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Prioritizing non-coding regions based on human
genomic constraint and sequence context with
deep learning

Dimitrios Vitsios'™, Ryan S. Dhindsa® ', Lawrence Middleton!, Ayal B. Gussow? & Slavé Petrovski® '™

Elucidating functionality in non-coding regions is a key challenge in human genomics. It has
been shown that intolerance to variation of coding and proximal non-coding sequence is a
strong predictor of human disease relevance. Here, we integrate intolerance to variation,
functional genomic annotations and primary genomic sequence to build JARVIS: a compre-
hensive deep learning model to prioritize non-coding regions, outperforming other human
lineage-specific scores. Despite being agnostic to evolutionary conservation, JARVIS per-
forms comparably or outperforms conservation-based scores in classifying pathogenic single-
nucleotide and structural variants. In constructing JARVIS, we introduce the genome-wide
residual variation intolerance score (gwRVIS), applying a sliding-window approach to
whole genome sequencing data from 62,784 individuals. gwRVIS distinguishes Mendelian
disease genes from more tolerant CCDS regions and highlights ultra-conserved non-coding
elements as the most intolerant regions in the human genome. Both JARVIS and gwRVIS
capture previously inaccessible human-lineage constraint information and will enhance our
understanding of the non-coding genome.
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he growing collection of human whole-genome sequencing

data has allowed researchers to identify stretches of the

genome that are preferentially intolerant to genetic variation.
The resulting statistics equip geneticists to identify parts of our
genome with the greatest potential to cause disease when mutated.
For the protein-coding component of the human genome, we now
have multiple metrics that capture disease potential at the level of
the genel? and regions within a gene3-> with high confidence.
These scores have transformed our ability to identify disease-
causing mutations in the exomel®. However, the majority of
human genetic variation resides in non protein-coding regions of
the genome”8, and our ability to interpret variants has been limited
because the functional importance of these regions is largely
unknown. Improved understanding of the relationship between
noncoding variation and clinical disease can therefore provide a
more comprehensive understanding of disease biology and reveal
opportunities for the development of novel therapeutic targets.

Early studies have attempted to introduce methods that assess
intolerance to a mutation in the noncoding genome to improve
our understanding of variation in these regions. While these
metrics have shown promise®®10, their resolution has been lim-
ited due to small sample sizes of whole-genome sequencing
(WGS) reference cohorts and may be biased due to strong
dependence on evolutionary conservation in addition to human
constraint in constructing noncoding intolerance scores. How-
ever, regulatory elements have high evolutionary turnover!l:12,
which can obfuscate the use of conservation to interpret variation
for many regions in the noncoding genome. The increasing sizes
of WGS reference cohorts now offer an opportunity to assess
intraspecies human variation at an even higher resolution.

Here, we introduce intolerance metrics that examine regions of
the noncoding genome that may be purged of extensive variation
due to purifying selection within the human lineage, adopting a
larger reference set and a machine learning-based approach. We
have previously introduced ncRVIS®, which quantifies constraint in
proximal non-coding regions such as promoters and untranslated
regions. We first expand this method to the entire genome using a
sliding window approach (with single-nucleotide resolution) to
create a genome-wide residual variation intolerance score (gWRVIS).
We then integrate genome-wide intolerance with information on
primary genomic sequence and additional functional genomic
annotation to build a comprehensive pathogenicity prediction fra-
mework for noncoding variants in the human genome. We inten-
tionally do not employ any conservation information for the
construction of our scores. This allows us to pinpoint regions that
are more likely to be human-specific in terms of their functional
relevance and provide a complementary human-lineage score to the
many established phylogenetic conservation-based scores. Our
metrics aim to facilitate prioritizing regions among the noncoding
human genome which when mutated may be more likely to cor-
relate with a clinically relevant effect.

Results

We first sought to construct a score that captures the genome-
wide intolerance to variation profile. We applied a tiled gwRVIS
to WGS data from 62,784 individuals available in the TOPMed
dataset!3 (Freeze5 release). The original RVIS score! quantifies
intolerance by regressing the number of observed common
functional (missense and protein-truncating) variants on the
total number of observed variants in a gene. The resulting
regression line predicts the expected number of common
functional variants, and the deviation of each gene from this
expectation (more or less variation than expected) is calculated
as the residual divided by an estimate of its standard deviation
(studentized residual).

In the genome-wide approach, we no longer have pre-defined
genomic units (like genes in RVIS) or functional annotations for
variants. Thus, we scan the entire genome with a sliding-window
approach (using a 1-nucleotide step), recording the number of all
variants and common variants, irrespective of their predicted
effect, within each window, to eventually calculate a single-
nucleotide resolution genome-wide intolerance score (Fig. 1).

The gwRVIS method is based on two hyperparameters: the
length of the window and the minor allele frequency (MAF)
threshold over which we consider a variant as common. We have
fine-tuned these parameters by testing a range of values (Sup-
plementary Fig. 1) and identified low sensitivity around the exact
value selection. Taking into consideration the largest segregation
achieved between the most intolerant and tolerant genomic
classes (see “Methods”) we selected a window length of 3 kb and
an MAF threshold of 0.1%. As the number and ancestral diversity
of sequenced human genomes increases, we expect this will
permit smaller window sizes, which would provide better reso-
lution for identifying smaller noncoding intolerant regions of the
human genome. At the same time, there’s been demonstrated
value from using longer windows too, as previous works have
shown that genetic contribution of variants relies on the genomic
context of broader regions'4, including GC content, which has
been correlated with various features of genome organization
such as mutation rate and distribution of various classes of
repeated elements!.

In constructing the scores, we also perform a variant pre-
processing quality control step, accounting for genomic coverage,
variant-calling confidence, and simple repeat regions (Fig. 1; see
“Methods”). We then fit an ordinary linear regression model to
predict common variants based on the total number of all var-
iants found in each window. As with the original RVIS for-
mulation, we define the studentized residuals of this regression
model as gwRVIS, with lower gwRVIS values corresponding to
greater intolerance (Fig. 2a). Notably, a set of highly tolerant
windows emerges, particularly enriched for chromosome 6 and
specifically for regions of the human leukocyte antigen complex
(Fig. 2b), consistent with a previously reported high degree of
positive selection in this region of the genome!®.

Stratifying the human genome based on intolerance to varia-
tion. To determine biological relevance of gwRVIS we first sought
to confirm the ability of gwRVIS to differentiate between different
classes of protein-coding consensus coding sequence (CCDS)
windows based on their disease relevance. We looked at the
gwRVIS distributions across four sets of CCDS windows: OMIM-
Haploinsufficient, 25% most intolerant (as defined by RVIS), 25%
most tolerant (as defined by RVIS), and the remainder of CCDS
(Fig. 2c). Despite not incorporating functional protein-coding
annotations in constructing gwRVIS, we observe that it still
manages to correctly stratify the four CCDS sets based on their
expected levels of constraint, grouping them in order of
decreasing intolerance to variation as follows: OMIM-Hap-
loinsufficient, 25% most intolerant CCDS, rest of CCDS and 25%
most tolerant CCDS (Fig. 2¢). Any two adjacent CCDS sets in this
ranking have returned genome-wide statistically significant dif-
ference (Mann-Whitney U; p < 5 x 1078), except for the OMIM-
Haploinsufficient and 25% most intolerant CCDS sets with a non
genome-wide significant divergence (Mann-Whitney U; p=
6.8 x 107°), which is expected as they both comprise of highly
intolerant subsets of the human exome.

