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Illuminating the primary sequence encryption of enhancers is central to understanding the regulatory architecture
of genomes. We have developed a machine learning approach to decipher motif patterns of hindbrain enhancers and
identify 40,000 sequences in the human genome that we predict display regulatory control that includes the hindbrain.
Consistent with their roles in hindbrain patterning, MEIS1, NKX6-1, as well as HOX and POU family binding motifs
contributed strongly to this enhancer model. Predicted hindbrain enhancers are overrepresented at genes expressed in
hindbrain and associated with nervous system development, and primarily reside in the areas of open chromatin. In
addition, 77 (0.2%) of these predictions are identified as hindbrain enhancers on the VISTA Enhancer Browser, and
26,000 (60%) overlap enhancer marks (H3K4me1 or H3K27ac). To validate these putative hindbrain enhancers, we
selected 55 elements distributed throughout our predictions and six low scoring controls for evaluation in a zebrafish
transgenic assay. When assayed in mosaic transgenic embryos, 51/55 elements directed expression in the central nervous
system. Furthermore, 30/34 (88%) predicted enhancers analyzed in stable zebrafish transgenic lines directed expression
in the larval zebrafish hindbrain. Subsequent analysis of sequence fragments selected based upon motif clustering further
confirmed the critical role of the motifs contributing to the classifier. Our results demonstrate the existence of a primary
sequence code characteristic to hindbrain enhancers. This code can be accurately extracted using machine-learning ap-
proaches and applied successfully for de novo identification of hindbrain enhancers. This study represents a critical step
toward the dissection of regulatory control in specific neuronal subtypes.

[Supplemental material is available for this article.]

In metazoans, precise spatiotemporal patterns of gene expression

are modulated by the exquisite contributions of transcriptional

regulatory sequences. These include enhancers that activate tran-

scription in a manner frequently observed to be independent of

distance, position, and orientation with respect to the promoter

of their target genes (Banerji et al. 1981). Empirically validated

enhancers are typically a few hundred base pairs long and com-

prise binding sites for multiple transcription factors (TFs). In

turn, TFs bound to these sequences also interact with common

co-activators, communicating with the basal transcription ma-

chinery assembled at the promoter, and increasing the rate of

transcription (Bulger and Groudine 2011). Identifying the combina-

torial protein–DNA and protein–protein interactions that determine

spatial and temporal enhancer function is crucial to understanding

how distinct cellular and developmental programs are established.

The systematic discovery of enhancers has proven challeng-

ing, since they are often located at great genomic distances from

the genes they regulate (Lettice et al. 2003). The classical approach

to enhancer identification involves the use of sequence constraint

in the proximity to genes with known biology or expression in

a tissue of interest. However, this approach is limited in that

comparative genomics offers no information regarding the specific

regulatory role of the sequences (Noonan and McCallion 2010).

Recent advances in sequencing technologies have enabled the

identification of protein–DNA interactions and chromatin struc-

tural conformation at the whole-genome level (Barski and Zhao

2009; Visel et al. 2009; Ernst et al. 2011). For instance, the ENCODE

project has annotated ;15 histone variants and modifications, as

well as binding events for ;150 TFs and transcriptional co-factors

in many human cell lines, identifying hundreds of thousands

of sequence intervals harboring active chromatin (The ENCODE

Project Consortium 2007). Despite the unprecedented scale of the

ENCODE project, enhancers identified using the TFs, co-factors,

and histone marks likely account for only a fraction of all tissue-

specific enhancers utilized in any vertebrate (He et al. 2011).

Identified sequences are tissue-specific and cannot be used to infer

the gene regulatory activity in other tissues (Visel et al. 2009). The

complete discovery and validation of enhancers in the human

genome spanning all cell types and developmental stages will re-

main an elusive goal for years to come. Experimental efforts must

be accompanied by large-scale computational predictions that are

capable of deciphering the DNA sequence encoding tissue-specific

regulatory elements and can be applied to annotate complete
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genomes. Accurate computational predictions not only permit

whole-genome annotations of tissue-specific enhancers in a single

species, but they can also be applied to annotation of related spe-

cies in a straightforward manner (Lee et al. 2011). Computational

approaches based on the analysis of sequence motifs shared among

enhancers with the same or similar regulatory activities are not

only capable of accurately predicting enhancers with specific bio-

logical functions de novo, but also contribute to our understanding

of the combinatorial networks of TFs underlying particular spatio-

temporal patterns of gene expression.

We previously proposed a novel computational strategy that

combines comparative genomics, Gibbs sampling, and linear re-

gression to systematically identify heart enhancers in the human

genome (Narlikar et al. 2010). The reliability of our approach has been

evaluated not only computationally, but also in vivo, using transgenic

reporter assays in zebrafish and mouse, with a validation rate of 62%

for our heart enhancer predictions. High-throughput experimental

approaches, such as genome-wide chromatin immunoprecipitation

coupled with massively parallel sequencing (ChIP-seq) against EP300,

a histone acetyltransferase and transcriptional co-activator protein,

predict the genomic location of heart developmental enhancers with

comparable accuracy (Blow et al. 2010). These different strategies

uncover only partially overlapping sets of putative heart enhancers.

