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As a key technology for the non-invasive human-machine interface that has received much
attention in the industry and academia, surface EMG (sEMG) signals display great potential
and advantages in the field of human-machine collaboration. Currently, gesture recognition
based on sEMG signals suffers from inadequate feature extraction, difficulty in
distinguishing similar gestures, and low accuracy of multi-gesture recognition. To solve
these problems a new sEMG gesture recognition network called Multi-stream
Convolutional Block Attention Module-Gate Recurrent Unit (MCBAM-GRU) is
proposed, which is based on sEMG signals. The network is a multi-stream attention
network formed by embedding a GRU module based on CBAM. Fusing sEMG and ACC
signals further improves the accuracy of gesture action recognition. The experimental
results show that the proposed method obtains excellent performance on dataset
collected in this paper with the recognition accuracies of 94.1%, achieving advanced
performance with accuracy of 89.7% on the Ninapro DB1 dataset. The system has high
accuracy in classifying 52 kinds of different gestures, and the delay is less than 300ms,
showing excellent performance in terms of real-time human-computer interaction and
flexibility of manipulator control.
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INTRODUCTION

When the number of patients with physical disabilities is on the rise (Chen et al., 2021a; Chen et al.,
2022a), dexterous hand devices are not fully satisfying the needs of patients. So it is extremely
important to design a dexterous hand control system to help patients with forearm disabilities restore
some of their limb functions and improve their quality of life (Ma et al., 2020; Xie et al., 2020). As a
physiological signal closely related to human movement, the EMG signal can intuitively reflect the
user’s intention; and the EMG signal-based dexterous hand control system (Li et al., 2020; Yun et al.,
2022; Xu et al., 2022) has received widespread attention. Because it is simple, safe to operate, and not
susceptible to environmental influences such as light or environmental sound changes (Li et al.,
2019a). There are two main approaches to obtain EMG signals: one uses needle electrodes to invade
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the body and obtain physiological signals directly. The other is to
analyze the user’s movement status by placing electrodes to detect
changes on the skin surface currently. Compared with the use of
needle electrodes, sEMG has the advantages of non-invasive,
painless measurement, easy acceptance by the subject, and
simple operation. So it has been widely used in practice. For
patients with hand disabilities, some forearm muscles remain at
the residual limb, and their central nervous system is not
damaged and can function normally.

However, due to the characteristics of very weak and noisy
EMG signals, the effective recognition of EMG signals still needs
further improvement (Jiang et al., 2019a; He et al., 2019; Tan
et al., 2020; Yu et al., 2020). At present, the gesture recognition
methods of EMG signals are mainly divided into traditional
machine learning based and deep learning based (Lenz et al.,
2015; He et al., 2016; Cheng et al., 2021; Duan et al., 2021); the
traditional method consists of three parts, pre-processing (such as
denoising and filtering), feature extraction, and classifier model
classification. However, manual extraction of features and then
classification is tedious, and the accuracy is not very satisfactory.

Deep learning is a method that requires massive data for
experimentation. By pre-processing the initial signal and
expanding the experimental data, researchers continuously
optimize and improve various parameters in the deep learning
model, repeatedly train the model using Convolutional Neural
Network (CNN) (Weng et al., 2021; Tao et al., 2022), and
continuously test to get the optimal experimental results, thus
improving the recognition accuracy. At present, the deep learning
model has made some progress in sEMG gesture recognition, but
the accuracy is not high while ensuring real-time. the model’s
ability to fit multi-gesture sparse EMG signal data and extract
features need to be further improved. The existing CNN-based
EMG gesture recognition research does not make full use of the
timing information of sEMG signal data, and difficult to apply in
bionic hand control systems.

To solve the above problems, a multi-stream fusion network
(Zhang et al., 2022) of one-dimensional convolutional neural
network (CNN) + GRU is proposed, which embeds the attention
mechanism (CBAM) in the CNN . CNN)+ GRU is used to for
processing to extract the hidden correlation characteristics between
the sEMG sequence signals, and embeds an attention module to
learn synergy of different sEMG feature channels, and the
spatiotemporal features. At the same time, ACC signals are
added for recognition to further improve the accuracy. Based on
this network, a dexterous hand control system is established to
classify the collected sEMG signals and control the bionic hand to do
matching movements according to the user’s intention, which can
assist people with hand disabilities to live normally (Li et al., 2022;
Tao et al., 2022). The contributions of this paper are as follows.

1) Acceleration signals and sEMG signals were collected to
construct a dataset containing 52 different hand gestures.