Having shown the ability of gwRVIS to successfully predict
human disease based on greater intolerance detected among the
protein-coding CCDS windows overlapping human disease genes,
we next compared the intolerance of different regulatory genomic

2 | (2021)12:1504 | https://doi.org/10.1038/s41467-021-21790-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21790-4

ARTICLE

VCF files

Whole-Genome Sequencing population
genetic data (e.g. gnomAD, TOPMed)

l Region / Coverage filters

! Scan across all chromosomes
with sliding windows and
record variant counts

P4

B

Overlap with high confidence genomic regions only

® Retain genomic regions with average coverage = 20 reads
based on gnomAD coverage files

® Exclude regions annotated as Repeats or SegDup on UCSC

® Filter out regions with extremely high depth, based on SpeedSeq
(Chiang et al., 2015)

——

3kb window

—

Common variants
( MAF >0.1% )

All variants ]

Aggregate variant counts
from all windows & chromosomes

l Variant filters

Simple Linear Regression (OLS):

common_variants ~
(dependent variable)

all_variants
(independent variable)

l

gwRVIS

(studentised residuals
of linear regression fit)

Fig. 1 Genome-wide residual variation intolerance score (gWRVIS). Flowchart for calculation of single-nucleotide resolution gwRVIS from whole-genome
sequencing population genetic data (e.g., TOPMed and gnomAD), including relevant filtering steps (regarding depth coverage, repeat sequences, and

variant quality).

classes, as captured by gwRVIS. We studied seven major genomic
classes: intergenic regions, lincRNAs, introns, CCDS, UTRs,
VISTA enhancers®, and ultraconserved noncoding elements or
UCNEs (see “Methods”), listed here in ascending order of
inferred intolerance to variation (Fig. 2d). The intergenic gwRVIS
score distribution emerges as the most tolerant class with a
median gwRVIS = —0.0014. This median gwRVIS closely aligns
with the theoretical null distribution defined by gwRVIS =0,
reflecting an equal number of observed and expected common
variants. This validates the instinctive use of intergenic gwRVIS
distribution as an empirical null distribution throughout the rest
of the paper.

Surprisingly, the CCDS protein-coding region of the genome was
not the most intolerant functional class. We observed that UCNEs!”
(highly conserved noncoding regions between human and chicken)
are ranked as the most intra-species intolerant class (median
gwRVIS: —0.99; Mann-Whitney U vs. intergenic: p < 1 x 107308),
and this is despite gwRVIS not using any information about species
conservation in its construction (Fig. 2d). This is consistent with
previous observations that UCNEs are depleted of common variants
in humans!®, VISTA enhancers (a class of highly conserved
enhancers active during embryonic development) and CCDS follow
with the next highest intolerance to variation profile, very similar to
UTRs (median gwRVIS: —0.77, —0.55, and —0.51; Mann-Whitney
U vs. intergenic: p<1x 107308 for VISTA enhancers, CCDS and
UTRs, respectively). Finally, introns and lincRNAs have a more
tolerant gwRVIS score distribution that more closely resembles the
distribution from intergenic regions, but due to the sheer size of the
corresponding score lists the divergence remains highly significant
(median scores: —0.050, —0.0015; Mann-Whitney U vs. intergenic:
Pp<1x107308 and p = 2.6 x 107168, respectively).

An important aspect to note is that these comparisons
currently reflect the class distribution effect of the seven mutually
exclusive classes studied. It is evident that within each class there

are more and less tolerant windows in the human genome
(Fig. 2d and Supplementary Fig. 2a). Thus, even among the intron
and intergenic windows, there are some windows that achieve
lower gwRVIS estimates than other windows overlapping with,
for example, the CCDS sequence, and herein lies the true
potential of this score to facilitate identification of more critical
regions across all annotated regulatory classes.

We then test the predictive power of gwRVIS score distribution
to distinguish windows overlapping the most intolerant (UCNE:s)
and tolerant (intergenic) genomic classes. We fit a logistic
regression model with fivefold cross-validation to classify
UCNEs- and intergenic-derived genomic windows, solely based
on the gwRVIS score and find that gwRVIS achieves a notable
area under curve (AUC) performance of 0.81 (standard deviation:
0.05) in distinguishing UCNE overlapping windows from all
intergenic windows (Supplementary Fig. 2b). We also fit the same
model but focused only on windows under negative selection
(gwRVIS < 0), as detection of positive selection has been proven
challenging!®. In this case, gwRVIS achieves an even better
performance with an AUC score of 0.86 (standard deviation: 0.02;
Supplementary Fig. 2c).

gwRVIS predictive power for functionally important genomic
elements. As we inspect the gwRVIS distributions across the
different genomic classes, we observe a large variance in intol-
erance to variation within each class (Supplementary Fig. 2a).
Thus, beyond the insight about which individual genomic classes
are more/less intolerant relative to other classes, the gwRVIS
distribution within a class also provides an extra dimension when
trying to prioritize elements with the same functional annotation
in terms of their pathogenicity potential or biological importance.

We earlier showed this to be true within the CCDS genomic
class, in which known human disease genes had significantly
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Fig. 2 Genome-wide profile and performance of gwRVIS. a Intolerance to variation profile across all genomic windows (having 3 kb length). A regression
line (shown in green) is fit between “all” and “common” (MAF > 0.1%) variants across all windows. gwRVIS can be visualized as the vertical distance of
each data point from the regression line (prior to normalization by the standard deviation of the total distribution). Red dots represent the top 1% of most
intolerant windows (i.e., having fewer common variants than expected) while blue dots represent the top 1% of most tolerant windows. b gwRVIS
distribution across all chromosomes, as extracted from the TOPMed dataset. A highly tolerant set of windows in chromosome 6 is enriched for HLA
complex regions. € gwRVIS scores distribution (with single-nucleotide resolution) across different sets of mutually exclusive CCDS windows: OMIM-
Haploinsufficient, 25% most intolerant (based on RVIS), 25% most tolerant, and rest of CCDS. P values from two-sided Mann-Whitney U tests are also
provided for each pair of “adjacent” coding region classes in order of increasing intolerance. d Distribution of gwRVIS scores across different coding and
noncoding genomic classes, in descending order of intolerance to variation: UCNEs, VISTA enhancers, UTRs, CCDS, introns, lincRNAs, and intergenic
regions. The red horizontal dashed line (gwRVIS = 0) represents the mean of the theoretical null distribution (i.e., where the observed number of common
variants equals the expected number). Intergenic regions are normally distributed around the null distribution, which validates their use as an empirical null
distribution. Two-sided Mann-Whitney U has been employed to compare the gwRVIS distributions across all pairs of genomic classes (***p <1x 10—308),
For each boxplot, its central line represents the median, the bounds represent the 25th and 75th percentile, and the whiskers extend up to 1.5 the
interquartile range from the respective bounds.

lower gwRVIS than human CCDS genes not linked to human fragments with gene enhancer activity. We found, that among
disease. To assess this signal outside of the protein-coding the 10% most intolerant FANTOMS5-overlapping windows
sequence, we first looked at the FANTOMS520 gwRVIS scores to  there was significant enrichment for VISTA enhancers
examine where VISTA enhancers?! preferentially fall within compared to the 10% most tolerant end (approx. 7.5% vs.
that distribution. FANTOMS5 is a resource that contains 1.5%, i.e., 5-fold enrichment; Fisher’s exact test p value = 1.85 x
mammalian promoters, enhancers, lincRNAs, and miRNAs, 10792; Supplementary Fig. 3). This result demonstrates that the
including a collection of nearly 20,000 functional lincRNAs in  intolerant tail of the gwRVIS distribution for enhancers is more
humans. VISTA enhancers are important as they represent likely to be enriched for genomic elements of increased
experimentally validated human and mouse noncoding functional significance.
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We have also compared gwRVIS to Orion®, another method
that relies on human genomic constraint, and found that gwRVIS
can better predict CCDS vs. non-CCDS regions (Mann-Whitney
p value=28.4x10"1> compared to 0.001 when using Orion;
Supplementary Fig. 4; see “Methods”).

Finally, in order to evaluate the sensitivity on different WGS
datasets used as input for the intolerance score construction, we
also calculated gwRVIS based on the gnomAD dataset (n=
15,708 individuals) and found it to be significantly correlated with
the scores constructed using the TOPMed dataset (Pearson’s r:
0.91; p value < 2.2 x 10~16; Supplementary Fig. 5; see “Methods”),
indicating the robustness of the method on comparable WGS
datasets.