Thus, we observed only 17% of the sequences predicted by ChIP-seq

experiments overlapping with our candidate heart enhancer se-

quences (Narlikar et al. 2010). Weak sequence conservation (Blow

et al. 2010) alone does not explain this result, since ;80% of pre-

dictions based on ChIP-seq are conserved between human and

mouse, which is the only evolutionary constraint imposed by our

method. Instead, as current evidence suggests, the small overlap is

more likely to be attributable to the different nature of the en-

hancer signatures captured by each model (He et al. 2011).

In this study we asked whether regulatory signatures (vocab-

ularies) could be uncovered from a more complex cellular sub-

strate, the central nervous system (CNS). In particular, we set out to

determine the sequence basis of regulatory control in the hind-

brain (Hb). The Hb, or rhombencephalon, is the most primitive

part of the human brain, and likely evolved from a homologous

structure present in Urbilateria around 550 million years ago

(Ghysen 2003). It includes the cerebellum, pons, and medulla

oblongata, which are structures that control functions as funda-

mental and diverse as respiration, heart rate, reflex, and voluntary

movements. Impaired Hb development and function are associ-

ated with many disorders such as autism, ADHD (attention deficit

hyperactivity disorder), schizophrenia, cerebral palsy, and various

sleep disorders (Berquin et al. 1998; Aston-Jones 2005; Andreasen

and Pierson 2008). As with other complex diseases and phenotypes,

most variants identified by genome-wide association and sequenc-

ing population studies are found in noncoding regions of the ge-

nome, and therefore suspected to play a role in regulatory control

(Cooper and Shendure 2011). Understanding the gene regulatory

landscape of the human genome in Hb development and

structure is an important step toward uncovering the noncoding

substrate of the genomic component of brain disorders.

We introduce a machine learning approach, based on the

distribution of transcription factor binding sites (TFBSs) in en-

hancers, which are capable of accurately identifying enhancers

whose regulatory control includes the nascent Hb. Our classifier

performs very well in de novo discovery of Hb enhancers, with

88% (30/34) of computational predictions validated in vivo using

transgenic zebrafish reporter assays. We also analyze the impact of

small collections TFBSs on the Hb function of the host enhancers,

and present a map of 40,000 Hb enhancers in the human genome.

In summary, our data show how the application of effective com-

putational methods for enhancer prediction can greatly improve

our understanding of the gene regulatory networks controlling

human development and disease.

Results

Building a training set of Hb enhancers

In order to construct a model for Hb enhancer activity, we first

compiled a data set of 211 enhancers for which Hb activity has

been validated in vivo with reporter assay systems in transgenic

mice and zebrafish (Supplemental Table S1). Most of these se-

quences (n = 192) were obtained from the VISTA Enhancer Browser

(Visel et al. 2007) and an additional 20 enhancers were identified

in our laboratory in the context of ongoing in vivo transgenic

enhancer screens in zebrafish. This data set of Hb enhancers bears

genomic features consistent with other enhancer sets. The GC and

repeat-content of the Hb enhancers are close to the genome averages

(Supplemental Fig. S1). Thirty-nine percent of the Hb enhancers

in this catalog are intronic and 61% are intergenic, displaying a

genomic distribution close to the expected (for comparison, 44%

of enhancers in the VISTA database are intronic). On the other

hand, these Hb enhancers are especially well conserved among

vertebrates—99% of the Hb enhancers are conserved between

human and mouse genomes, and 82% are also conserved between

human and chicken genomes. The average phastCons evolution-

ary conservation score (Siepel et al. 2005) of Hb enhancers is 1.6,

significantly higher than the corresponding scores of the heart and

limb enhancers (0.5 and 1.2, respectively; Wilcoxon rank-sum test

P-value << 0.001).

Enhancers driving expression in the nervous system fre-

quently direct expression in one or more additional tissues or de-

velopmental stages. Eighty percent of Hb VISTA enhancers also

direct transcription in other tissues, such as midbrain (49%),

forebrain (33%), neural tube (43%), and limb (8%), suggesting that

the same elements may play pleiotropic roles in expression, and

thus that regulatory lexicons may not always be discrete.

Designing an enhancer classifier

There is now broad interest in determining the extent to which

computational power can be used to elucidate how transcriptional

regulatory instructions are encrypted in primary DNA sequence.

The increased volume of genomic sequence-based data sets far

exceeds our present capacity to impute biological value to primary

sequence and variation therein, particularly in noncoding se-

quence. We previously developed a linear regression approach that

relies on sequence patterns to accurately predict sequences with

similar regulatory activity in the human genome de novo begin-

ning with a small catalog of known heart enhancers (Narlikar et al.