2) Embedding CBAM units in a 1D convolutional network
selectively emphasize informative features and suppress
useless features on channels and spaces, enhancing the
effective extraction of feature information from sparse
channels while preventing overfitting.

3) A multi-stream fusion network based on CNN + GRU is
designed to ensure accuracy while reducing the calculation
time, making it more suitable for application in bionic hand
control systems.

RELATED WORK

With the deepening of sEMG detection technology and the rapid
development of computer technology, sEMG controlled human-
machine interaction (Sun et al., 2020a; Chen et al., 2022c) systems
can analyze the sEMG generated during the user’s movement to
obtain the human body’s intention, and eventually control
peripheral devices by transmitting movement commands
(Pinto and Gupta. 2016; Zhang et al., 2019; Li et al., 2021; Liu
et al., 2022a). Early prostheses were generally single-degree-of-
freedom robotic arms with grasping capability only. Reitert
(Scott, 1989) first used sEMG signals for prosthetic control in
1948, that’s the earliest. Carrozza (Carozza et al., 2005)
implemented a single-degree-of-freedom sEMG prosthetic
hand control (Andreas et al., 2017; Sun et al., 2020b; Liu et al.,
2022b) using a finite state machine. Many researchers have
worked on the problem of the multiclassification of sEMG.
Traditional machine learning algorithms (Yu et al., 2019; Chen
et al., 2022b) need to extract time-domain, frequency-domain, or
time-frequency-domain features from sEMG data and select
appropriate classifiers, such as extreme learning machines (Shi
et al., 2013; Sun et al., 2022b), random forests (Atzori et al., 2014a;
Asif et al., 2017), linear discriminant analysis, and support vector
machines (Chen and Zhang, 2019), to accomplish the gesture
recognition task. However, traditional machine learning tends to
decrease the recognition accuracy significantly with the increase
of gesture movements. From machine learning to deep learning
(Lenz et al., 2015; Qi et al., 2020; Huang et al., 2021; Tao et al.,
2022), the accuracy of the multi-classification of EMG signals has
been improving. Deep learning performs better in the multi-
classification problem of sEMG gestures because of its strong data
fitting and feature extraction ability (Li et al., 2019c; Sun et al.,
2022a). In the method of gesture recognition using deep learning
(Han et al., 2018; Jiang et al., 2019b; Liao et al., 2021), there are
several major types of mainstream network algorithms: 1)
convolutional neural networks (Tao et al., 2022; Sun et al.,
2022c); 2) recurrent neural networks (Liu et al., 2022b); 3)
network combining multi-class models (Zhao et al., 2022); 4)
some novel network (Huang et al., 2019; Chen et al., 2021b; Sun
et al., 2021; Liu et al., 2022c; Liu et al., 2022d; Wu et al., 2022;
Zhao et al., 2022).

In terms of EMG gesture recognition, CNN-based deep
learning algorithms (Shi et al., 2022) have proven to be highly
advantageous by many researchers (Huang et al., 2020; Jiang
et al., 2021a; Yang et al., 2021)). Manfredo et al. (Manfredo et al.,
2016) found that the average result of recognition accuracy of
classical classification methods is easily surpassed by a simple
CNN structure on the Nina Pro database. P. Tsinganos
(Tsinganos et al., 2018) et al. used CNN networks for gesture
recognition and improved the accuracy by 3%. Yu Hu (Hu Y.
et al., 2018) et al. proposed an attention-based hybrid CNN-RNN
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(Recurrent Neural Network) model to process Nina Pro DB1,
Nina Pro DB2, and Bio Pat Rec-26MOV compared to the normal
hybrid CNN-RNN model databases, the accuracy was improved
by 2.0%, 7.4% and 1.6%, respectively. Yuru Chen et al. use MYO
hand ring to acquires upper limb EMG signals for data
preprocessing, classification, and identification followed by
real-time control of upper limb mechanical devices. Migratory
learning, long and short-term memory networks, and recurrent
neural networks were applied to EMG signal gesture recognition
(Naik et al., 2014; Côté-Allard et al., 2017; Ding et al., 2018;
Quivira et al., 2018; Xie et al., 2018; Chen et al., 2020), and
Tsinganos et al. (Zardoshti-Kermani et al., 1995) researchers
treated EMG signal-based gesture recognition as a sequence
classification problem and introduced temporal convolutional
networks for gesture recognition, with an improvement in
recognition accuracy of about 5%. In general, machine
learning methods for sEMG gesture recognition require low
training data set size and short training time, but the
requirements for researchers are relatively high; while deep
learning-based methods have low or basically no requirements
for feature set selection and certain requirements for sample data
volume, because insufficient data will lead to poor recognition
accuracy. We will combine attentional mechanisms and long
short-term memory networks. Consider the sEMG signal as an
image classification problem and time series classification as the
basis for network design (Li et al., 2019b; Luo et al., 2020),
establish a new network architecture for gesture recognition,
further explore the optimization of network models, improve
the recognition accuracy, and solve the problems of relatively
long computation time, high hardware requirements in use, and
unsuitable for the application of bionic The problem of relatively
long computation time, high hardware requirements in use, and
unsuitable for the application of the actual control process of
bionic hands (Xiao et al., 2021; Liu X. et al., 2022).