Classification of noncoding pathogenic variants based on their
intolerance to variation. Overall, noncoding variants represent a
small fraction of all pathogenic classified variants residing among
curated variant-level resources such as ClinVar?2. Here, we
examine the properties of gwRVIS in the context of ClinVar
clinically classified pathogenic noncoding variants. We compiled
two lists of noncoding variants: a pathogenic set based on ClinVar
and a set of benign variants based on the “control” variants from
denovo-db?3 (see “Methods”). We have intentionally avoided
constructing a negative set of benign variants based on common
variants found in a large population cohort (e.g., gnomAD or
TOPMED) due to the fact that gwRVIS construction is inherently
informed by common variants distribution and, thus, this would
introduce circularity in the model’s prediction performance.

Across the six non-CCDS genomic classes (Fig. 2d), we
identified the following numbers of noncoding pathogenic
variants (Supplementary Fig. 6): 427 in UTRs, 47 in intergenic
regions, 47 in lincRNAs, 2 in VISTA enhancers, 0 in UCNEs, and
5052 in introns (across 125, 22, 6, 2, 0 and 1606 unique 3 kb
windows, respectively). We also captured 51,230 variants across
3618 unique windows for CCDS regions based on the ClinVar
annotation.

We then trained a logistic regression model with fivefold cross-
validation, using gwRVIS or another genome-wide score
(CADD?4, phastCons46way?®, phyloP46way2%, and Orion?) as
the only independent variable predictor (see “Methods”). We
focused on the four noncoding genetic classes that have at least 20
distinct noncoding windows harboring pathogenic variants
(lincRNAs, UTRs, intergenic, and introns). Remarkably, we
observed that gwRVIS achieves the highest performance in
pathogenic variant classification from lincRNA regions (AUC =
0.937; Fig. 3a), which is significantly better than the performance of
phyloP46way, phastCons46way and Orion but not from CADD
(DeLong test: p=5.83x 1073 p=1.7x10"3 p=10.012 and p=
0.64, respectively; Supplementary Fig. 16 and Supplementary
Table 1). Similarly, gwRVIS performs better than all other scores in
intergenic regions (AUC = 0.763; Fig. 3b), with significantly better
performance than phyloP46way, phastCons46way and Orion but
not CADD (DeLong test: p = 2.65x 107% p=6.2 x 1073 p =0.02
and p = 0.34, respectively; Supplementary Fig. 16 and Supplemen-
tary Table 2). In UTRs, gwRVIS’s performance drops but remains
significantly higher than Orion (AUCs: 0.732 vs. 0.597, DeLong
test p=4.71 x 10~%; Fig. 3c and Supplementary Table 3).

In order to estimate the contribution of gwRVIS information in
noncoding variant detection, we also trained a multiple logistic
regression model using gwRVIS and CADD as the independent
variables. We observe, that gwRVIS significantly boosts CADD’s
performance (Fig. 3) in lincRNAs (AUC: increased to 0.937 from
0.895; DeLong test p = 0.036), intergenic regions (AUC: increased
to 0.809 from 0.741, even though non significantly; DeLong test p
=0.07) and UTRs (AUC: increased to 0.835 from 0.777; DeLong

test p=4.18 x 10723). This indicates that gwRVIS captures
orthogonal information that is not represented among the 63
distinct annotations/features employed by CADD. Moreover,
although ncRVIS is the top-performing single score in UTRs
(AUC=0.823), it is lower than the combined gwRVIS and
CADD score (AUC = 0.835).

We have also observed that gwRVIS is not superior in
classifying pathogenic variants within protein-coding CCDS or
intronic regions (Supplementary Fig. 7). This is expected as the
intention of gwRVIS is to support the interpretation of the
noncoding sequence where, unlike the protein-coding sequence,
there is no information about variant effects. Overall, based on its
optimal performance in non-coding regions using a cross-
validation framework and the performance boost in the combined
model with CADD, gwRVIS values are likely to be highly
generalizable to other datasets when seeking to prioritize
candidate variants in the non-coding genome.

A multi-module deep learning framework for non-coding
variant pathogenicity inference. Equipped with a human-
lineage-specific constraint score that spans the entire human
genome we next sought to further improve our ability to prior-
itize noncoding sequence by integrating additional information
beyond gwRVIS. To this end, we integrate two additional layers of
information: (a) primary genomic sequence context around each
variant (unstructured data) and (b) genomic annotations such as
methylation, chromatin accessibility, or other structured features
extracted from raw genomic sequences, such as GC content and
mutability rate (see “Methods”).

By combining this information (gwRVIS, primary genomic
sequence context, and additional genomic annotations) we
developed “Junk Annotation” RVIS or JARVIS: a multi-module
deep learning framework for pathogenicity inference of noncod-
ing regions that still remains naive to existing phylogenetic
conservation metrics in its score construction (Fig. 4a). We
trained four different models for JARVIS: (a) Gradient Boosting
using structured features (i.e., without raw sequence information),
(b) feed-forward deep neural net (DNN) using structured
features, (c) convolutional neural net (CNN) with raw sequence
input, and (d) the multi-module neural network model that
combines information from both structured features and raw
sequences. The multi-module model outperformed all other
models used for training JARVIS on the ClinVar pathogenic
variant set (Fig. 4b and Supplementary Fig. 8), achieving an AUC
of 0.940 with fivefold cross-validation (compared to AUC scores
0f 0.930, 0.929, and 0.872, from the DNN, Gradient Boosting, and
CNN models, respectively). Thus, we define as JARVIS the scores
extracted by the multi-module model, which comprises of a CNN
module for information inference from underlying sequence and
a feed-forward DNN to assess structured feature data such as
gwRVIS, sequence-derived features, and external annotations (see
also “Methods”).

As with gwRVIS, our training set adopted all non-coding
variants annotated in ClinVar as “Pathogenic” or “Likely
pathogenic” and a random subset of “control” variants from
denovo-db?3, considered to be benign (see “Methods”). To build a
generic noncoding variant classification model, we integrated
variant data from five noncoding regions during training:
intergenic regions, UTRs, lincRNAs, UCNEs, and VISTA
enhancers. We did not include introns given the low empirical
performance of gwRVIS in these regions.

We compare JARVIS against ten other popular genome-wide
scores (Fig. 4b and Supplementary Fig. 9): Orion’, CADD?4,
phastCons?> (46way), phylop?® (46way), DeepSEA%7, ncERZ,
LINSIGHT??, Eigen-PC3%, DANN3!, and CDTS!?. It is important
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ClinVar pathogenic variant classification
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Fig. 3 Predictive power of gwRVIS for pathogenic variant classification. Mean ROC curves (with fivefold cross-validation) from gwRVIS benchmarking
against CADD, phastCons (46-way), phyloP (46 way), and Orion, during ClinVar-pathogenic vs. denovodb-benign variant classification for three
noncoding genomic classes: a lincRNAs, b intergenic regions, and ¢ UTRs. The combined performance of gwRVIS with CADD is also shown. ncRVIS is
included in the benchmarking of the UTR regions (c), as a robust score specifically designed for the UTR genomic class. One-sided Delong's tests have
been performed to assess the statistical significance of the differences in predictive power between gwRVIS and the rest of genome-wide scores.

to note that ncER, LINSIGHT, CADD, and DANN incorporate
multiple phylogenetic conservation metrics (e.g., phyloP, phast-
Cons, SiPhy, and CEGA) in their score constructions. It is
expected that a large proportion of ClinVar variants are
annotated as pathogenic based on occurring at evolutionarily
conserved sequences?? among other evidence. This can introduce
circularity when using conservation-based metrics as a predictor
of literature-based pathogenic noncoding variants. In addition,
these four scores have been directly or indirectly trained with a
subset of the JARVIS training set. Specifically, ncER has been
trained based on ClinVar (and HGMD) pathogenic variants,
which comprise a subset of the pathogenic set used by JARVIS
and thus its performance on the JARVIS training set may suffer
from data leakage. In addition, LINSIGHT, ncER, CADD, and
DANN have been trained with prior knowledge of proximity to
CCDS (distance to TSS) and annotation of a region as a predicted
distal regulatory module. A large proportion (>55%>°) of ClinVar
noncoding pathogenic variants are proximal to coding regions
(classified as splicing or UTR variants) while a large part of the
rest has been annotated based on a known regulatory effect?2.
Thus, ncER, LINSIGHT, CADD, and DANN could be impacted
by ascertainment bias due to the variant distribution of the
JARVIS training set with respect to closest TSS, however, we still
report their performance for reference.