2010). Since then, a similar method based on support vector ma-

chines (SVMs) and primitive short sequence segments (k-mers)

has also performed well in classifying enhancers from different

expression domains, including forebrain- and midbrain-derived

ChIP-seq data sets (Lee et al. 2011). However, the SVM method was

unable to accurately distinguish between different brain enhancer

data sets. This was likely complicated in part by the vastly in-

creased cellular complexity of the sequence used in their training

sets. Therefore, although both the SVM and the linear regression

method exhibited similar performances (data not shown), we
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opted to combine the specificity of our original classifier with the

advanced statistical model proposed by the latter approach (Lee

et al. 2011). To this end, we constructed an SVM classifier operating

on known TFBSs and overrepresented de novo identified motifs,

which we dubbed EnhSVM (see Methods for details). We then used

this strategy to determine if we could better discriminate among reg-

ulatory catalogs of CNS subdomains and extend this to define a clas-

sifier for the Hb, which currently has no ChIP-seq substrate available.

When applied to the collection of 11 tissue-specific experi-

mentally validated sets of VISTA enhancers (forebrain, midbrain,

hindbrain, neural tube, limb, heart, dorsal root ganglia, branchial

arch, nose, cranial nerve, eye) our classifier was able to discriminate

all enhancer sets from background genomic regions with accuracies

exceeding 60% according to the area under the Receiver Operating

Characteristic (ROC) curve (AUC) measurements in all cases (Sup-

plemental Fig. S2). The vast majority of predictions produced by

these models only overlapped predictions from related tissues, in-

dicating that our method identifies cell type-specific enhancer sig-

natures. CNS enhancer classifiers (forebrain, midbrain, hindbrain,

neural tube) performed better than the rest (Supplemental Fig. S2),

and the Hb classifier displayed the highest AUC accuracy at 91%.

Refinement of a hindbrain classifier

The embryonic Hb forms along the anterior–posterior axis and is

initially segmented into a series of adjacent units called rhombo-

meres. The identity of these rhombomeres is correlated with domains

of Hox gene expression and function, which in turn are determined

by a gradient of retinoic acid along the anterior–posterior axis of

the Hb (Schneider-Maunoury et al. 1998). Thus, the most anterior

rhombomeres contribute to the metencephalon (pons and cere-

bellum), while the most posterior rhombomeres form the myelen-

cephalon (medulla oblongata). In order to determine if we could

further refine our classifier’s predictive capacity, we separated the

data set of Hb enhancers into 161 anterior and 153 posterior Hb

enhancers based on expression patterns driven by the sequences in

embryonic mice at developmental stage E11.5. The purpose of this

step was twofold. First, although these two sets of enhancers are

highly overlapping with ;80% of the sequences driving reporter

expression in both domains, we hypothesized that simple functional

clustering should result in increasingly homogeneous data sets, more

suitable for our method. Second, combinations of multiple classifiers,

in this case trained on different Hb subsets, often outperform single

classifiers (Kittler et al. 1998). Consequently, we trained and tested

three independent Hb classifiers using a standard 10-fold cross-

validation setup on five random partitions of the data, using three

slightly different data sets: the complete Hb data set, the subset of Hb

enhancers that are active in the anterior Hb, and the subset of en-

hancers which functions in the posterior Hb. However, no single

classifier significantly outperforms the others. Indeed, all three Hb

classifiers achieved average AUCs of ;90%, with a true positive rate

(TPR) of at least 47% at a false positive rate (FPR) of 5% (Fig. 1A).

Hindbrain enhancers harbor putative binding sites
for transcriptional regulators of cell identity

Our Hb classifiers rely on sequence motifs representing TFBSs that

facilitate distinction of Hb enhancers from random genomic se-

quences (Methods). We analyzed the discriminatory power of in-

dividual motifs to reveal specific TFs likely to interact with Hb

enhancers. All three Hb classifiers identified motifs that are known

to bind the critical Hb TFs MEIS1, NKX6-1, HOX family members,

and POU protein family members among the 100 most relevant

sequence features for identifying Hb enhancers (Waskiewicz et al.