METHODS AND MATERIALS

sEMG signal is a signal with temporal order (Luo et al., 2020), and
RNN has shown excellent prediction capability in dealing with

time series problems. GRU (Chung et al., 2014) is a further
development based on RNN that can solve the problems of long-
term learning dependence and long-term preservation of RNN
and avoid gradient disappearance. The speedy, lightweight
Conv1D combined with sequential-sensitive GRU to build the
model can balance accuracy and speed, with fewer training
parameters and faster convergence and iteration, which is
beneficial to real-time recognition. Conv1D serves as a pre-
processing step for GRU to shorten the identified sequences
and extract local information before GRU processes the
timing-related information.

MCBAM-GRU Net Architecture
A multistream CNN is proposed, which fusing attention
mechanism and long short-term memory network, called
MCBAM-GRU network, whose general framework is shown in
Figure 1. After supervised training, end-to-end gesture
recognition of surface EMG signals can be performed. The
overall model can be divided into three stages, the data input,
the multistream convolution and the aggregated output.

First, the data input phase divides the EMG signal by
acquisition channel dimension to obtain a single-channel
EMG map. The multistream convolutional network (Sun et al.,
2020c; Tran and Lin, 2021) has six independent network
branches. The features of the EMG signals of the six channels
are extracted separately for each stream. Meanwhile, to improve
the recognition effect, the sEMG and acceleration are fused by
information fusion technique (Sun et al., 2020a; Liao et al., 2020;
Tian et al., 2020; Hao et al., 2021a; Jiang et al., 2021b; Bai et al.,
2022; Huang et al., 2022), and the signal surface EMG and ACC
signals are used as the input of each stream of independent CNN,
and each stream learns features independently byMCBAM. Since
the single-channel sEMG map is essentially one-dimensional
time-series data, a one-dimensional convolution kernel is used
in the batch normalized convolution layer to learn the hidden
correlation between sEMG sequence signals.

The aggregation output stage aggregates all the outputs of the
multi-stream convolution stage and obtains the final recognition
results. The first layer is the aggregation layer, which aggregates
the outputs of the multi-stream convolution using a cascade

FIGURE 1 | MCBAM-GRU general framework.
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stitching of feature channel dimensions. The second layer is a
global mean pooling layer, which averages all pixel values of the
feature map to obtain a value. The third layer is a full connected
layer with dropout, which reduces the dimensionality of the
output vector and adds dropout to prevent overfitting. The
final layer uses a softmax-activated fully-connected layer to
obtain the classification results. This layer first obtains a label
vector g of the length of the number of gesture categories through
the fully-connected layer and subsequently uses a softmax
function to predict the category to which the label vector g
belongs.

p(m|g) � exp(g(m))
∑M

j�1exp(g(j)) (1)

Where M represents the total number of gesture categories;
p(m|g) represents the probability that the vector g belongs to
the Class m gesture, and the final category with the highest
probability is the classification result m0.

m0 � argmax(p(1|g), p(2|g),/, p(M|g)) (2)

Redundant Channel Removal
For the region of EMG signal distribution studied in the
experiment, the sEMG signals generated by different hand
movements of muscles some distributed in forearm muscles
have a certain regularity, that is, some muscles in do not
produce useful signals or redundant information channels,
these regions not only interfere with the classification, and will
increase the amount of data and increase the computational
burden, thus affecting the classification speed.

Therefore, a method of removing redundant channels is
necessary (Sun et al., 2020b), which takes the arm without
movement as a benchmark and takes the variance of the
signal values of different actions to represent the degree of
signal redundancy.

By using the above variance calculation values (Zhou et al.,
2010) to grade the redundancy of 16 channels in each action.
Simple sequencing coding methods are used to assign positive
correlation weights to different levels. In order to ensure the

stability of the method, the cross-validation method (Scheme and
Englehart, 2011) is used to verify. The collected data is divided
into eight parts. One of them is taken out in turn and tested in the
remaining data. Figure 2 shows the redundancy rate of 16
channels obtained after eight tests.