We trained the deep learning-based multi-module JARVIS
model using all ClinVar noncoding pathogenic variants across all
chromosomes with fivefold cross-validation (randomized splits)
and compared its performance against the rest of the scores (see
“Methods”). JARVIS performs significantly better than all other
scores (AUC = 0.940; Fig. 4b; DeLong test p <2.710~% p values
from each test available in Supplementary Fig. 19a and
Supplementary Table 4), except for DeepSEA (AUC = 0.945;
Fig. 4b; DeLong test: nonsignificant p = 0.064), despite some of
them including conservation information. Two scores, ncER and
LINSIGHT, achieved better performance on this dataset (AUC:
0.977 and 0.961; DeLong test: p=2x 107> p = 0.024, respec-
tively; Supplementary Fig. 19a and Supplementary Table 4).
However, ncER’s predictions are likely boosted by data leakage of
the current JARVIS training set in its own training set and both
scores may be biased with additional information, such as

distance from the closest TSS. When integrating the TSS distance
in the JARVIS model, this version of JARVIS indeed exceeds the
performance of both LINSIGHT and ncER (AUC=0.984;
Supplementary Fig. 9). However, we do not eventually include
TSS distance as a feature in the final model as we want to avoid
biasing JARVIS predictions toward variants residing closer to
protein-coding regions.

The fully randomized cross-validation strategy for assessing
JARVIS training performance may be prone to overestimation of
its generalizable performance due to the annotated ClinVar
pathogenic noncoding variants being preferentially closer to
protein-coding genes compared to a random set of control
variants derived from denovo-db. We have thus prepared an
alternative version of the training set (matched training set) by
selecting control variants from denovo-db with very similar
distribution of TSS distances to closest genes, as compared to the
pathogenic variants employed in the JARVIS training set
(Supplementary Fig. 17). JARVIS performs significantly better
than all other scores (AUC=0.800; Supplementary Fig. 18;
DeLong test p < 0.0037, Supplementary Fig. 19b and Supplemen-
tary Table 5) except for the only ncER, which has significantly
better performance (AUC = 870; DeLong test p=4.93 x 107°)
but likely boosted by data leakage.

We also employed an alternative cross-validation strategy by
stratifying variants based on their chromosome location. This
strategy ensures that variants from the same genomic region
cannot be part of both the training and test sets at any cross-
validation step, thus removing any bias from data circularity.
JARVIS performance dropped marginally (AUC = 0.929, Supple-
mentary Fig. 18) but remained significantly higher than all others
(DeLong test p < 5.510~11; Supplementary Fig. 19c and Supple-
mentary Table 6) except for DeepSEA and CADD that performed
nonsignificantly worse (AUC = 0.922 and 0.913, DeLong test p =
0.065 and 0.158, respectively) and ncER and LINSIGHT that
performed significantly better (AUC = 0.980 and 0.969, DeLong
test p=1.16 x 1078 and 2 x 1074, respectively).

Based on the performance of JARVIS when using different
models for training (Fig. 4b and Supplementary Fig. 8), we
observe that deep learning models are superior to Gradient
Boosting and also that the inclusion of raw sequences features
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Fig. 4 JARVIS: a multi-module deep-learning-based score for non-coding variants pathogenicity inference with single-nucleotide resolution. a Deep-
learning framework for noncoding variants pathogenicity inference based on different types of annotation: genome-wide residual variation intolerance
score (gwRVIS), primary genomic sequence, structured features extracted by raw genomic sequence (mutability rate, GC content, etc.) and additional
annotations from Ensembl (histone marks, chromatin accessibility, CTCF-binding sites, etc.). All structured features are initially passed onto a two-layer
deep neural net (DNN). Primary genomic sequences (in windows of 3 kb) are fed into a deep convolutional neural net and then flattened prior to merging
with the higher representations of the structured features previously processed by the DNN. The combined higher representations of features are
processed by two additional fully connected layers, followed by a “softmax” output, which gives the pathogenicity likelihood for each input variant as a
probability score. b JARVIS performance with fivefold cross-validation after training with a multi-module deep neural network, using all noncoding ClinVar-
based pathogenic variants and a matched set of putative benign variants from denovo-db. Variants used for training belong to any of the following genomic
classes: intergenic regions, UTRs, lincRNAs, UCNEs, or VISTA enhancers. A total of 521 noncoding pathogenic variants have been used for this
classification task, thus N =1042 represents the total size of the training set (using a set of control variants of equal size). Performance for the rest of the
genome-wide scores shown here has been calculated using a logistic regression model with fivefold cross-validation on the JARVIS training set. ¢ An
overview of the relative importance of the structured features integrated within JARVIS, as they are extracted by a Gradient Boosting classifier following an
impurity-based feature selection algorithm.

provides the highest predictive power in the pathogenic variant
classification task from non-coding regions. In order to assess the
relative contribution of the structured features, we initially
performed a correlation analysis (based on Pearson’s r coeffi-
cients) between all pairs of structured features and observed that
gwWRVIS has little correlation with the rest, highlighting that it
represents an orthogonal type of information not routinely
captured by the rest of the JARVIS features (Supplementary
Fig. 10). The sequence-derived features (GC content, mutability
rate, etc.) and some of the histone marks were found to be highly

correlated with each other within the respective feature group
(Supplementary Fig. 10).

It is, however, difficult to infer the real contribution from each
feature employed by the full deep learning-based JARVIS model.
Thus, we employ an impurity-based feature extraction algorithm
with a Gradient Boosting classifier as a proxy to infer the relative
contribution of each of the structured features. We observe that
gwRVIS ranks second in feature importance while the sequence-
derived features, specifically CpG density, are the other most
dominant subset from the entire feature set (Fig. 4c). Notably,
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CpG density in promoter regions has been associated with loss-
of-function intolerance of proximal coding regions32. Thus,
JARVIS may preferentially prioritize noncoding variants that
have a traceable functional effect on coding regions. Functional
annotations follow with lower contribution but still carrying a
considerable burden, especially for certain types of histone marks.
These findings demonstrate that the genome-wide intolerance
score, as it is captured by gwRVIS, adds considerable value to the
predictive power of JARVIS.

We also sought to explore the feature contribution from the
CNN module of the JARVIS framework and assess whether it has
learnt any biologically meaningful motifs. For this analysis, we
relied on previous approaches that look into the most highly
activated filters that comprise the feature maps at the output of
the first convolutional layer33. Specifically, we selected the most
activated k-mers (where k = 11, equal to the selected filter size) in
the training set of pathogenic input sequences and aligned them
with known motifs (see Methods). We observed that, despite the
fairly small size of the training set, JARVIS CNN module has
managed to learn dozens of sequence patterns that align with
known vertebrate, human or mouse motifs, many of which are
enriched for long Cytosine stretches and thus GC base pairs too
(Supplementary Figs. 22, 23, 24 and Supplementary Data 1).

JARVIS model validation on independent datasets. To further
assess the generalized performance of JARVIS, we screened
throughout the literature to identify additional independent sets of
noncoding variants, either annotated as pathogenic or of high
functional importance. For this task, we employed four different sets
of noncoding variants described in Wells et al.28 (Fig. 5): (a) a set of
631 genome-wide association studies (GWAS) hit single-nucleotide
variants (SNVs), (b) a set of 54 noncoding variants associated with
Mendelian traits, and (c, d) two “generalization” test sets from
noncoding RNAs or other regions?$, with 35 and 17 hits, respec-
tively. In all cases, we made sure to remove from each independent
validation set any variants that were included in the JARVIS training
set to avoid over-optimistic predictions induced by data leakage.

