests in COVID-19: a retrospective observational 
cohort study of 1827 patients in a major US Hospital Network. 
Hepatology. 2020;72(4):1169–76.

 34. Lorenz G, Moog P, Bachmann Q, La Rosee P, Schneider H, 
Schlegl M, et al. Title: Cytokine release syndrome is not usu-
ally caused by secondary hemophagocytic lymphohistiocyto-
sis in a cohort of 19 critically ill COVID-19 patients. Sci Rep. 
2020;10(1):18277.

 35. Thierry AR, Roch B. SARS-CoV2 may evade innate immune 
response, causing uncontrolled neutrophil extracellular 
traps formation and multi-organ failure. Clin Sci (Lond). 
2020;134(12):1295–300.

 36. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarah-
madi A, Hassanzadeh G. COVID-19 and multiorgan failure: 
a narrative review on potential mechanisms. J Mol Histol. 
2020;51(6):613–28.

 37. Lim MA, Pranata R, Huang I, Yonas E, Soeroto AY, Supriyadi 
R. Multiorgan failure with emphasis on acute kidney injury and 
severity of COVID-19: systematic review and meta-analysis. Can 
J Kidney Health Dis. 2020;7:2054358120938573.

 38. Mueller AA, Tamura T, Crowley CP, DeGrado JR, Haider H, 
Jezmir JL, et al. Inflammatory biomarker trends predict respiratory 
decline in COVID-19 patients. Cell Rep Med. 2020;78:100144.

 39. Anurag A, Jha PK, Kumar A. Differential white blood cell count 
in the COVID-19: a cross-sectional study of 148 patients. Diabe-
tes Metab Syndr. 2020;14(6):2099–102.

 40. Tavakolpour S, Rakhshandehroo T, Wei EX, Rashidian M. Lym-
phopenia during the COVID-19 infection: what it shows and what 
can be learned. Immunol Lett. 2020;225:31–2.

 41. Naoum FA, Ruiz ALZ, Martin FHO, Brito THG, Hassem V, 
Oliveira MGL. Diagnostic and prognostic utility of WBC counts 
and cell population data in patients with COVID-19. Int J Lab 
Hematol. 2021;7:84.

 42. Zhu JS, Ge P, Jiang C, Zhang Y, Li X, Zhao Z, et al. Deep-learn-
ing artificial intelligence analysis of clinical variables predicts 
mortality in COVID-19 patients. J Am Coll Emerg Phys Open. 
2020;1:1364–73.

 43. Wagner J, DuPont A, Larson S, Cash B, Farooq A. Absolute lym-
phocyte count is a prognostic marker in Covid-19: a retrospective 
cohort review. Int J Lab Hematol. 2020;42(6):761–5.

 44. Guo H, Sheng Y, Li W, Li F, Xie Z, Li J, et al. Coagulopathy as a 
prodrome of cytokine storm in COVID-19-infected patients. Front 
Med. 2020;7:572989.

 45. Mesas AE, Cavero-Redondo I, Alvarez-Bueno C, Sarria Cabrera 
MA, Maffei de Andrade S, Sequi-Dominguez I, et al. Predictors 
of in-hospital COVID-19 mortality: a comprehensive systematic 
review and meta-analysis exploring differences by age, sex and 
health conditions. PLoS ONE. 2020;15(11):e0241742.

 46. Glassock RJ. Anticoagulant-related nephropathy: it’s the real 
Mccoy. Clin J Am Soc Nephrol. 2019;14(6):935–7.

 47. Brodsky S, Eikelboom J, Hebert LA. Anticoagulant-related 
nephropathy. J Am Soc Nephrol. 2018;29(12):2787–93.

 48. Wijaya I, Andhika R, Huang I. The use of therapeutic-dose anti-
coagulation and its effect on mortality in patients with Covid-19: 
a systematic review. Clin Appl Thromb Hemost. 2020;26:1–9.

 49. Mahajan P, Dass B, Radhakrishnan N, McCullough PA. COVID-
19-associated systemic thromboembolism: a case report and 
review of the literature. Cardiorenal Med. 2020;10(6):462–9.

 50. Scrascia G, Guida P, Rotunno C, de Luca Tupputi Schinosa L, 
Paparella D. Anti-inflammatory strategies to reduce acute kidney 
injury in cardiac surgery patients: a meta-analysis of randomized 
controlled trials. Artif Organs. 2014;38(2):101–12.


	Longitudinal prediction of hospital-acquired acute kidney injury in COVID-19: a two-center study
	Abstract
	Background 
	Methods 
	Results 
	Conclusions 

	Introduction
	Methods
	Study population and data collection
	Stony Brook data
	Tongji Hospital data

	Prediction model
	Statistical analysis

	Results
	Stony Brook data
	AKI onset association with treatments

	Discussion
	Predictive models
	Association with treatments
	Limitations

	Conclusions
	Acknowledgements 
	References