According to the weighting result, with high redundancy rate
ten common redundant channels 2, 3, 4, 5, 6, 10, 11, 12, 13 and 14,
channels are removed.

One Dimension Convolutional Block
Attention Module
Attentional mechanisms (Hao et al., 2021b) has aroused the
interest of many researchers because it have fewer parameters,
faster speed, and better results in important areas such as
machine translation (Hao et al., 2021a), speech recognition
(Bahdanau et al., 2016; Rogowski et al., 2020), image
recognition (Wang et al., 2017), and gradually started to be
applied in sEMG gesture recognition (Hu J. et al., 2018; Jiang
et al., 2019c; Liu et al., 2021) Previous CNN gesture recognition
models often do not give enough attention to the characteristics
of the EMG signal and do not make full use of the temporal
information (Atzori et al., 2014b; Atzori et al., 2016; Geng et al.,
2016; Ketykó et al., 2019). Therefore, this paper introduces a
convolutional attention mechanism into the EMG gesture
recognition method and designs a one-dimensional
convolutional attention module based on time and feature
channels to make it more applicable to EMG gesture
recognition. A one-dimensional CBAM is added after the
ReLU nonlinear function, which can redistribute the weights
of EMG signals in different time frames and adaptively adjust the
weights of each feature map to focus more on the effective
features and suppress the useless features to some extent. The
CBAM1D shown in Figure 3 is divided into the feature channel
attention module and temporal attention module.

The specific main process of the feature channel attention
module shows as follows: an input feature F ∈ RT×C along the
time dimension to perform feature compression, a real number is
used to represent the time dimension information. Temporal
information is aggregated through the average pooling and
maximum pooling. Generated two different feature vectors are
FC
b ∈ R1×C and FC

n ∈ R1×C. The formula is shown below.

Fc
b ∈

1
T
∑T
i�1
Fc(i)

Fc
n � max(Fc(i)) i � 1, 2,/, T

(3)

Among them: FC
b � [F1

b, F
2
b, F

3
b,/, FC

b ]; FC
n �

[F1
n, F

2
n, F

3
n,/, FC

n ].
The two feature vectors are sent to a shared network to generate

two new feature vectors, which are combined using element-by-
element summation to generate the feature channel attention map
MC ∈ R1×C. The shared network consists of a two-layer multilayer
perceptron. RC/r×1 is the activation size of the first layer, which can
reduce the number of parameters, where r is the compression rate;
The second layer output size is RC×1. The feature channel attention
module can be expressed as shown in Eq. 4.

FIGURE 2 | Weighted channel redundancy.
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MC(F) � σg(W1(W0(FC
b )) +W1(W0(FC

n ))) (4)
where: σg is the sigmoid activation function; W0 ∈ R

C×C/r;
W1 ∈ R

C/r×C.
The spatial attention module uses the time-series relationship

of the myoelectric map to generate the temporal attention map
MT ∈ RT×1. Feature channel attention focuses on the effective
feature maps, while temporal attention focuses more on the
effective time frames in the decision window, which further
complements the feature channel attention. The specific
process of the temporal attention module is: feature
compression along the feature channel dimension, using a real
number to represent the feature channel dimension information
of the feature. The average pooling and maximum pooling are
used to aggregate the feature channel information to obtain two
feature vectors, FT

b ∈ RT×1 and FT
n ∈ RT×1.

Ft
b ∈

1
C
∑C
j�1
Ft(j)

Ft
n � max(Ft(j)) j � 1, 2,/, C

(5)

Among them:
FT
b � [F1

b, F
2
b, F

3
b,/, FT

b ]; FC
n � [F1

n, F
2
n, F

3
n,/, FC

n ]
Two feature vectors are cascaded and stitched by feature

channel axes to generate a one-dimensional temporal attention
map MT through a standard convolutional layer. Temporal
attention module can be represented by Eq. 6.

MT(F) � σg(f3×1([FT
b ;F

T
n ])) (6)

where: σg is the sigmoid activation function; f3×1 represents the
convolution kernel is a 3*1 one-dimensional convolution.

Combining the time and feature channel attention modules,
the total process can be summarized as follows

F′ � MC(F) ⊗ F
F″ � MT(F′) ⊗ F′ (7)

where: ⊗ represents the element-by-element multiplication; F″ is
the final output of the 1D CBAMmodule, the input features after
remapping.