2001; Nelson et al. 2005; Kiyota et al. 2008). Similarly, binding

motifs known to bind SOX2, a TF which is highly expressed in the

Hb with roles in CNS development, were common to all three Hb

classifiers (Supplemental Table S2; Kelberman et al. 2008). Many of

these motifs are specific to Hb development and function, and

their relevance differs for analogous classifiers trained on data sets

of enhancers specific to other tissues (compared, for example, with

motifs relevant to limb and heart gene expression regulation,

Supplemental Table S2; Supplemental Fig. S3). As expected, dis-

tinct sets of Hb sequences, even if largely overlapping, showed

slight differences in the contribution of each motif to the decision

function of the corresponding classifier. For example, we observed

differences in the relevance of the estrogen receptor ESR1 motif,

which is particularly enriched among enhancers active in the

posterior Hb. Thus, the motif for ESR1 is among the 100 most

relevant sequence features for the Hb classifier focusing on poste-

rior Hb, but not among the 100 most relevant sequence features for

the other two Hb classifiers. Estrogen receptor-related proteins,

which can bind ESR1-like motifs (Vanacker et al. 1999; Giguere

2002), have previously been implicated in anterior–posterior brain

Figure 1. Hindbrain enhancers can be accurately predicted from DNA sequence. (A) Area under the ROC curve (AUC) for three Hb enhancer classifiers
trained on three highly overlapping data sets (enhancers with activity in the anterior Hb, posterior Hb, and whole Hb). AUC values range from 0.5 (random
discrimination) to a theoretical maximum of 1. We tested the performance of the classifiers in a cross-validation setting and obtained values of 0.89
(anterior Hb), 0.92 (posterior Hb), and 0.89 (combined Hb). (B) Overlap among the top-scoring 5% Hb enhancer predictions produced by all three Hb
classifiers. (C ) Fold-enrichment in 787 genes involved in Hb function in the neighborhood of positive predictions or putative Hb enhancers. Putative Hb
enhancers were associated with the closest gene. P-values were computed using Fisher’s exact test.
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segmentation (Bardet et al. 2005). The ability of the Hb classifiers

to recover motifs corresponding to known Hb TFs provides addi-

tional validation of our model. However, we must caution that it is

likely that not all computationally predicted motifs are bound by

a TF. Moreover, even if they are, assigning the identity of the TFs

binding to these motifs is not straightforward, since the binding

affinity catalog of TFs is not complete and many motifs are rec-

ognized by multiple TFs.

In order to determine the specificity of the motifs with high

discriminatory power in the Hb classifiers, we compared them with

those in forebrain, midbrain, and limb enhancer classifiers. These

comparison classifiers were trained using EnhSVM on sequences

identified using ChIP-seq with the enhancer-associated protein

EP300 (Methods). While a negligible fraction (<5%) of EP300 peaks

is shared among all data sets, overlap among EP300 peaks for

closely related tissues, such as forebrain and midbrain, was higher

(15%–20%), consistent with tissue-dependent EP300 binding speci-

ficity. Less than 10% of the motifs are shared among the 50 most

relevant sequence features for the different classifiers. Addition-

ally, <20% overlap with the motifs identified for Hb enhancers—an

observation that highlights the ability of our Hb classifier to specifi-

cally capture the Hb enhancer code. The TFBSs shared by the Hb and

other brain classifiers included binding sites for MEIS1, the NKX,

SOX, and HOX homeobox factors, and ZHX2—developmental TFs

that are characteristic of general brain regulatory pathways.

Genome-wide predictions identify novel hindbrain enhancers

Our training set is largely made up of conserved sequences and brain

enhancers have been shown to frequently be deeply conserved

(Visel et al. 2009), so to obtain a genome-wide map of putative

human enhancers active in the Hb, we restricted our genome scan to

sequences which are conserved among mammals, n = 337,000

(Siepel et al. 2005; Methods). We repeated the scans using the an-

terior Hb (aHb), the posterior Hb (pHb), and the Hb enhancer

classifiers independently. Approximately 40% of the sequences

scored positively for at least one classifier (Supplemental Fig. S4), but

only 12% (40,000) scored positively for all three (we dubbed the

overlap set HbEns, as it represents the most reliable prediction of Hb

enhancers). Seventy-seven of the HbEns (0.2%) are known hind-

brain enhancers from the VISTA Enhancer Browser (Supplemental

Table S3; Visel et al. 2007), and 26,000 (60%) overlap enhancer

marks (H3K4me1 or H3K27ac, Methods). Reflecting the similarity of

the training data, we observed a large overlap among the highest

scoring predictions obtained by each Hb classifier (Fig. 1B). The

overlap correspondingly increases with an increase in score cutoff,

suggesting that sequence signatures for general Hb activity, rather

than anterior or posterior Hb, dominate the decision function of all

classifiers.

The genomic distribution of the HbEns is similar to that ob-

served for the training set. Approximately half of the candidate

enhancers are intronic and half are intergenic (see Supplemental

custom track 1 HbEns). Also, HbEns are fairly uniformly distrib-

uted with respect to the conserved sequences that served as the

basis for the genome scans, with an average of four candidates per

locus and a maximum of 102 in the case of PTPRD, a 2.3 Mb gene

highly expressed in brain and recently associated with ADHD (Elia

et al. 2010). Compared with all scanned conserved sequences,

HbEns are enriched within the loci of genes that are known to play

a role in Hb development (P-value = 2.8 3 10�9, hypergeometric

test) (Supplemental Table S4). Moreover, higher scoring pre-

dictions are located significantly closer to genes associated with Hb

development (Fig. 1C; Supplemental Table S3), indicating that our

method identifies enhancers that are active in the Hb. Although all

HbEns are, by definition, conserved among mammals, their level

of evolutionary conservation is notably elevated. HbEns are sig-

nificantly more conserved with respect to the conserved sequences

that served as the basis for the genome scans (based on average

phastCons scores [Siepel et al. 2005], P-value < 2.2 3 10�16, Wilcoxon

rank-sum test). Additionally, 21% of HbEns are shared with

chicken, 8% with frog, and 3% with zebrafish (Methods). Also, with

respect to the conserved sequences that served as the basis for the

genome scans, conservation in vertebrates is slightly, but signifi-

cantly, enriched among HbEns (P-value is 2.3 3 10�11 for the overlap

with regions that are also conserved in chicken, Fisher’s exact test).