JARVIS significantly outperforms all scores in classifying GWAS
hit SNVs (AUC=0.760 vs. 0.661 from the second-ranked
LINSIGHT; Fig. 5a—DeLong test p < 7.65 x 10~7; Supplementary
Fig. 20 and Supplementary Table 7). It also performs significantly
better than all other scores in the prediction of Mendelian
noncoding variants (AUC = 0.988, DeLong test p<6.70 x 1073;
Supplementary Fig. 20 and Supplementary Table 8) except for
ncER which achieves a nonsignificantly higher performance (AUC
=0.990; Fig. 5b). In the third validation set (ncER-derived
“ncRNA” generalization dataset) JARVIS ranks fourth (AUC:
0.956, Fig. 5¢), significantly outperforming Eigen-PC, DANN,
Orion, phastCons, and CDTS (Delong test p<5.18x 1073,
Supplementary Fig. 20 and Supplementary Table 9), with LIN-
SIGHT, ncER, and DeepSEA performing nonsignificantly better
(AUC =0.991, 0.963, 0.962; DeLong test p = 0.34, 0.36, and 0.44,
respectively; Supplementary Fig. 20 and Supplementary Table 9).
Similarly, in the fourth validation set (ncER-derived “other”
generalization dataset) JARVIS ranks fourth (AUC: 0.914, Fig. 5d),
significantly outperforming phyloP, phastCons, DANN, Eigen-PC,
Orion, and CDTS (DeLong test p < 1.66 x 1073, Supplementary
Fig. 20 and Supplementary Table 10), with LINSIGHT, ncER, and
DeepSEA performing again nonsignificantly better (AUC = 0.988,
0.969, 0.938; DeLong test p=0.32, 0.59, and 0.84, respectively;
Supplementary Fig. 20 and Supplementary Table 10).

Notably, JARVIS performance in the latter two test sets was
even lower when TSS distance was included as part of the JARVIS
training feature set (AUC: 0.874 and 0.903, respectively;
Supplementary Fig. 14).

We also tested the relative performance of the four JARVIS
model variations (i.e., based on either Gradient Boosting or the
deep-learning-based ones, including raw sequences or without).
Deep learning-based models once again outperform the Gradient
Boosting classifier. Moreover, we observe that the multi-module
model, integrating both raw sequence information and structured
data, outperforms the rest in two of the four validation sets
(Supplementary Fig. 11). The deep learning model based solely on
raw sequence information is the top performer in the other two
sets and especially yielding a considerably higher performance on
the GWAS validation set (AUC = 0.790). These results demon-
strate the added value from leveraging raw sequence information
with deep learning in such classification tasks.

Overall, despite its construction being restricted to human
lineage and sequence context information, JARVIS either out-
performs or performs comparably with state-of-the-art scores
that integrate multiple conservation-informed metrics.

Prioritization of putative pathogenic structural variants.
Structural variants are large DNA rearrangements>* that have
been implicated to have a profound impact in evolution and
human disease3>~37. We sought to estimate the ability of JARVIS
and gwRVIS to distinguish large structural variants based on their
inferred clinical impacts. We employ for this task a rich set of
structural variants (SV) called from 14,891 whole genome
sequences in the gnomAD dataset’® (v2.1). Structural variants
overlapping with protein-coding regions have been annotated
with various functional consequences (Copy Gain, Duplication-
LoF, Intronic, LoF, Partial-Duplication, Promoter, UTR, and
Whole-Gene inversion) or are otherwise classified as intergenic
SVs. We consider the latter case (SV in intergenic regions) as our
negative set of non-dosage sensitive regions and try to classify it
against all other genic structural variants, that have proven to be
dosage sensitive. Structural variant lengths included in this
dataset vary from two nucleotides to a few million (Supplemen-
tary Fig. 12). However, the largest proportion of variants from
five out of the nine structural variant classes (intronic, UTR,
intergenic, promoter, and partial duplication) have length dis-
tributions centered around 100-1000 base pairs. In order to
classify pathogenic structural variants from benign ones, we
represent each variant as a consensus of four summary statistics
across its length. Specifically, we assign to each structural variant
the average of the median, mean, first and third quartiles of the
respective genome-wide score (see also Methods). Thus, each
structural variant is eventually represented by a single value that
captures the aggregate profile of a score’s distribution within that
region. We then used a 10-fold cross-validation approach based
on a Logistic Regression model for benchmarking between the
top-performing scores from the previous validation tests (JAR-
VIS, LINSIGHT, ncER, CADD, Eigen-PC) along with gwRVIS
and Orion.

We observe that JARVIS achieves the highest performance in
six out of eight comparisons (Fig. 6a; AUC = 0.684-0.844),
outperforming all other scores that follow with lower AUC ranges
(Orion: 0.591-0.755; LINGISHT AUC: 0.605-0.747; ncER:
0.448-0.709, and gwRVIS: 0.542-0.667, ordered by the highest
AUC in each range). In all these cases, JARVIS was significantly
better than all other (DeLong test p < 0.022, Supplementary Fig. 21
and Supplementary Tables 11-16), except for LINSIGHT in the
inversion-span Structural Variant test set, with a non-significantly
better performance (AUC =0.751 vs. 0.747, from JARVIS and
LINSIGHT, respectively; DeLong test p < 0.087). As for the UTR-
related Structural Variant class, JARVIS significantly outperforms
ncER, gwRVIS, and Eigen-PC (AUC =0.707; DeLong test p <
6.12 x 10~7) but is also significantly outperformed by LINSIGHT,
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Fig. 5 JARVIS performance on validation sets. ROC curves from prediction on different sets of noncoding variants (falling into intergenic regions, UTRs,
lincRNAs, UCNEs, and VISTA enhancers) not used during JARVIS training. In each case, a benign set of equal size has been randomly subset from the
denovo-db control variants, avoiding any overlaps with the pathogenic variants in each of the validation sets. a GWAS hit SNVs (n =1262). b Noncoding
variants with mendelian traits (n =118). ¢ Generalization test set (ncRNA; n =70). d Generalization test set (other; n=34). In each plot, n refers to the
total size of the validation set, including both pathogenic variants and a sample of control variants of equal size.

Orion, and CADD (AUC=0.748, 0.747, 0.722, respectively;
DeLong test p <0.023; Supplementary Figs. 13a, 21 and Supple-
mentary Tables 17 and 18). Finally, performance in Intronic
regions is low across all scores, with Orion leading with an AUC of
0.587 (DeLong test p=9.86 x 10~2%) and gwRVIS and JARVIS
closely following with AUC scores of 0.564 and 0.562, respectively
(Supplementary Figs. 13a and 21).

Furthermore, we wanted to examine how structural variants
called within a particular genomic class rank in terms of their
intolerance to variation (as captured by gwRVIS) and

pathogenicity likelihood (as captured by JARVIS) compared to
the rest of the genomic class. We expect that large genomic
alterations observed among the general population should not
have a detrimental effect on fitness and thus should map into
more tolerant regions of the human genome. We focus on these
types of comparisons on SVs called in UTRs and intronic regions,
where a disease-relevant effect can be traced back to a specific
protein-coding gene. We observe in UTRs that the called SVs have
a significantly more tolerant profile (higher values) compared to
the entire distribution (Fig. 6b; median gwRVIS: —0.020 vs. —0.51,

NATURE COMMUNICATIONS | (2021)12:1504 | https://doi.org/10.1038/541467-021-21790-4 | www.nature.com/naturecommunications 9


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21790-4

Sensitivity

Sensitivity

Classification of pathogenic Structural Variants

Promoter

Copy gain

* Scores with significantly worse or better performance
than JARVIS (one-sided Delong test, p < 0.05)

