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Abstract: Whole-body vibration (WBV) exercises have recently been introduced as a nonpharmaco-
logical therapeutic strategy for sarcopenic older people. The present study aimed to evaluate the
effect of WBV exercise on hemodynamic parameters in sarcopenic older people. Forty older people,
divided into groups of nonsarcopenic (NSG = 20) and sarcopenic (SG = 20), participated in the study
and were cross randomized into two interventions of eight sets of 40 s each, these being squatting
with WBV and squatting without WBV. Heart rate (HR), peak heart rate (peak HR), systolic blood
pressure (SBP), diastolic blood pressure (DBP), double product (DP), mean arterial pressure (MAP),
and subjective perception of effort (SPE), were assessed at baseline, during, and after a single WBV
session. The HR, peak HR, and DP variables were similar at baseline between groups. WBV exercise
increased all the hemodynamic parameters both during and immediately after the intervention, in
both groups (SG and NSG). The MAP values were similar at baseline between groups; however,
in the NSG there was a significant increase during and immediately after the squatting with WBV
intervention (p < 0.05). The HR behavior, in both groups, showed that there was an increase in HR
after the first set of exercises with vibration and this increase was maintained until the final set. The
absence of adverse effects of WBV exercise on the cardiovascular system and fatigue suggests this
exercise modality is adequate and safe for sarcopenic older people.
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1. Introduction

Sarcopenia is a progressive and generalized disease of skeletal muscle, recognized in
ICD-10 (International Code of Diseases), which is associated with a greater likelihood of
adverse outcomes, including falls, fractures, physical disability, mortality [1], and higher
health costs [2]. The incidence of sarcopenia increases with age [3], and depending on
the environment [4], can affect up to 33% of the population of older people living in the
community [5], and up to 68% of individuals living in long-term care institutions [6].

The progressive loss of skeletal muscle mass occurring with aging may be associated
with an inadequate supply of blood flow to the skeletal muscle. This plays an important role
in the development of sarcopenia, as demonstrated in a study in which the blood pressure
(BP) variability index was significantly higher at rest in both male and female participants
in the group with the lowest appendicular skeletal muscle mass (ASM) [7]. Studies show
that aging attenuates coronary blood flow and myocardial perfusion and predisposes older
people to adverse cardiac events [8,9]. Moreover, aortic diastolic blood pressure (DBP)
response to muscle metaboreflex activation is attenuated in older people with dynapenia
but positively affects walking performance in nondynapenic older people [10]. Therefore,
hemodynamic changes play an important role in the development of sarcopenia [7].

Thus, sarcopenia can be considered one of the most important causes of reduced
cardiorespiratory fitness in older people, especially the frail [11,12]. Moreover, it is associ-
ated with cardiovascular risk factors such as altered endothelial function, reduced exercise
tolerance, effects on BP, and reduced heart-rate recovery in sarcopenic older people with
heart failure [13].

Physical exercise, nutrition, hormone replacement, and lifestyle interventions are
among the forms of treatment for sarcopenia [14–16]. Interventions that promote a physi-
cally active lifestyle, reduced sedentary behavior and increased energy expenditure are
recommended for the treatment and prevention of sarcopenia [17,18]. Although traditional
resistance training is often recommended, evidence indicates that the effects of resistance
exercise can be optimized if combined with whole-body vibration (WBV) [19]. A study
noted improvement in muscle power by adding vibration therapy to conventional resis-
tance exercise [20]. WBV has been introduced as a complementary and viable form of
exercise for frail older people [21–23], and especially for sarcopenic older people [24,25].

The physiological effects of WBV are explained by greater muscle activation, leading
to better cardiorespiratory responses and muscle activity during exercise [20,26–28]. Some
of these immediate physiological effects, such as increased heart rate (HR) during WBV,
are supported by studies in sedentary older people [26,28], in older people with chronic ob-
structive pulmonary disease (COPD) [29], and in maintenance of cardiovascular responses
in older people with metabolic syndrome [30].