Moreover, we found a statistical enrichment of DNase I hypersensi-

tive sites (HSS) identified in genomic DNA isolated from human fetal

brain among HbEns (1.2-fold enrichment as compared with low-

scoring sequences, P-value < 2.2 3 10�16, Fisher’s exact test), while

we do not observe any enrichment for DNase I HSS in other fetal

tissues, such as heart and lung. Although, the hindbrain is only

a subset of the complex tissue analyzed in fetal brain, and may refer

to a different developmental stage, the enrichment in brain DNase I

HSS corroborates our predictions as tissue-specific enhancers.

Finally, to evaluate the ability of our method to accurately

define tissue-specific sequence patterns, we compared the distri-

bution of predicted Hb enhancers with forebrain, midbrain, and

limb enhancer predictions obtained in the same manner. In par-

ticular, we sought to verify that our predictions are not generally

shared between different tissues, which would suggest a failed at-

tempt to define a tissue-specific classifier. After we trained addi-

tional classifiers on the corresponding EP300 ChIP-seq enhancer

sets, we found that there is <20% overlap between the top 5% of

high scoring predictions (16% forebrain, 13% midbrain, 9% limb).

This overlap is further reduced to 12% when comparing the top 1%

of high scoring predictions. This confirms our hypothesis that

genome-wide predictions of classifiers trained on enhancers with

different activities constitute largely disjoint sets, suggesting that

the corresponding classifiers recognize sequence patterns linked to

different biological functions.

The hindbrain classifier is a highly accurate predictor
of hindbrain activity in zebrafish

In order to determine the accuracy of our method we set out to

determine how frequently our predictions identify active Hb en-

hancers in vivo. In total we selected 55 sequences with a positive

scaled summary Hb (see Methods) for functional evaluation in

a zebrafish transgenic reporter assay (Supplemental Table S5). To

avoid the introduction of biases based on genomic position, we

included both intronic and intergenic sequences residing on 21

different human chromosomes (all except chr10 and Y) (Supple-

mental Table S5). In addition, six low scoring sequences with

a scaled summary Hb score less than zero were selected as likely

‘‘negative’’ predictions. Predicted sequences may not identify all

functional components within a complete enhancer, thus al-

though our predictions were based on 100–200 bp sequence in-

tervals, we designed primers to include ;200 bp flanking each side

of the original sequence. The average size of all assayed amplicons

was 485 bp (Supplemental Table S6).

All sequences were tested for enhancer activity in the Hb us-

ing our established zebrafish transgenesis pipeline (Fisher et al.

2006; McGaughey et al. 2008). We define hindbrain expression as

any expression in the CNS region that is posterior to the midbrain

Development of a hindbrain regulatory vocabulary
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extending through the myelencephalon and delimited by the

anterior portion of the spinal cord. Since the training set sequences

directed expression in a number of non-Hb tissues, we do not re-

quire that expression is restricted to this region, and are therefore

testing the sensitivity of the classifiers to Hb patterns rather than

the specificity. The vast majority of constructs (51/55 putative Hb

enhancers) directed reporter expression in some portion of the

CNS in mosaic zebrafish embryos. Similarly, 6/6 low likelihood

predicted sequences displayed mosaic signals in some part of the

embryo, including portions overlapping the CNS. All embryos that

displayed reporter expression in mosaics were raised to maturity

and crossed with AB zebrafish to determine which sequences could

direct EGFP expression in the Hb. In total we identified two or

more founders for 34 putative Hb enhancers, of which 30 (88%)

founder sets displayed concordant expression in the Hb (Supple-

mental Fig. S5), a predictive success rate that exceeds prior rates of

enhancer validation using both computational predictions as well

as EP300 ChIP-seq-based predictions ([Narlikar et al. 2010], 62%

[Blow et al. 2010], 84%, Fig. 2). In contrast, none of the six low

likelihood controls displayed consistent expression in the Hb

when passed though the germline (Supplemental Fig. S5).

The patterns observed in stable lines displayed marked plei-

otropy in their range of reporter expression both in Hb regions as

well as in non-Hb regions, likely reflecting the heterogeneity of the

training set. Figure 3 provides eight examples that illustrate the

diverse patterns of expression observed in our validation set. Al-

though the models trained on anterior and posterior sets of se-

quences did not appear to be particularly predictive of the relative

position of Hb expression, we found that the resulting patterns

could be grouped into categories displaying similar expression.