EMG Signal Acquisition
The experiments use the ELONXI EMG instrument produced by
Hangzhou Jiaopu Technology Company as the measurement
sensor. ELONXI electromyograph has a 16-channel sEMG
signal sensor. The sampling frequency is 1,000 Hz. This
electromyograph has a high sampling frequency and is easy to
wear, simple to use and low cost. This device is convenient for
data acquisition and uses with dexterous hand mechanical
devices. Before the experiment, the surface of each electrode of
the cuff and the skin surface of the volunteer were gently wiped
with alcohol cotton. Volunteers need to wait a fewminutes for the
skin surface to dry naturally and put the cuff on the forearm. The
16 electrodes of the cuff were numbered and evenly distributed on
the surface of the arm. The correspondence between 16 electrodes
and forearm muscles is shown in Table 1.

This experiment was approved by the Research Ethics
Committee of Wuhan University of Science and Technology
of China. Before the experiment, the relevant content of the
experiment and the risks have been informed in detail to the 10
healthy subjects. And then they have signed informed consent
forms. The experimental environment was quiet and free of
absolute noise, Subjects seated in a chair where their hands
can comfortably be placed on the table. They were asked to
perform the corresponding right-handed movements according
to the cues on the computer screen.

Volunteers should try to maintain the same speed and force,
with the muscle relaxation state as the initial state and each target
movement as the end state of one movement. To ensure that there

FIGURE 3 | One-dimensional convolutional block attention module.

TABLE 1 | The correspondence between 16 electrodes and forearm muscle.

Electrode Number Strong Related Muscles Weak Related Muscles

Electrodes 1 and 9 Finger deep flexors
Electrodes 2 and 10 Ulnar carpal flexor Finger deep flexors
Electrodes 3 and 11 Superficial finger flexors Palmaris Longus
Electrodes 4 and 12 Radial wrist flexor Palmaris Longus
Electrodes 5 and 13 Brachioradialis
Electrodes 6 and 14 Radial wrist extensors
Electrodes 7 and 15 Finger extensor muscle
Electrodes 8 and 16 Ulnar carpal extensor Little finger extensors
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is a long enough interval between the two movements to avoid
muscle fatigue. A total of 10 adult healthy subjects (7 males and 3
females) with no history of disease and a homogeneous physical
distribution underwent forearm sEMG collection experiments,
with an age distribution between 25 and 30 years old, all using the
right arm. Each subject was required to acquire 52 gestures, with
each action repeated 15 times, each action lasting 10 s, with a 5-
min rest period between each action (the electrode cuff should not
be removed during the experiment), to obtain the same body
EMG signal with temporal and spatial differences in the EMG
signal. During the acquisition process the subject followed the
screen prompts, concentrated on the instructions on the screen,
and the timing diagram of the EMG acquisition experiment is
shown in Figure 4.

In previous studies, only 4–12 different movements were
generally considered, but for a prosthetic manipulator, 4–12
gestures are far from sufficient. In this paper, 52 gestures from
the NinaPro DB1 dataset were selected. These gestures are
divided into three exercises. 1) 12 finger-based gestures, 2)
eight equal-open, equal-length gestures and nine wrist-based
gestures, and 3) 23 basic grasping gestures. 52 gestures are
numbered as Gs1-52.

Feature Extraction and Selection
The reasons and methods of sEMG signal preprocessing have
been systematically summarized by many domestic and foreign
EMG research results (Woo et al., 2018). The original image is
replicated in layers to obtain the image of each channel, and then
preprocess and normalize each channel sEMG before input to the
neural network.

sEMG signals are extremely weak and susceptible to
environmental noise, industrial frequency interference and
individual body differences, and that leads to the signal-to-
noise ratio of sEMG signals relatively low. To obtain a high
signal-to-noise ratio and make the online system have good real-
time performance, the sEMG collected is mainly distributed in
the range of 0–500 Hz, with the main energy concentration in the
range of 10–200 Hz. Considering the signal frequency, the sEMG
may be interfered with by the 50 Hz industrial frequency
interference and the low-frequency signal below 20 Hz.
Therefore, a trap filter and a Butterworth high-pass filter are
chosen for denoising.

The frequency response of the ideal trap filter is expressed as
Eq. 8, where ω0 � 50Hz, which is used to remove the 50 Hz
industrial frequency interference.

∣∣∣∣H(ejw)∣∣∣∣ � { 1,ω ≠ ω0

0,ω � ω0
} (8)

The Butterworth filter amplitude and frequency should be
shown in Eq. 9, where.

N represents the system order of the filter,N � 3,Ω represents
the frequency, Ωc represents the turning frequency. The selected
high-pass filter with a frequency range above 20 Hz and an
attenuation rate of 18 dB per octave.