Currently, there is no clear consensus on clinical intervention for sarcopenia [25,31].
Furthermore, the majority of sarcopenic older people have a sedentary lifestyle and are
frequently reluctant to start a conventional exercise program. WBV may represent a form
of well-tolerated exercise for this population. However, there are no studies evaluating the
immediate effects of WBV on hemodynamic responses in sarcopenic older people.

Thus, this study aimed to evaluate the effects of one session of squatting exercises
with and without WBV on hemodynamic parameters in sarcopenic older people. The
hypothesis is that a single WBV session promotes changes in hemodynamic parameters in
individuals with sarcopenia and that there is a difference between the squatting exercise
with and without WBV.

2. Materials and Methods
2.1. Participants and Sample Size Estimation

A crossover randomized controlled trial was conducted between February 2018 and
January 2020 with older people living in the community. Participants were recruited
through verbal invitation, leaflets, and visits to basic health units and physicians’ offices,
or through communication (internet, radio). The inclusion criteria were people aged 60
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or over of either sex, who met the criteria of sarcopenia diagnosis, according to relative
skeletal muscle index (RSMI) cutoff points described by the European Working Group Con-
sensus on Sarcopenia in Older People—EWGSOP [1]. Exclusion criteria were (1) presence
of acute illness; (2) decompensated chronic disease; (3) taking Beta-blocker medication;
(4) participation in any physical training program three months prior to the beginning of
the assessments; (5) contraindication to the vibrating platform, such as epilepsy, gallstones
or kidney stones, neuromuscular and neurodegenerative diseases, stroke, serious heart
disease, or those with an implant, bypass, or stent; and (6) cognitive impairment.

The required sample size was determined according to the study by Ribeiro et al. [32].
Considering an effect size of 0.47, α = 0.05, and power of 0.94, found by two-way ANOVA,
the estimated sample size was 18 individuals per group (non-sarcopenic and sarcopenic).
The value obtained was increased by 11% to suppress potential losses during the execution
of the project, with 20 individuals per group, totaling 40 participants. The distribution of
participants between the groups was controlled by sex, age, and drug class, to minimize
the influence of confounding variables.

2.2. Diagnostic Criteria to Sarcopenia

Participants were evaluated using dual-energy X-ray absorptiometry (DXA) (Lunar,
DPX, Madison, WI, USA) for body composition measurements, and for the diagnosis of
sarcopenia, relative skeletal muscle index (RSMI) cutoff points were considered using
Appendicular skeletal muscle mass (ASM) divided by height squared. The cutoff point for
the diagnosis of sarcopenia was <7.0 kg/m2 for men and <5.5 kg/m2 for women [1,33].

2.3. Procedures
2.3.1. Body Mass Index (BMI)

BMI was calculated by dividing body mass (kg) by the square of height (meters),
adopting the cutoff point for eutrophic BMI between 22 kg/m2 and 27 kg/m2 [34].

2.3.2. Body Composition Assessment

Total body mass, fat mass, and lean mass were assessed using DXA. Fat mass and lean
mass were assessed through total body analysis and by body segment (upper, lower, and
arms and legs).

2.3.3. Functionality Assessment

To assess functionality, the following tests were performed: walking speed over 4 m,
where the cutoff point used was ≤0.8 m/s [1]; Short Physical Performance Battery (SPPB),
which is a functional performance test composed of standing static and balancing in three
positions (side-by-side stands, semi-tandem and tandem); 4 m gait speed test; and 5STS
(timed test to sit and stand up from a chair without arms five times) [35]. The cutoff point in
SPPB is ≤8 [1] for a diagnosis suggestive of functional impairment. In addition, handgrip
strength (HS) was also measured, being assessed using the Jamar® dynamometer, with
cutoff points for sarcopenia for low handgrip strength being <27 kgf and <16 kgf for men
and women, respectively [1]. The assessors were blinded in relation to the groups in which
the participants were included.