Loss of function

> >
z £
2 =
s =
v 0
c =4
Q 7
L2 v o4
= JARVIS (AUC = 0.844 + 0.01) mJARVIS (AUC =0.803 +0.01) = JARVIS (AUC = 0.769 + 0.00)
Orion (AUC=0.755£001)  * . LINSIGHT (AUC =0.712 +0.01) * o CADD (AUC=0716£001)  *
ncER (AUC=0709+0.02)  * CADD (AUC=0653+001)  * LINSIGHT (AUC =0.715 +0.00) *
CADD (AUC=0.704£001)  * Orion (AUC=0634+001) Orion (AUC=0655+000)  *
LINSIGHT (AUC = 0.674 £ 0.01) * e cigenPC (AUC=0.593+0.03) ncER (AUC=0610£000)  *
 QWRVIS (AUC = 0667 £002) # ncER (AUC=0567£001) = eigenPC (AUC=0595+0.03) *
e €igenPC (AUC = 0474 £ 0.04) # o0 — gWRVIS (AUC=0.511£0.01) % 00 m— GWRVIS (AUC=0553+001) *
g P g g = T e e M g g ™ o b o g T T
1 - Specificity 1 - Specificity 1 - Specificity
LoF duplication Inversion span Partial duplication
10 10
o8 o8
> 06 > 06
= 2
= 2
= =
% Z
c c
@Q (7]
%] wv

=== JARVIS (AUC = 0.755 +0.01)
LINSIGHT (AUC=0.713 £0.01)
CADD (AUC=0.675+0.01)

== JARVIS (AUC =0.751+0.02)
LINSIGHT (AUC = 0.747 £0.01) %
e eigenPC (AUC=0.654 +0.04) *

= JARVIS (AUC = 0.685 +0.01)
=== eigenPC (AUC=0.633+0.02) *
LINSIGHT (AUC =0.605 +0.01) *

Orion (AUC=0.591+0.01) *
CADD (AUC =0.583 +0.00) *
= gWRVIS (AUC=0.542£0.01)
oo ¢ ncER (AUC=0.518 £0.01) *

CADD (AUC=0.651+0.01) *
Orion (AUC =0.633 +0.02) *
mm gWRVIS (AUC=0.556 +0.03) *
ncER (AUC = 0.448 +0.03) *

04 06 0e To 0o 02 0 05 08 To

s eigenPC (AUC = 0.673 £ 0.05)
Orion (AUC=0.621+0.01)

= gWRVIS (AUC = 0.554 + 0.02)
ncER (AUC =0.532+0.04)

Kk ok ok

0o 02 04 05 08 T

1 - Specificity 1 - Specificity 1 - Specificity

Intolerance (QwRVIS) & pathogenicity (JARVIS) profile of Structural variants in UTRs

: B All UTRs
Bl SV UTRs

p<1x103%

p<1x10°%

Density

-4 -2 0 2 4 0.0 0.2 04 06 08 1.0
gWRVIS intolerance pathogenicity JARVIS
—_—

Fig. 6 JARVIS and gwRVIS performance on structural variants. a ROC curves from classification of nongenic structural variants (intergenic) against
different sets of putative pathogenic genic SVs, using a tenfold cross-validation approach with a logistic regression model on five scores: JARVIS, gwRVIS,
LINSIGHT, ncER, and Orion. One-sided Delong's tests have been performed to assess the statistical significance of the differences in predictive power
between JARVIS and the rest of genome-wide scores. b gwRVIS distribution across the UTR regions for the subset of called structural variants vs. the entire
genomic class (median gwRVIS: —0.020 vs. —0.51, two-sided Mann-Whitney U p <1x107308), Tolerance increases toward greater gwRVIS values.

¢ JARVIS distribution across the UTR regions for the subset of called structural variants versus the entire genomic class (mean JARVIS: 0.147 vs. 0.326,
two-sided Mann-Whitney U p <1x10-308). Pathogenicity likelihood increases toward greater JARVIS values.
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Mann-Whitney U p < 1 x 107308) and the same pattern, albeit at a
lower degree, emerges for intronic regions (Supplementary
Fig. 13b; median gwRVIS: 0.051 vs. —0.039, Mann-Whitney
U p<1x1073%), in accordance with our original hypothesis.
Similarly, the pathogenicity likelihood of SVs in UTRs and
intronic regions is lower compared to the rest of each distribution
(Fig. 6b and Supplementary Fig. 13b) with respective mean
JARVIS scores of 0.147 vs. 0.326 for UTRs and 0.119 vs. 0.142 for
the Intronic regions (Mann-Whitney U p <1 x 107308 in both).
This result is again in accordance with the expectation of the lower
pathogenic effect of large structural variations found in the general
population.

Discussion

Several methods have been developed in recent years that attempt
to address the challenge of prioritizing noncoding variants. Most
of these methods employ a combination of functional annotation
but also cross-species conservation information. Here, we pre-
sented JARVIS and gwRVIS, two scores that encompass exclu-
sively human lineage-specific information but still manage to
perform comparably or even better than conservation-informed
scores. The pathogenicity likelihood of noncoding regions cannot
be efficiently inferred by cross-species conservation-based metrics
due to the high evolutionary turnover of these regions. Thus, the
two human-lineage-specific metrics we introduce may allow us to
reduce dependence on conservation-derived metrics and
increasingly rely on the human genomic constraints in our search
for human disease variants.

One step toward improving the current JARVIS and gwRVIS
implementation would be increasing the resolution achieved
within genomic subregions. This can be done by employing larger
WGS datasets, such as the prospective UK Biobank WGS dataset
of 500,000 individuals, which would enable the selection of
considerably shorter window sizes and a lower “common” MAF
threshold. Moreover, we could explore expanding the functional
annotation information with data from additional cell lines and
emerging data from ENCODE 338, Finally, increased inclusion of
WGS representation from diverse ancestries will allow the con-
struction of ethnicity-specific intolerance scores and enable a
more refined prioritization of noncoding regions across indivi-
duals based on their genetic background.

Methods

Definition of high-confidence genomic regions and variant filtering. In order to
eliminate biases from extreme/low coverage genomic regions, we have defined a set
of high-confidence regions (Fig. 1). Specifically, we first retained genomic regions
with average coverage >20 reads, based on gnomAD coverage files (version 2). We
then filtered out regions with exceptionally high depth, as captured by SpeedSeq°.
Finally, we excluded regions annotated as Repeats or Segment Duplications
(SegDup) at UCSC#0,

Variant filtering from TOPMed and gnomAD. VCF files from TOPMed (freeze5
release) and gnomAD (version 2.1.1) were overlapped with a custom set of high-
confidence regions (described earlier) and their variants were further filtered, prior
to gwRVIS calculation (Fig. 1). Specifically, only SNVs with a “PASS” annotation
flag were retained. In addition, variants annotated with a low complexity region
(“ler”) or segment duplication (“segdup”) flag were removed. After all filtering
steps, the resulting genomic area of higher confidence comprised 2.4 billion base
pairs in total (i.e., about 75% of the genome), for which gwRVIS scores could be
calculated.

gwWRVIS’s regression model and extracted scores were eventually constructed
based on all 3kb (nonoverlapping) windows that overlapped with the high-
confidence regions and contained high-confidence variant data, as defined above.
Regions that were “masked” during preprocessing were not considered during
gwWRVIS construction and have not been assigned a gwRVIS score.

Mapping of regions and variants to a genomic class. We have extracted the
genomic coordinates for each genomic class from the Ensembl Human annotation
GRCh37 (release 75). When assigning gwRVIS and JARVIS scores to genomic
classes, we intersect each nucleotide position with the genomic region defined by

each class using bedtools v.2.2941. This is done in a hierarchical manner, with
different priorities given to each genomic class, as a single nucleotide position may
belong to more than one genomic classes. Specifically, genomic classes are pro-
cessed in the following order of descending priority (with coding classes having a
higher priority than non-coding in general): OMIM-Haploinsufficient genes, 25%
RVIS-predicted most intolerant CCDS, 25% most tolerant CCDS, rest of CCDS,
VISTA enhancers, miRNAs, UCNEs, UTRs, introns, lincRNAs and intergenic
regions. Upon each intersection cycle, the genomic class region intersecting with
the reference windows set is also subtracted by it to create an updated reference set
of genomic regions, to be used by the next genomic class in priority. This ensures
that genomic positions that belong to multiple classes are claimed only by a single
class, the one with the highest priority among them.