∣∣∣∣H(jΩ)∣∣∣∣2 � 1

1 + ε2(Ω
Ωc
)2N (9)

The waveform and spectrum after pre-processing are shown in
Figure 5.

Due to the small amount of energy produced by the target
action muscles (Sun et al., 2020a; Cheng et al., 2020), to make the
amplitude of the active segment more visible, an absolute value is
taken for the acquired signal. sEMG signals are continuous
signals, and if the whole segment of the acquired signal is
used to characterize the target action. It is not conducive to
the implementation of a real-time system and the classification of
the target action. At the same time, the EMG signal has obvious
non-smooth randomness, therefore, the pre-processed signal
should be described by a set of data that can characterize its
features, which can effectively distinguish different actions and
facilitate classification.

Integral electromyogram (IEMG), myoelectric variance value
(VAR), median frequency (MDF), and signal high-to-low
frequency ratio (FR) are the four features selected in the
experiments, calculated as Eq. 10, which are easy to calculate
and high in real time to characterize the signal features. and the
resulting image is used as a multichannel EMG feature image.

IEMG � ∑N
i�1
|xi| VAR � 1

N − 1
∑N
i�1
x2
i

∑MDF

i�1
Pi � ∑M

i�MDF

Pj � 1
2
∑M
i�1
Pi FR � ∑LHC

i�LLC
Pi/ ∑HHC

i�HLC

Pi

(10)

FIGURE 4 | Timing diagram of EMG acquisition experiment.
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Where xi and Pi represents the peak value of the ith point of
sEMG in the time sequence; represents the peak value of the ith
point of sEMG in the time sequence; Pi represents the power value
of the ith point of sEMG on the spectrum; N represents the
number of signal sampling points;M is the signal bandwidth. LLC
and LHC are the lower and upper cut-off frequencies of the low-
frequency band, respectively; HLC and HHC are the lower and
upper cut-off frequencies of the high-frequency band.

EXPERIMENT

The dataset is randomly divided into two groups: one is the
training set, and the other is the test set. The training set contains
800 sets for each gesture, and each test set contains 100 sets.
Experimental environment hardware: Intel(R) Core(TM) i7-
9700K CPU@3.60 GHz; memory: 32.00 GB. All experiments
are implemented by PyTorch 1.7.0 + cu110 on NVIDIA GTX
1080Ti GPU.

Experimental Results and Analysis
During the experiment, redundant channels were removed to
reduce the amount of computational data and to speed up the
computational rate. Therefore, it is necessary to construct a
comparison experiment between the sEMG signals after all
channels were selected and the redundant channels were
removed. In the comparison experiment, the network model
was fine-tuned, and to prove its validity, no ACC information
was added for fusion while the inputs were the original sEMG
images. The comparison validation yielded the results shown in
Figure 6.

By comparing the recognition rates of ten groups, the
experimental results show that when the redundant channels
are removed, the recognition efficiency does not change
significantly, and considering the recognition rate and data
dimension, it is necessary to remove the redundant channels.

Using the step-by-step debugging function of the Pycharm
development environment, we input the action segment sEMG
signal feature data from any test set into the trained network, and
count the time from receiving data to output signal category as
the delay time to measure the network computation speed. In
order to exclude the chance influence of a certain input data, this
paper brings in 10 times of data and calculates the average of
network delay time. To ensure that the experimental results are
not affected by the particular sEMG signal characteristics of a
particular test subject, three subjects from the Nina Pro-DB1
database (Atzori et al., 2012; Atzori et al., 2014a) are selected for
individual training and testing in this paper. The experimental
results are shown in Table 2.

From Table 2, it can be seen that removing redundant channels
has lower latency and higher accuracy than keeping all channels.

FIGURE 5 | Visualization of sEMG waveforms before and after filtering.

FIGURE 6 | Removing redundant channels vs keeping all channels
accurate.
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Therefore, removing the redundant channels with less data is more
suitable for the application of the bionic hand control process.

To better validate the effectiveness of the MCBAM-GRU sEMG
gesture recognition network, the following ablation experiments
were performed using a matchless normalized multistream
convolutional network as the baseline model for the five
experiments. Raw sEMG images were used as the input source of
the network and no ACC information was input for fusion.

Experiment I: multi-stream convolution.
Experiment II: multi-stream convolution + batch

normalization (BN).

Experiment III: multi-stream convolution + batch
normalization + Gate Recurrent Unit (GRU).

Experiment IV: multi-stream convolution + batch
normalization + one-dimensional Convolutional Block
Attention Module (CBAM).