2.4. Interventions

All the experimental procedures were conducted in the same place and on a set
schedule. Participants were stratified according to the diagnosis of sarcopenia into the
nonsarcopenic group (NSG) and sarcopenic group (SG). The order of execution of the two
experimental situations was randomized through a simple draw, in which the protocols
were marked by numbers, whereby number 1 corresponded to squatting with WBV and
number 2 to squatting without WBV. The participants were randomly allocated to one of the
protocols, and after a washout period of one week, they performed the other intervention.
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All participants performed the intervention protocol (WBV stimulus) and the control (squat
without WBV).

2.4.1. Exercise Intervention with WBV

The vibration exposure consisted of performing dynamic squatting exercises (8 sets of
40 s) with a vibration stimulus (frequency of 40 Hz and amplitude of 4 mm) performed
on a commercial model of a vibration platform (VP) (FitVibe®, GymnaUniphy NV, Bilzen,
Belgium) [26]. This vibration frequency and amplitude were selected due to prototype
renders of an acceleration range of 2–5 g [27]. The participants were instructed to perform
3 s of isometric flexion of 60◦ and 3 s of isometric flexion of the knees at 10◦. Between the
sets, the participants were instructed to remain at rest for 40 s in the orthostatic position
on the turned-off VP. The 60◦ angle was measured for each volunteer using a universal
goniometer before initiating the exercise sets. A barrier was placed at the gluteal region
to limit the flexion degree of the knees [32,36]. The exercise execution time was around
10 min.

2.4.2. Exercise Intervention without WBV

The without-WBV intervention was performed with the same dynamic squatting
exercises (8 sets of 40 s) with the VP turned off. The participants were instructed to perform
3 s of isometric flexion of 60◦ and 3 s of isometric flexion of the knees at 10◦. Between the
sets, the participants were instructed to remain at rest for 40 s in the orthostatic position
on the turned-off VP. The 60◦ angle was measured for each volunteer using a universal
goniometer before initiating the exercise sets. A barrier was placed at the gluteal region
to limit the flexion degree of the knees [32,36]. The exercise execution time was around
10 min.

2.5. Data Collection
2.5.1. Hemodynamic Measurements

At baseline, during, and in the first minute after exercise, systolic blood pressure
(SBP), diastolic blood pressure (DBP), HR, and peak HR were measured. Double product
(DP) was obtained by multiplying SBP and HR [37,38]. The values of the SBP and DBP
measurements were used to calculate mean arterial pressure (MAP) [39]. The percentage
of maximum heart rate (HRmax) predicted for age was calculated according to the formula
(HRmax = 220 – age) [40].

2.5.2. Subjective Perception of Effort (SPE)

At the beginning and immediately after the end of each exercise session, participants
assigned a value to the SPE on the modified Borg scale. This is a scale from 0 to 10, which
represents a linear increase with exercise intensity, where zero means no fatigue and 10 is
maximum fatigue. [41].

2.6. Statistical Analysis

Data were analyzed using SPSS version 22.0 and GraphPad Prism 7.0. The data
normality was verified using the Shapiro–Wilk test. Descriptive analysis was expressed
as mean, standard deviation, and a 95% confidence interval (95% CI). Between-group
comparisons for baseline data were performed through unpaired t-test or Mann–Whitney
test, as appropriate. Within-group and between-group differences on hemodynamics
postintervention outcomes were analyzed using two-way ANOVA with Bonferroni post
hoc test. The power and effect size were calculated using Gpower 3.1 software. The level
of statistical significance was set at 5%.
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3. Results

All 40 participants completed the study and were included in the analysis as allocated
(intention-to-treat analysis). The same participant went through both protocols, in a
randomized and crossed way (Figure 1).
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Figure 1. Flowchart of the participants.

3.1. Characteristics of the Participants

Forty older people, 20 women and 20 men, participated in the study. As expected,
there were significant differences in body composition variables. The SG had a lower fat
mass when compared to the NSG (p < 0.01). As for RSMI, when stratified by sex, men and
women in the SG had lower RSMI when compared with those in the NSG (p < 0.01). The SG
showed worse performance on the Sit-to-Stand test (5STStest) (p = 0.01) when compared to
the NSG. In both groups, 45% of participants were taking antihypertensives, and 50% and
55% of nonsarcopenic and sarcopenic participants, respectively, were taking no medication
(Table 1).