When it comes to variant classification by type (pathogenic or benign), we
follow a more stringent approach, built on top of the original genomic stratification
described above, in order to assign each variant to a genomic class. We have used
the ClinVar and denovo-db databases to extract known coding and non-coding
pathogenic or benign variants, respectively, to assess the predictive power of
gwRVIS, JARVIS, and other previously published genome-wide scores. denovo-db
is a collection of germline de novo variants identified in the human genome and
those annotated with a “control” phenotype are considered as not having a
pathogenic effect. As gwRVIS is constructed with a window-based approach, we
wanted to make sure that in case a window contained noncoding ClinVar-
annotated variants it was not contaminated with a large amount of coding
sequence. That aims to eliminate the risk of interpreting the contribution of a
noncoding variant based on the presence of proximal coding variants or coding
sequence in general. So, during gwRVIS construction, we dynamically compile a
“blacklist” of genomic regions that contain both coding and non-coding variants
and where the region covered by coding sequence is 10% more than the non-
coding one. These “blacklisted” windows are then used to assess only coding
variants during scores benchmarking and are excluded from non-coding variants
classification (e.g., from UTRs and intergenic regions). Eventually, 4 and 81
variants from ClinVar were excluded from the intergenic and UTR regions,
respectively, that contain both coding and noncoding variants, so that
pathogenicity inference of noncoding variants is not contaminated by any large
contribution from the coding sequence.

Window length and MAF hyperparameter tuning for gwRVIS construction.
The window length and MAF hyperparameters have been optimized based on the
best segregation achieved between non-intergenic and intergenic regions, as
measured by the AUC score of the logistic regression fit for the binary classification
using gwRVIS (Supplementary Fig. 1a). In order to reduce the parameter search
space, we performed a two-step optimization approach instead of a full-scale grid
search. We initially selected a MAF value of 0.1% as a nominal threshold for
common variant annotation, based on previous studies analyzing cohorts of similar
size*2, aiming to first optimize the window length. We employed 11 window values
for the window length sensitivity analysis: 500, 1k, 2k, 3k, ..., 10k bp, and used the
center from all genome-wide tiled (nonoverlapping) windows as the representative
value for the respective window, to perform the sensitivity analysis. UCNEs con-
sistently achieved the best segregation against intergenic regions, with higher AUC
scores achieved in all cases compared to the rest of examined genomic classes. We
observed that AUC scores keep increasing for the majority of genomic classes as
the size of the window increases. However, a saturation point (at least for UCNEs,
VISTA enhancers, UTRs and CCDS) seems to emerge at point W = 3000nt, and it
has been adopted as the default window length for gwRVIS calculation, also to
avoid reducing gwRVIS’s resolution ability by selecting even longer windows.

Considering a fixed window length W = 3000nt, we also performed sensitivity
analysis for the MAF threshold, to characterize variants as either common or rare
(Supplementary Fig. 1b). We tested eight MAF values regarding the AUC score
achieved for intergenic versus non-intergenic regions classification: 0.01%, 0.05%,
0.1%, 0.5%, 1%, 5%, 10%. We observe a similar performance peak at MAF values of
0.1% and 0.5%. Eventually, we adopted as our default value MAF = 0.1% (rather
than 0.5%) to be able to detect the effect of even more rare variants.

Score stability across differing human reference cohort samplings. To evaluate
the robustness of a statistical metric it is important to show that the score dis-
tribution is not highly sensitive to the reference dataset that was adopted to con-
struct the metric. Although we defined the gwRVIS adopted throughout this paper
based on the TOPMed dataset (n = 62,784 individuals; Freeze5 release), we also
reconstructed the score using a smaller human reference cohort from the gnomAD
WGS dataset (n = 15,708 individuals; gnomAD version r2.1.1), following the same
preprocessing with TOPMed, where applicable (see Methods). We observe that the
global gwRVIS window distribution is highly correlated between the two datasets
(Pearson’s r: 0.91; p value < 2.2 x 10~16; Fig. 3b). As cohort sizes increase we
anticipate that the reference datasets will have sufficient resolution to allow

for opportunities to shorten the window sizes and also reduce the definition of
common variants from the current 1 in 500 humans (autosomal MAF of 0.1%)
to less frequent, but still not uncommon carrier rate of 1 in 5000 humans

(MAF of 0.01%).
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Exploration of heteroskedasticity during gwRVIS construction. The gwRVIS
score is provided by the studentized residuals for linear regression, modeling
common vs. all variants. A scatter plot of the two plotting all gene windows shows
that there is some degree of heteroskedasticity, with a variance of common variants
increasing as a function of all variants (Supplementary Fig. 15a). We sought to
explore if accounting for heteroskedasticity significantly changes the resulting set of
gwRVIS scores. Thus, we additionally considered weighted ordinary least squares
(WOLS) as a means to correct for lower gwRVIS variance in windows with lower
numbers of all variants. WOLS provides a direct means to model heteroskedasticity
through a weight matrix, the inverse of which is directly proportional to the
covariance of the error terms. Here, we assume the weight matrix is diagonal, with
values provided by the inverse of all variants.

By applying the WOLS regression model we observe that heteroskedasticity has
been remedied (Supplementary Fig. 15b-d). No significant difference can be
observed, however, between the two versions of gwRVIS, as Pearson’s correlation
between the two is r=10.96 (p < 1 x 107398). In addition, residuals from windows
with more variants seem to be considerably shrunk compared to those from
windows with very few variants (Supplementary Fig. 15d). This discrepancy may
amplify signals from noisier windows (with fewer variants) and penalize windows
of potentially greater confidence (with more variants). Thus, we have selected to
model gwRVIS with the non-weighted version of linear regression, also as a direct
extension of previously published methods®.

gwRVIS vs. Orion benchmarking in protein-coding regions. We compared
gwRVIS to Orion?, another method that looks into intolerance to variation of
noncoding regions by employing the site frequency spectrum. We benchmarked the
gwRVIS distribution across the two sets of CCDS and non-CCDS regions (996 and
989 regions, respectively) that were originally adopted by the Orion paper, mapping
into 12,260 and 2601 nonoverlapping gwRVIS-derived 3 kb windows, respectively.
We benchmarked the gwRVIS predictive power against Orion on the same regions
(Orion score median —0.0448 vs. —0.118, Mann-Whitney p value = 0.001). When
adopting the gwRIVS for the same comparisons, the separation of the two score
distributions was considerably greater (Supplementary Fig. 3; gwRVIS median
—0.436 vs. —0.201; Mann-Whitney p value = 8.1 x 1023 using all CCDS sites).
Because of the variability in the number of windows for the two regions, we also
repeated the experiment using a CCDS sample of equal size to the non-CCDS set
and the significant departure between the two distributions persisted (gwRVIS
median —0.468 vs. —0.201; Mann-Whitney p value = 8.44 x 10~15).

Noncoding variants annotation used during training and benchmarking. We

compiled a list of pathogenic variants by retaining all ClinVar variants labeled as
“Pathogenic” or “Likely_pathogenic” in the clinical significance (“CLNSIG”) field.
The set of benign variants is the set of all unique variants in denovo-db that are
annotated as “control” in their primary phenotype.

gwRVIS and external genome-wide scores training. All genome-wide scores
used during benchmarking (except for JARVIS) were trained using a simple
Logistic Regression model with fivefold cross-validation, given an inverse reg-
ularization strength C =1, “Ibfgs” as the optimization algorithm and a maximum
number of iterations for optimization convergence max_iter=10,000. The external
benchmarked genome-wide scores are CADD, CDTS, DANN, LINSIGHT, ncER,
phastCons46way, phyloP46way, and Orion. All scores used during benchmarking
have single-nucleotide resolution and so the score from the respective nucleotide
referenced by each variant is retained for the classification task. All three scores per
nucleotide represented by CADD and DANN have been taken into consideration
to capture the average variation profile for each position. Orion scores were
extracted based on the gnomAD WGS dataset (15,708 individuals, version 2) using
a window length of 1000nt. For each score, we compiled a set of pathogenic
variants defined in each genomic class, wherever there is a value defined for that
score. A benign set of equal size has been randomly subset from the entire set of
benign variants compiled from denovo-db and used alongside the respective
pathogenic set for the cross-validation training (score distributions across patho-
genic and the full benign sets are shown for gwRVIS and another four genome-
wide scores in Supplementary Fig. 5). All logistic regression models with cross-
validation were fit using scikit-learn (v. 0.23.2).