HB41, HB34, and HB02 share an expression profile that includes

the cerebellum, part of the anterior Hb, in addition to varying levels

of expression along the length of the Hb (Fig. 3A–C). However,

HB02 also directs non-neuronal expression in the lens of the eye

and myotome (Fig. 3C), which may be a result of position effects

based on the site of amplicon insertion in the zebrafish genome as

it was not observed in all stable lines. Some sequences, like HB15

(Fig. 3D), show expression in the Hb and very little extraneous

expression. In contrast, HB25 and 51 share a different expression

profile displaying strong expression in the dorsal Hb as well as the

tegmentum, a structure in the midbrain that is continuous with

the medulla oblongata (Fig. 3E,F; Thisse and Thisse 2004; Thisse

et al. 2004). HB10 shows distinct expression in the Hb, spinal cord,

and dorsal diencephalon, as well as faint expression in the teg-

mentum and non-neuronal expression in the myotome and fin

buds (Fig. 3G). In contrast to the distinct Hb expression seen in

HB10, many domains within the CNS are faintly marked by reporter

expression directed by HB50, including Hb neurons, cerebellum,

Figure 2. Experimental validation of tissue-specific enhancer candi-
dates in transgenic zebrafish and mouse assays. Our computational ap-
proach trained on small empirical data sets (red bars) resulted in
validation rates comparable to those for ChIP-seq-derived data sets using
an EP300 antibody (gray bars) for the heart. Similarly, the validation rates
of computational Hb classifiers trained on small empirical data sets were
also comparable to those obtained with EP300 ChIP-seq experiments in
other brain tissues.

Figure 3. Predicted enhancers display pleiotropic expression patterns
in the hindbrain. (A–H) GFP reporter expression from eight stable lines
corresponding to Hb predictions showing expression across the Hb as well
as in some non-Hb domains. Dorsal view images were taken at 3 dpf (for
lateral images, see Supplemental Figures), anterior to the left. (A) HB41,
(B) HB34, (C ) HB02, (D) HB15, (E) HB25, (F) HB51, (G) Hb10, (H) HB50.
(Cb) cerebellum; (OV) otic vesicle; (Hb) hindbrain; (L) lens; (My) myo-
tome; (dDi) dorsal diencephalon; (Tm) tegmentum; (CG) cranial ganglia;
(fb) fin bud.
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tegmentum, dorsal diencephalon, and telencephalon (Fig. 3H). The

varied patterns of expression observed within the Hb validation set

are consistent with the diverse nature of the motifs comprising the

classifier. This is expected given that the training set is comprised of

sequences that displayed significant pleiotropy and included se-

quences that directed expression in an array of Hb subdomains, as

well as in non-Hb tissues. Consequently, we expected that TFBSs

contained within these amplicons, and contributing to their pre-

diction, would be diverse. However, we also anticipated that they

would include sites for factors whose endogenous expression over-

lap with domains of reporter expression.

In vivo validated Hb enhancer sequences are enriched for the

100 most relevant motifs for discriminating Hb enhancers com-

pared with random sequences with similar GC content (Supple-

mental Table S7). TFBSs for proteins in the POU, NKX, or PAX

families, as well as LHX3 are especially common in our validation

set (Supplemental Table S8). Consistent with the in silico evalua-

tions of TFBSs identified in HbEns collectively, factors in these

families play critical roles in neuronal development. Furthermore,

the observed reporter expression for each is largely consistent with

previously published expression patterns for one or more of the

corresponding TFs. POU domains are found in a large family of TFs

and bind the consensus sequence ATGCAAAT (Verrijzer and Van

der Vliet 1993). They are expressed mainly in the CNS, and act as

regulators of neurogenesis in zebrafish (Spaniol et al. 1996). Con-

sistent with these data, POU family TFBSs were the most commonly

identified sites in our validation set and showed an enrichment of

2.6 over GC matched control sequences (P-value = 0.01, Fisher’s

exact test) (Supplemental Table S8) and many of our elements share

expression domains with POU factors. NKX proteins are necessary

for the proper development of motor neurons in the hindbrain

(Pattyn et al. 2003) and consistent with this role we see a significant

enrichment (2.4, P-value = 0.005, Fisher’s exact test) for NKX family

TFBSs in our validated set of Hb enhancers. Similarly, the PAX gene

family similarly comprises a large group of highly conserved TFs

required for neuronal development (Wang et al. 2010; Thompson

and Ziman 2011). Furthermore, 10/30 validated predictions con-

tained at least one PAX family motif (enrichment of 1.8 as com-

pared with random genomic sequences with similar length and

GC-content, P-value = 0.05, Fisher’s exact test). Finally, a number

of sequences share in common an LHX3 motif that binds a LIM

domain TF with a role in neuronal specification (Cepeda-Nieto

et al. 2005; Gadd et al. 2011), resulting in an enrichment of 4.6

(P-value = 0.0002, Fisher’s exact test). HB25 and HB51 both

contain an LHX3 TFBS and share many overlapping domains of

reporter expression, including in the Hb and spinal column,

which is consistent with endogenous lhx3 expression (Fig. 3E,F;

Supplemental Fig. S5; Thisse and Thisse 2004; Thisse et al. 2004).