3.2. Hemodynamic Responses in the Situations with and without WBV in NSG and SG

The HR (Figure 2A), peak HR (Figure 2B), and DP (Figure 2F) variables were similar
at baseline between the groups. WBV exercise increased all the hemodynamic parameters
(during and immediately after) in both groups (SG and NSG). There were no differences
for SBP (Figure 2C), DBP (Figure 2D), and SPE (Figure 2G) for both groups in squatting
exercise interventions with and without WBV. The MAP was similar at baseline between
groups; however, in the NSG there was a significant increase during and immediately after
the squatting exercises with WBV (p < 0.05) (Figure 2E).
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Table 1. Clinical, demographic and functional characteristics of participants at baseline.

Characteristics NSG
(n = 20)

SG
(n = 20) p-Value

Demographic and body composition
Age (years) 72.4 (69.1–75.8) 71.6 (67.7–75.5) 0.73

Sex (Men/Women) 11/9 11/9
BMI (kg/m2) 24.9 (23.7–26.2) 21.2 (20.2–22.2) 0.01

BF (%) 32.8 (29.8–35.8) 31.7 (27.8–35.7) 0.65
Lean mass (kg) 39.4.1 (35.9–42.8) 33.4 (30.1 -36.6) 0.01
Fat mass (kg) 19.1 (17.2–20.9) 15.5 (13.4–17.7) 0.01

RSMI Men 8.0 (7.5–8.6) 6.5 (6.1–6.9) 0.01
RSMI Women 6.4 (5.9–6.7) 5.2 (5.0–5.4) 0.01

Strength and functional tests
SPPB (points) 10.7 (10.3–11.2) 10.1 (9.5–10.8) 0.21

5STS (s) 9.1 (8.3–9.8) 10.9 (9.8–12.1) 0.01
Walking speed (m/s) 1.9 (1.7–2.0) 1.7 (1.5–1.8) 0.06

Handgrip strength (kgf) 34.8 (30.7–39.0) 31.8 (27.0–36.5) 0.31
Men Handgrip strength (kgf) 41.2 (34.5–47.9) 41.2 (38.9–43.4) 0.98

Women Handgrip strength (kgf) 29.6 (26.4–32.8) 24.1 (19.6–28.6) 0.05

Medicines
Antihypertensives 9 (45%) 9 (45%)

Statins 1 (5%) 3 (15%)
Oral antidiabetics 0 (0%) 1 (5%)

Anticoagulant 1 (5%) 0 (0%)
Antirheumatics 0 (0%) 1 (5%)
Antidepressants 1 (5%) 0 (0%)

None 10 (50%) 11 (55%)

Values are means (95% CI), number, and percentage. NSG: Nonsarcopenic group. SG: Sarcopenic group. BMI: Body Mass Index, BF: Body
Fat, RSMI: Relative Skeletal Muscle Mass Index, SPPB: Short Physical Performance Battery, STS: Sit-to-Stand test. Bold values denote
statistical significance at the p < 0.05 level.

3.3. Heart Rate (HR) Behavior after Each Set of Exercises in Interventions with and without WBV
in NSG and SG

The visual analysis of the HR behavior graph demonstrates that in the NSG, the HR
value increased after the first set of squatting exercises with WBV, and this behavior was
generally maintained until the last series of the exercise session (Figure 3A). Only a slight
variation was observed in the sixth set of exercises, with a drop in the HR value. In the
SG, it was observed that the HR value during pre-exercise (rest) was lower, and from the
first set of squatting exercises with WBV there was an increase which remained without a
further fall until the final set of exercises (Figure 3B).

The HR values in the squatting exercises without WBV in both groups remained
lower compared to with squatting exercises with WBV, and few variations were observed
(Figure 3A,B).