Experiment V: multi-stream convolution + batch
normalization + one-dimensional CBAM + Gate Recurrent
Unit (GRU).

The results of the average gesture recognition accuracy
ablation experiment are shown in Table 3. The results of the
52 gesture recognition accuracy ablation experiments for each
subject are shown in Figure 7.

From the experimental results in Figure 7, it is clear that the
use of batch normalization has the greatest impact on
recognition accuracy. The reason is that batch normalization
can reduce the effect of internal covariate bias, reduce the
sensitivity of different choices of parameter initialization and
learning rate on the impact of model performance, and also
facilitate gradient descent, which helps the model converge
quickly. Therefore, adding batch normalization can help the
network model fit the data set better and achieve higher
performance. Adding one-dimensional convolutional

TABLE 2 | Classification under removing redundant channels and keeping all channels.

Subjects Channel selection Delay (ms) Testing Set Accuracy

Subject 1 All channels 82.5 85.3
Removing redundant channels 64.3 82.2

Subject 2 All channels 76.1 78.1
Removing redundant channels 61.9 76.6

Subject 3 All channels 80.8 87.0
Removing redundant channels 63.8 84.2

TABLE 3 | Average gesture recognition accuracy ablation experiment results.

Method Average Gesture Recognition
Accuracy Rate/%

multi-stream convolution 68.3
+ batch normalization (BN) 80.2
+ BN + Gate Recurrent Unit (GRU) 82.1
+ BN+ 1D CBAM 83.6
+ BN+ 1D CBAM + GRU 86.0

FIGURE 7 | Results of 52 gesture recognition accuracy ablation experiments for each subject.
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attention to the multi-stream convolutional network can
increase the average gesture recognition accuracy to 83.6%
for 52 gestures for 27 subjects; adding GRU to the multi-
stream convolutional attention mechanism network structure
can increase the average gesture recognition accuracy to 86.0%.
CBAM is introduced in the multi-stream network, which
enables the network to learn saliency information in the
image, making the important features in the image more
salient and improving the expressiveness of the network
without adding too many extra parameters and training time.
The attention module generates temporal attention maps in the
temporal dimension, giving more weight coefficients to the
more important time frames in the time window and
suppressing them with fewer weight coefficients on the
contrary; in addition, it generates feature channel attention
maps in the feature channel dimension, reinforcing the more
effective feature maps and weakening the useless ones. The
addition of the GRU module can further improve the network
accuracy, enhance feature learning, and optimize network
performance.

Figure 8 shows the confusion matrix of the MCBAM-GRU
network for gesture recognition, containing the prediction
results for 52 gestures for 27 individuals. In this
experiments, the acceleration (ACC) signal is input into the
network as an independent branch, the characteristic EMG
signal is the input source of the network, and other conditions
remain unchanged. The horizontal coordinates are the
predicted gesture labels and the vertical coordinates are the
actual gesture labels. From Figure 8, we can see that the

recognition accuracy of most of the movements are
relatively high and are concentrated on the diagonal, but
there are also individual gestures with low recognition
accuracy, such as gestures 9, 10, 11, 16, and 17, which are
easily misidentified because they are relatively similar. 9, 10,
and 11 are all thumb movement gestures and have very similar
force points, so the recognition is poor; 16 and 17 are also It is
because the difference of only the direction of thumb
movement is very similar, resulting in poor recognition.

To show the advantages of our model, MCBAM-GRU
network recognition model is compared with other models
that have been studied in recent years. The results on the
NinaproDB1 dataset are shown in Table 4. The NinaPro DB1
dataset contains 52 different gestures of 27 healthy subjects, the
same gestures contained in the dataset used in this paper. So we
can compare the experimental results horizontally to conclude
that our proposed MCBAM-GRU network algorithm
outperforms other algorithms.

FIGURE 8 | Gesture recognition confusion matrix.

TABLE 4 | Comparison results of different approaches on NinaPro DB1.

Algorithms Accuracy (%)

Random Forest (Atzori et al., 2014b) 75.2
Atzori_Net (Atzori et al., 2016) 66.6
Geng_Net (Geng et al., 2016) 77.8
CNN (Du et al., 2017) 79.5
ELM (Cene et al., 2019) 75.1
MSFusionNet (Wei et al., 2019) 85.0
MCBAM-GRU (ours) 89.7
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From the comparison of the results in the above table, it is
obvious that with the application of deep learning on sEMG
gestures, many researchers did not achieve better recognition
results, and most of them did not exceed 80% recognition rate,
which is only comparable to the recognition results of traditional
methods. Except for the results in this Section, the recognition
rate achieved by Wei’s proposed multi-stream convolutional
neural network can reach 85.0%, while the multi-view fusion
network proposed also can achieve a satisfactory recognition rate
on the NinaPro DB1 dataset, which can reach 89.7%, 4.7% higher
than the former.