In contrast to the HbEns sequences tested, only one of the low

likelihood controls contained any of these motifs, supporting

their high predictive power in our model. Taken collectively,

these data provide compelling evidence that the validated se-

quences may play important roles in regulating transcription in

the developing Hb.

Enhancer activity is due to the presence of specific
transcription factor motifs

Our data suggest that TFBSs contributing to the classifier might

independently or collectively explain aspects of the observed reg-

ulatory control of the sequences within which they reside. We

selected two sequences with Hb regulatory control (HB01 and

HB16) to examine more closely, surveying the distribution of

TFBSs within each predicted sequence. We then identified smaller

sequence fragments for analysis in zebrafish based on the cluster-

ing of TFBSs therein.

The full-length HB01 sequence directed distinct expression in

the rhombomeres, as well as the midbrain Hb boundary, cranial

ganglia, and dorsal diencephalon (Fig. 4B,E). We amplified two

smaller fragments (HB01_I and HB01_II) from within this full-

length sequence based on the pattern of TFBSs clusters. HB01_I

is a 56-bp sequence containing motifs for PITX2, CDX, CEBPG,

NKX3-1, and BCL6 (Fig. 4A). Upon passage through the germline,

HB01_I displayed broad reporter expression in the CNS (Fig. 4C,F).

This pattern encompassed the expression domains marked by the

full-length HB01. The expanded expression domains marked by

HB01_I could reflect the increased efficiency of TFBSs being placed

closer to the minimal promoter (Nolis et al. 2009). It may also reflect

the absence of other regulatory sequence motifs within or beyond

the initial predicted interval which otherwise act in the full-length

construct to moderate transcriptional activity (Gompel et al. 2005).

Notably HB01_II, which is 93 bp and contains motifs for HNF3,

POU2F1, NKX2-5, MYOG, SOX10, and HMGA1 (Fig. 4A), did not

show any mosaic expression, and was determined to be insufficient

for enhancer activity in the Hb in this assay (Fig. 4D,G).

Similarly, HB16 displays prominent expression in the dorsal

Hb and fainter expression in the ventral Hb and lateral tegmentum

(Fig. 4I,M). Once again we amplified three short fragments from

within the initially predicted sequence based on TFBS clusters (Fig.

4H). HB16_I is a 29-bp fragment containing a GATA1 motif;

HB16_II is 54 bp in length and contains MEOX2, NKX6-1, EN1,

TAL1, NKX2 family, JUN, and PAX4 motifs; and HB16_III is a 23-bp

fragment encompassing a HOXA4 motif (Fig. 4H). Upon passage

through the germline, both HB16_I and HB16_II directed expres-

sion in the Hb (Fig. 4J,K,N,O). In contrast, HB16_III only drove

expression in the myotome of stable lines (Fig. 4L,P).

Notably, the reporter expression in the Hb neurons and the

lateral tegmentum directed by HB16_I are similar to those of the

endogenous gata3 (Fig. 4J,N; Thisse and Thisse 2004; Thisse et al.

2004). This pattern is further consistent with expression directed

by full-length HB16. Furthermore, HB16_II directs expression

along the entire length of the ventral and medial Hb and spinal

column (Fig. 4K,O). As such, it overlaps much of the Hb domain

marked by HB16 and resembles the endogenous expression of nkx6

family, nkx2 family, and tal1 RNA (Thisse and Thisse 2004; Thisse

et al. 2004; Binot et al. 2010). The observed tegmental reporter

expression is also consistent with endogenous expression of tal1

(Thisse and Thisse 2004; Thisse et al. 2004). A potential role for the

JUN TFBS identified in HB16 is not immediately obvious but these

factors display much broader expression domains throughout the

CNS and may in part account for expression domains extending

dorsally. Although not conclusive, these data suggest that the ex-

pression of TFs corresponding to motifs contributing to our classifier

are consistent with their predicted biological roles in modulating

expression in the Hb and show that enhancers can be further bro-

ken down into their component TFBS fragments and continue to

faithfully drive reporter expression in the predicted tissue.

Discussion
The exquisite orchestration of transcriptional control is essential for

the normal development and homeostasis of multicellular organ-

isms. Systematic identification of sequences responsible for these

activities, however, has proven a significant challenge. Although
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Figure 4. TF clustering reveals functional sequence domains. (A,H) UCSC Genome Browser custom track showing injected construct, classifier predicted
HB sequence, and fragments tested for Hb expression (black bars, top to bottom). Colored bars mark TFBS for various factors. (B–G, I–P) GFP reporter
expression observed with each sequence (lateral view, top; dorsal view, bottom). All images taken at 2 dpf, anterior to the left. (A) HB01 custom track with
two subcloned fragments, (B) full-length HB01, lateral view, (C ) HB01_I, lateral view, (D) HB01_II, no G0 GFP reporter expression observed, (E) full-length
HB01, dorsal view, (F) HB01_I, dorsal view, (G) HB01_II, no G0 GFP reporter expression observed. (H) HB16 custom track with three subcloned fragments,
(I) full-length HB16, lateral view, (J) HB16_I, lateral view, (K) HB16_II, lateral view, (L) HB16_III, lateral view, (M) full-length HB16, dorsal view, (N) HB16_I,
dorsal view, (O) HB16_II, dorsal view, (P) HB16_III, dorsal view. (CG) cranial ganglia; (M-H) midbrain hindbrain boundary; (Hb) hindbrain; (Fb) forebrain;
(Tm) tegmentum; (My) myotome; (L) lens.