3.4. Comparison of Hemodynamic Parameters between the Interventions in the NSG and the SG

To compare changes in hemodynamic variables in response to exercise, delta com-
parisons (during–rest) were performed, as indicated by ∆. There were no differences at
baseline between the NSG and the SG for hemodynamic parameters (HR, peak HR, SBP,
DBP, MAP, and DP); however, the addition of WBV promoted a significant increase in peak
HR in both groups (p < 0.000) when compared with the squatting exercise without WBV. In
the NSG, the addition of vibration to the squatting exercise promoted a significant increase
in HR (p < 0.003), MAP (p < 0.005), and DP (p < 0.003) when compared with the squatting
exercise without vibration (Tables 2 and 3).



Int. J. Environ. Res. Public Health 2021, 18, 11852 7 of 13Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 2. Immediate hemodynamic responses in the interventions with and without whole-body vibration in 
nonsarcopenic and sarcopenic groups. Data are means and standard deviation. Two-way ANOVA for repeated measures 
and post hoc Bonferroni. Significance * difference between “rest”; # difference between “during”, and & difference between 
WBV vs. without WBV (p < 0.05). Difference between the mean values at rest between groups (a # b). (A)—HR: heart rate; 
(B)—peak HR; (C)—Systolic Blood Pressure (SBP); (D)—Diastolic Blood Pressure (DBP); (E)—MAP: mean arterial 
pressure; (F)—DP: double product; (G)—SPE: subjective perception of effort. 

3.3. Heart Rate (HR) Behavior after Each Set of Exercises in Interventions with and without 
WBV in NSG and SG 

The visual analysis of the HR behavior graph demonstrates that in the NSG, the HR 
value increased after the first set of squatting exercises with WBV, and this behavior was 
generally maintained until the last series of the exercise session (Figure 3A). Only a slight 
variation was observed in the sixth set of exercises, with a drop in the HR value. 

Figure 2. Immediate hemodynamic responses in the interventions with and without whole-body vibration in nonsarcopenic
and sarcopenic groups. Data are means and standard deviation. Two-way ANOVA for repeated measures and post hoc
Bonferroni. Significance * difference between “rest”; # difference between “during”, and & difference between WBV vs.
without WBV (p < 0.05). Difference between the mean values at rest between groups (a # b). (A)—HR: heart rate; (B)—peak
HR; (C)—Systolic Blood Pressure (SBP); (D)—Diastolic Blood Pressure (DBP); (E)—MAP: mean arterial pressure; (F)—DP:
double product; (G)—SPE: subjective perception of effort.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. Heart rate (HR) behavior after each set of exercises in situations with and without whole-body vibration in the 
nonsarcopenic (A) and sarcopenic (B) groups. 

In the SG, it was observed that the HR value during pre-exercise (rest) was lower, 
and from the first set of squatting exercises with WBV there was an increase which 
remained without a further fall until the final set of exercises (Figure 3B). 

The HR values in the squatting exercises without WBV in both groups remained 
lower compared to with squatting exercises with WBV, and few variations were observed 
(Figure 3A,B). 

3.4. Comparison of Hemodynamic Parameters between the Interventions in the NSG and the SG 
To compare changes in hemodynamic variables in response to exercise, delta 

comparisons (during–rest) were performed, as indicated by Δ. There were no differences 
at baseline between the NSG and the SG for hemodynamic parameters (HR, peak HR, 
SBP, DBP, MAP, and DP); however, the addition of WBV promoted a significant increase 
in peak HR in both groups (p < 0.000) when compared with the squatting exercise without 
WBV. In the NSG, the addition of vibration to the squatting exercise promoted a 
significant increase in HR (p < 0.003), MAP (p < 0.005), and DP (p < 0.003) when compared 
with the squatting exercise without vibration (Tables 2 and 3). 

Table 2. Comparison of hemodynamic parameters between the interventions in the nonsarcopenic 
and the sarcopenic group. 