JARVIS training with deep learning. JARVIS was trained using four different
models, one with Gradient Boosting and three Deep Learning-based:

a) a Gradient Boosting classifier with n_estimators=100 trees, max_features=5
and max_depth=2 (to reduce risk of over-fitting).

b) a feed-forward DNN with two hidden layers, having 128 nodes each (a
rectified linear unit or “relu” has been used as the activation function for all hidden
nodes while “softmax” with two nodes has been employed in the output layer to
provide the probability scores for each of the predicted classes).

c) a CNN with two sets of Convolution-MaxPooling layers (both 1-
dimensional), followed by two fully connected layers, with 64 and 128 nodes (the
parameters for the two convolutional layers are: filters = 64, strides = 2,
kernel_size = 11, padding = “valid”, and filters = 64 strides = 2, kernel_size = 3,

padding = “valid”, respectively, while for both MaxPooling layers are: pool_size =
4 and strides = 2) and a “softmax” output layer with two nodes.

d) a combined DNN and CNN, with the same architecture as described in (b)
and (c) (without the “softmax” output layers), concatenated and further processed
by another two fully connected layers with 64 and 128 nodes, respectively, again
ending with a “softmax” output layer with two nodes.

The Jarvis deep learning parameter selection was based on previously published
methods that have fine-tuned neural net-associated parameters for inputs of similar
type and size®3. Specifically, JARVIS adopts the following parameters: depth of
network (2 layers), filter size (k=11 and 3 in 1st and 2nd CNN layer, respectively),
learning rate of 0.0001 with an Adam optimizer, and early stopping after 10 epochs
of the validation loss not getting improved. Furthermore, dropout layers were
introduced after every max-pooling and/or fully connected layer for regularization
purposes (dropout-ratio: 0.2), to avoid overfitting on the training set.

The JARVIS Gradient Boosting model was fit using scikit-learn (v. 0.23.2) while
all neural network-based JARVIS models were trained using tensorflow (v. 1.14.0).

Raw sequences used as features in deep learning. Windows sequences with
ambiguous nucleotides (i.e., “N”s) have been removed from training and the final
predictions (a total of 286 windows). A window length of 3 kb, the same as the one
used for gwRVIS construction, has been employed to extract sequences sur-
rounding each nucleotide variant position. One-hot encoding has been applied to
each sequence, representing each nucleotide with a binary vector of length 4 with a
single non-zero value, specifically: A =1, 0, 0, 0], T=10, 0, 0, 1], G=0, 0, 1, 0]
and C=10, 1, 0, 0].

Sequence-derived and functional annotation features. The sequence-derived
features adopted are the 7-mer (heptamer) mutability rate*3, CpG di-nucleotides
(custom defined as consecutive CG di-nucleotides, e.g., CG and CGCG), and GC
content within the 3 kb tiled mutually exclusive windows. The external genomic
annotation used is based on Ensembl (GRCh37; release 75) on CTCF binding sites,
enhancers, open chromatin, transcription factor binding sites, and histone marks
that overlap with each genomic window used for the construction of gwRVIS,
based on a representative blood cell-line annotation (CD14+ monocytes). These
annotations were extracted via the Ensembl BioMart portal, (Ensembl Regulation
101 resource), and have also been made available in the JARVIS GitHub repository.

Statistical significance assessment of predictive performance. DeLong’s test
was performed for every cross-validation classification task to assess the sig-
nificance of differences in the predictive performance of the benchmarked genome-
wide scores. Two one-sided tests were performed for each pair of compared scores,
estimating the significance of JARVIS being significantly better or worse, respec-
tively, in each case. All results from DeLong tests are available in Supplementary
Tables 1-18.

Motif analysis from CNNs. We trained JARVIS using exclusively the CNN
module. Upon training, we scan each sequence from the pathogenic training set
using the filters learned by JARVIS (filter length k = 11) and capture the activation
sum across each sub-sequence. We then focus on all 11-mers that have achieved an
activation sum 0.9 times higher than the max. activation sum. We perform multiple
sequence alignment across the subset of the selected most-activated sequences using
cd-hit# (v. 4.8.1), to identify the predominant clusters of 11-mers that were learned
by the CNN’s 1st layer (cd-hit alignment threshold: 0.8; word size: 7). The identified
clusters were then fed to TomTom*’ (v. 5.2.0) against the eukaryote, JASPAR-
vertebrate, and Uniprobe-mouse databases of known motifs available within the
MEME Suite of tools*® (Supplementary Data 1). We could then identify the most
significantly aligned JARVIS sequence clusters and most frequently hit known
motifs (Supplementary Figs. 22 and 23), of which the intersection was visualized
employing sequence logos, generated by TomTom (Supplementary Fig. 24).

Accounting for redundancy of CNN-learnt sequence patterns. As we infer the
feature contribution of CNN models trained with input sequences, it is likely that
identical or almost identical sequences get assigned to different Position Weight
Matrices.

We aimed to account for the redundancy of identical sequences by performing
multiple-sequence alignment of JARVIS-learnt patterns prior to aligning them with
known motifs. This is performed using the cd-hit tool (alignment threshold: 0.8;
word size: 7). This step doesn’t completely preclude the possibility of some clusters
having identical sequences, however, we have confirmed that the redundancy is
drastically reduced. Specifically, the top 100 reported JARVIS-learnt sequence
clusters (Supplementary Data 1) contain only 2 consensus sequences that are
present in another cluster as well.

In general, we can observe that the same JARVIS cluster (identified uniquely by
its “JARVIS_Cluster_ID”; Supplementary Data 1) can map to several TomTom
known motifs (“TomTom_Target_ID” column; Supplementary Data 1). That
explains why the same JARVIS consensus sequence repeated multiple times in the
motif analysis: in most cases, the same JARVIS-learnt cluster has mapped
significantly to multiple motifs from TomTom (Supplementary Fig. 22). In other
cases (Supplementary Fig. 23), the reported consensus sequences refer to known

12 | (2021)12:1504 | https://doi.org/10.1038/s41467-021-21790-4 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

motifs available in the MEME Suite of tools. So, the presence of identical sequences
here reflects the redundancy of known motifs present in the “EUKARYOTE/
jolma2013”, “JASPAR/JASPAR2018_CORE_vertebrates_non-redundant” and
“MOUSE/uniprobe_mouse” databases which have been used for the known motif
alignments. Finally, in Supplementary Fig 24, we observe again a redundancy in the
known motifs space, while the JARVIS-learnt patterns stacked underneath each of
them do not have identical consensus sequences and usually differ to a few
nucleotides positions in most cases.

Benchmarking of structural variants. Each structural variant spans across mul-
tiple nucleotides, from two base pairs up to a few million (Supplementary Fig. 12).
In order to capture the aggregate profile of a score across a structural variant, we
calculate a summary statistic comprising four statistics: median, mean, first and
third quartiles of the respective genome-wide score. Eventually, we assign to each
structural variant the average value of the aforementioned statistics and use these
values for the benchmarking classification tasks.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Genome-wide JARVIS and gwRVIS scores are publicly available at http://jarvis.public.
cgr.astrazeneca.com. Relevant data used for generating JARVIS and gwRVIS are available
at the JARVIS GitHub repository (https://github.com/astrazeneca-cgr-publications/
jarvis) and in the following public resources: TOPMed (https://bravo.sph.umich.edu/
freeze8/hg38), GnomAD (https://gnomad.broadinstitute.org/downloads), ClinVar (ftp://
ftp.ncbi.nlm.nih.gov/pub/clinvar), UCNEbase (https://ccg.epfl.ch/UCNEbase),
FANTOMS (https://fantom.gsc.riken.jp/5), denovo-db (https://denovo-db.gs.
washington.edu/denovo-db/Download.jsp), and Ensembl annotation via BioMart
(https://www.ensembl.org/biomart/martview).

Code availability

All code for generating JARVIS and gwRVIS as well as for benchmarking purposes are

available at a public GitHub repository:
https://github.com/astrazeneca-cgr-publications/jarvis
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