Validation Experiments
A 6-channel sEMG gesture recognition based dexterous hand
control system is designed as a validation experiment platform,
and the block diagram of the dexterous hand control system is
shown in Figure 9. The systemmainly contains three parts: sEMG
signal acquisition, action intention recognition and prosthetic hand
control. The control process of the dexterous hand is as follows:
sEMG signal and acceleration acquisition equipment collects
sEMG data from the user’s forearm in real time and sends it to
the computer by wireless communication. The collected data is
pre-processed and the redundant channels are removed as the
input of the MCBAM-GRU network. The trained MCBAM-GRU
network outputs the predicted current gesture, which is sent as the
control signal of the dexterous hand to the dexterous hand console.
Fifty-two bionic hand movements were preset in the console
program, corresponding to 52 movements from the Nina-Pro-
DB1 database (Atzori et al., 2016).

The 16-channel sEMG sensor cuff can adapt to different users’
arm circumference and keep the electrode in good fit with the
forearm; meanwhile, the sensor electrode is made of stainless
steel, which is convenient to wear. The device connects the EMG
collector to the computer via Bluetooth for fast data upload. The
EMG cuff is worn on the right hand, and the accelerometer is
placed close to the back of the hand to keep the forearm
horizontal. The dexterous prosthesis used is an adult-sized
anthropomorphic SR-RH8D (shown in Figure 10) developed
by Seed Robotics in the United Kingdom. It is designed with
underdrive technology, which allows the dexterous hand to be
adaptive for precise control of objects with different or complex
shapes.

The SR-RH8D has a total of 19 degrees of freedom, including
the contralateral thumb and a full spherical wrist joint. In
addition, it has eight compact and powerful internal actuators
(seed_1-seed_8), all of which are contained within the unit and

can be controlled independently by the user, and the relative
relationship between the actuators and the dexterous hand
motion is shown in Table 5.

The motor and control circuit of the dexterous hand are fully
integrated into the dexterous hand, and which can be connected
to a computer via a serial communication protocol. The trained
multi-stream convolutional attention network is used to predict
the gesture actions for the new input sEMG signals, and finally the
predicted results are sent to the SR-RH8D dexterous hand as
instructions to complete the corresponding gesture actions. The
resting action was added to the experiment as a transition

FIGURE 9 | Block diagram of dexterous hand control system.

FIGURE 10 | SR-RH8D humanoid dexterity hand.

TABLE 5 | Servo and dexterous hand motion correspondence.

Servo Number Function

Seed_1 Wrist rotation
Seed_2 Wrist swaying from side to side
Seed_3 Flexion of the wrist
Seed_4 Inward thumb
Seed_5 Thumb flexion
Seed_6 Index finger flexion
Seed_7 Flexion of the middle finger
Seed_8 Ring finger and pinky joint action
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between the previous gesture and the next gesture action. The
experimental results of some gestures are shown in Figure 11.

CONCLUSION

Aiming at the insufficient effective feature extraction of sEMG
timing information, the poor performance of gesture recognition
speed and accuracy of sparse surface EMG signals, and the
difficulty of application in dexterous hand control system, a
multi-stream convolutional neural network MCBAM-GRU
that integrates attention mechanism is proposed. it uses multi-
stream convolution to excavate characteristics of the sparse
channels of multiple acquisition channels. The one-
dimensional convolutional attention module and the GRU
module are added to learn important timing information and
focus on more differentiated signal areas. Meanwhile the network
adaptively learns the importance of different feature maps and
strengthens the feature maps with stronger correlation, which
ensure accuracy and greatly reduce the calculation time. The
network can recognize 52 gestures using 6-channel surface
electromyography and acceleration signals as model inputs.
This multi-stream convolutional attention of this network can
effectively prevent the overfitting problem of sEMG signals, while
the use of GRU further improves the network accuracy. The
prediction accuracy of the collected experimental data reached
94.1%, which is a satisfactory practicality. A dexterous hand
control system is built to verify its feasibility. This network
great potential for wider applications in future fields such as
muscle fatigue and sensor electrode deflection. In subsequent
studies, it is necessary to address differences in hand gestures,
differences in arm size, and differences in the speed and strength
of hand movements between individuals. There is a need for an
in-depth study to obtain a pervasive multi-gesture recognition

algorithm, Further simplify the network model, and broaden its
application in resource-constrained embedded platforms.
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