Outcomes Intervention NSG SG 

Δ HR, bpm 
Without WBV 1.80 (−0.82–4.43) 3.50 (0.90–6.2) 

WBV 6.30 (3.68–8.92) 7.10 (4.44–9.70) 
Mean Difference  4.50 (0.78–8.20) * 3.50 (−0.177–7.24) 

Δ peak 
HR, bpm 

Without WBV 4.90 (2.20–7.60) 7.20 (4.46–9.94) 
WBV 11.60 (8.86–14.34) 13.55 (10.81–16.30) 

Mean Difference 6.70 (2.83–10.57) * 6.35 (2.47–10.22) * 

Δ SBP, 
mmHg 

Without WBV −2.00 (−6.54–2.54) −1.00 (−5.54–3.54) 
WBV 4.00 (−0.54–8.54) −2.00 (−6.54–2.54) 

Mean Difference  6.00 (−0.42–12.42) 1.00 (−5.42–7.42) 

Δ DBP, 
mmHg 

Without WBV 0.00 (−3.50–3.50) −0.50 (−3.40–2.99) 
WBV 1.50 (−1.99–4.99) 2.00 (−1.50–5.50) 

Mean Difference  1.50 (-3.44–6.44) 2.50 (−2.44–7.44) 

Δ MAP, 
mmHg 

Without WBV 0.17 (−4.80–5.13) 1.17 (−3.80–6.13) 
WBV −10.67 (−15.63–−5.70) 2.66 (−2.30–7.63) 

Mean Difference −10.83 (−17.85–−3.81) * −1.50 (−8.52–−5.52) 
Without WBV 110.60 (−370.36 −591.56) 365.90 (−115.06–846.86) 

WBV 1160.75 (679.73–1641.70) 822.85 (341.90–1303.80) 

Figure 3. Heart rate (HR) behavior after each set of exercises in situations with and without whole-body vibration in the
nonsarcopenic (A) and sarcopenic (B) groups.
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Table 2. Comparison of hemodynamic parameters between the interventions in the nonsarcopenic and the sarcopenic group.

Outcomes Intervention NSG SG

∆ HR, bpm
Without WBV 1.80 (−0.82–4.43) 3.50 (0.90–6.2)

WBV 6.30 (3.68–8.92) 7.10 (4.44–9.70)
Mean Difference 4.50 (0.78–8.20) * 3.50 (−0.177–7.24)

∆ peak HR, bpm
Without WBV 4.90 (2.20–7.60) 7.20 (4.46–9.94)

WBV 11.60 (8.86–14.34) 13.55 (10.81–16.30)
Mean Difference 6.70 (2.83–10.57) * 6.35 (2.47–10.22) *

∆ SBP, mmHg
Without WBV −2.00 (−6.54–2.54) −1.00 (−5.54–3.54)

WBV 4.00 (−0.54–8.54) −2.00 (−6.54–2.54)
Mean Difference 6.00 (−0.42–12.42) 1.00 (−5.42–7.42)

∆ DBP, mmHg
Without WBV 0.00 (−3.50–3.50) −0.50 (−3.40–2.99)

WBV 1.50 (−1.99–4.99) 2.00 (−1.50–5.50)
Mean Difference 1.50 (−3.44–6.44) 2.50 (−2.44–7.44)

∆ MAP, mmHg
Without WBV 0.17 (−4.80–5.13) 1.17 (−3.80–6.13)

WBV −10.67 (−15.63–−5.70) 2.66 (−2.30–7.63)
Mean Difference −10.83 (−17.85–−3.81) * −1.50 (−8.52–−5.52)

∆ DP, mmHg, bpm
Without WBV 110.60 (−370.36 −591.56) 365.90 (−115.06–846.86)

WBV 1160.75 (679.73–1641.70) 822.85 (341.90–1303.80)
Mean Difference 1050.15 (369.97–1730.33) * 456.95 (−223.23–1137.13)

Without WBV 0.00 (−0.05–0.05) 0.00 (−0.056–0.056)
∆ SPE, points WBV 0.05 (−0.006–0.106) 0.02 (−0.03–0.08)

Mean Difference −0.05 (-0.13–0.03) −0.02 (−0.10–0.05)

Values are means (95% CI). HR: heart rate; peak HR: peak heart rate; systolic blood pressure (SBP); diastolic blood pressure (DBP);
MAP: mean arterial pressure; DP: double product; SPE: subjective perception of effort. NSG: Nonsarcopenic group and SG: Sarcopenic
group. Experimental design in randomized blocks (between-intervention, within-intervention, interaction analyses). Two-way ANOVA (2
intervention vs. 2 moments), in both groups (nonsarcopenic and sarcopenic). * Post hoc Bonferroni significance.

Table 3. Effects and interaction values found by Two-way ANOVA analysis of the data presented in Table 2.

Outcomes
Between Groups

(NSG vs. SG)
Within Groups

(Without-WBV vs. WBV) Interaction

p F p F p F

∆ HR, bpm 0.35 0.89 0.003 9.3 0.72 0.13
∆ peak HR, bpm 0.12 2.38 0.000 22.51 0.89 0.02

∆ SBP, mmHg 0.28 1.20 0.28 1.20 0.13 2.36
∆ DBP, mmHg 1.00 0.00 0.26 1.30 0.78 0.08
∆ MAP, mmHg 0.005 8.27 0.06 3.50 0.02 6.12

∆ DP, mmHg, bpm 0.86 0.03 0.003 9.74 0.22 1.50
∆ SPE, points 0.65 0.20 0.18 1.80 0.65 0.20

Legend: HR: heart rate; peak HR: peak heart rate; systolic blood pressure (SBP); diastolic blood pressure (DBP); MAP: mean arterial
pressure; DP: double product; SPE: subjective perception of effort. NSG: Nonsarcopenic group and SG: Sarcopenic group. Experimental
design in randomized blocks (between-intervention, within-intervention, interaction analyses). Two-way ANOVA (2 intervention vs.
2 moments), in both groups (nonsarcopenic and sarcopenic). Bold values denote statistical significance at the p < 0.05 level.

4. Discussion

To the best of our knowledge, this is the first study to investigate the immediate effects
of a WBV session on hemodynamic parameters in the context of sarcopenia. This study
demonstrated that the addition of WBV promoted greater variations in hemodynamic
variables compared to the squatting exercise alone. However, both groups had the same
behavior, proving that it is a safe procedure for individuals with sarcopenia.

As expected, individuals with sarcopenia had low values for anthropometric and body
composition variables, which is a similar result to findings from other studies in different
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populations [42,43], as sarcopenic individuals generally present worse lower-limb muscle
performance [44,45]. Despite the differences found, the results of functional tests are within
normal cutoff values (EWGSOP) [1].

For the execution of the WBV exercise, a frequency of 40 Hz combined with an inter-
mittent duration close to 360 s per session was used. The choice of the vibration parameters
was in line with effective parameters to improve and preserve physical performance in older
people with sarcopenia [46,47]. Moreover, the parameters are preferable for stimulating
muscles while limiting fatigue [27].

The results showed that one exercise session with WBV was able to increase the
mean HR of individuals with sarcopenia and nonsarcopenic individuals. Nonetheless, the
addition of vibration promoted a greater variation in HR when compared to the dynamic
squatting exercise alone. Similar behavior was observed for peak HR, mainly during the
vibration exercise. The findings of this study corroborate the studies of Avelar et al. [26]
and Cochrane et al. [27], in which a significant increase in HR was found during WBV
exercise compared with exercise without vibration in sedentary older people.

These cardiovascular responses seem to be the result of adding vibration, which
induces changes in tissues leading to the activation of muscle spindles, causing a reflex
contraction to modulate the stiffness of the muscles involved known as the tonic vibration
reflex [48]. This promotes an increase in muscle perfusion associated with peripheral
vasodilation where muscle activation occurs, especially in lower limbs. Moreover, the
increase in ejection volume due to the increase in venous return is a factor that may be
related to the regulation of acute adaptations to exercise, such as the increase in cardiac
output and the consequent increase in HR [49,50].

In dynamic exercises, with a greater volumetric load in the left ventricle, the cardiac
and hemodynamic responses are proportional to the intensity and muscle mass involved
in the activity [51]. Our data demonstrated that WBV was performed at an intensity
corresponding to 57% and 59% of the maximum heart rate (HRmax) predicted for age
in sarcopenic older people, for mean HR and peak HR, respectively. These values were
close to those recommended by the American College of Sports Medicine (ACMS) [52] and the
American Heart Association [53], which consider around 60% of HRmax sufficient to promote
cardiovascular physiological changes in sedentary older people [54]. Although exposure
to vibration increased the mean HR and peak HR in both groups, the intensity used was
mild (light exertion intensity, 57–63% of HRmax predicted for age) [52]. These results
are in agreement with a study by Ribeiro et al. [32] that used the same exercise protocol
proposed in the present study, in which the WBV, even at low intensity, promoted similar
cardiorespiratory changes in healthy people and those with fibromyalgia. According to
Licurci et al. [55], older people have a higher risk of developing cardiovascular diseases.
As demonstrated in their study, a single session of WBV promoted an improvement in
heart rate variability. Moreover, they concluded that WBV does not require physical effort,
which makes it potentially beneficial for this population.

In addition to peak HR, SPE and DP are important parameters for monitoring intensity
in different exercise modalities [56]. Although differences were observed in hemodynamic
variables in the present study, these differences did not cause an increase in SPE, whereby
individuals classified the WBV exercise as mild and the vibration did not cause fatigue.
Studies have shown that, in addition to exercise intensity, SPE may reflect sensitivity to
fatigue related to active musculature during exercise [57]. The addition of WBV increased
DP, nevertheless the maximum value for DP during the vibration exercise did not exceed
the myocardial ischemia threshold, which is above 30,000 mmHg·bpm and is considered
as the cutoff point for angina pectoris [58], showing that the acute exercise protocol with
WBV was of low cardiac risk for sarcopenic older people. Moreover, the HR behavior
observed in our study during WBV reinforces the safety of the vibration exercise. All
patients completed the WBV protocol without adverse effects during the intervention. A
study by Aoyama et al. [59] demonstrated that older people with cardiovascular diseases
did not present adverse events after an acute session of WBV.
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In our findings, the addition of vibration did not promote significant changes in
SBP and DBP in either group when compared to the squatting exercise without WBV. In
addition to the low exercise intensity, in each NSG and SG, 45% of the participants were
hypertensive, being equally distributed in the two groups, which may help to explain
the absence of differences in these hemodynamic variables [10]. This result is clinically
important because SBP and DBP are determinants of ventricular load and myocardial
perfusion pressure, respectively, thus they are more relevant predictors of cardiovascular
events [60].

In the NSG, there was a significant increase in MAP during and immediately after
vibration exercise. This increase in MAP can be explained by the vibration, which increases
muscle stimulation [61], associated with the dynamic squatting exercise, and can potential-
ize the effect and significantly stimulate the cardiovascular system, increasing HR, blood
flow [62], and blood volume [63,64]. These increases may be related to the contraction–
relaxation reflex stimulated by vibration, causing greater muscle mass to be recruited (such
as the trunk muscles) to allow the individual to continue exercising [65]. The attenuated
MAP responses in the SG can be explained as a function of low muscle mass, inadequate
supply of blood flow, and, consequently, low capillarization of the skeletal muscle present
in sarcopenia [7].

Despite the promising results, the present study has some limitations. We acknowl-
edged that despite being sarcopenic, the older people participating in the study were living
in the community and were independent, which may have impacted the severity of the
disease, and thus, the magnitude of the physical functions and the effects of the interven-
tions. Therefore, further studies involving a spectrum of sarcopenia-severity patients are
warranted. Although the number of participants was based on sample size calculation, the
low sample size may have influenced the absence of significant statistical differences for
some variables and limited the possibility for extrapolations from the current findings.

The strengths and applications of the findings of this study are that the effects during
and immediately after a short session of low-intensity WBV exercise induces safe changes in
hemodynamic parameters in sarcopenic older people. Moreover, it showed good adherence
from the study participants, and its application in sarcopenic older people who are reluctant
to practice physical exercise may be of interest.

5. Conclusions

WBV exercise induces safe changes in hemodynamic parameters in sarcopenic older
people. The absence of adverse effects of WBV exercise on the cardiovascular system and
fatigue shows that this exercise modality can be considered for sarcopenic older people.
However, the long-term effects of the WBV need to be studied in this population.
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