the encryption of regulatory instructions in DNA sequence is well

established, the absence of an established vocabulary has precluded

the prediction of biological activities rendered by noncoding func-

tional genome components based on inspection of the primary

sequence. Two strategies commonly employed in the identification

of transcriptional enhancers are evolutionary sequence constraint

and ChIP-seq. Although sequence constraint has been used with

significant success, it can impute little regarding the likely biological

activity of any identified sequence. Similarly ChIP-seq profiling of

TFs, histone modifications, and transcriptional co-activators such as

EP300 has recently emerged as a powerful tool for the identification

of enhancers active in various tissues; however, not all enhancers are

captured by affinity-based methods, and not all cell types are ame-

nable to these assays. Recent efforts to identify sequence motifs

(active TFBS) have proven increasingly powerful, allowing the elu-

cidation of early language structure for regulatory control in specific

tissues (Narlikar et al. 2010; Lee et al. 2011).

We have integrated these computational strategies, employing

machine learning to train a sequence-based classifier on a set of

largely published in vivo validated enhancers in the Hb. The result is

a highly accurate predictor of enhancer activity in the Hb. When

applied to the human genome, 88% (30/34) of sequences demon-

strate Hb regulatory control when assayed in vivo (stable zebrafish

transgenesis). In contrast, even among sequences identified as being

deeply conserved only ;8% were observed to drive expression in

the Hb (Pennacchio et al. 2006). The motifs identified by our clas-

sifier frequently represent TFBSs for factors with known roles in

regulating transcription in the Hb and with endogenous expression

patterns overlapping with that of reporter expression. Furthermore,

we show that, consistent with our classifier, clusters of TFBS (;30–

100 bp) contributing to predicted Hb regulatory control can account

for aspects of Hb regulatory expression observed in the original

(;500 bp) sequence from which they were derived.

Although the vocabulary described is an effective predictor of

Hb activity, we observed pleiotropy among Hb domains marked by

reporter expression as well as expression in domains outside the

Hb, including non-neural tissues. These observations are consis-

tent with the complexity of vertebrate enhancers known to display

a broad expression pattern across multiple tissues (Visel et al.

2007). It is particularly important to keep in mind that the Hb

enhancers in our training data set were not exclusively expressed

in the Hb, but largely displayed multi-tissue expression patterns.

From the sequence analysis perspective, our training set contained

a large group of Hb enhancers and several smaller clusters of other

expression subdomains. All non-Hb signatures in our training

created a plethora of misleading signals confusing the classifier.

However, the high Hb validation rate of HbEns reflects the ability

of the classifier to sensitively extract the Hb sequence encryption

from the noisy input data set. Knowing that Hb sequence en-

cryption often resides within enhancers with broad expression

patterns and does not represent a code of exclusive Hb expression,

we were not surprised to observe that expression is not specific to

Hb in experimentally validated HbEns.

As additional support for the utility of our model, we find that

our predicted Hb enhancers are enriched for a particularly large

number of CNS TFBSs compared with TFs known to be active in other

tissues. Our experimental data also suggest that Hb enhancers can

be divided into independent functional subunits, here tested as TFBS

clusters, with similar activities but different sequence structures—an

observation that highlights flexibility of the Hb sequence encryption

with potential for adaptation to additional functions and the use of

different activation mechanisms. The observed biological behaviors

of these TFBS clusters were consistent with the known patterns of

expression of TF family members predicted to bind them. This raises

the possibility that retraining algorithms using subsets of training or

predicted sequence sets may define the sequence grammar specific to

individual Hb sub-domains and cell types.

Computational methods are becoming increasingly powerful

tools for enhancer prediction. Experimental validation rates for

computer learning algorithms are comparable to those achieved

by experimental ChIP-seq predictions and can be similarly inde-

pendently correlated with the presence of features known to be

present in active enhancers such as known TFBS motifs, specific

histone marks, and increased conservation. This study demon-

strates that, in addition to the sequence substrate provided by

genome-wide ChIP-based strategies, the published literature may

serve as a valuable entry point for such analyses of regulatory ele-

ments. We demonstrate that even a relatively small curated exper-

imental data set can provide significant insight into the regulatory

lexicon of a highly complex anatomical structure like the Hb, and

that this vocabulary can likely be dissected and improved in sub-

sequent cycles of investigation and/or by the refinement of the

substrate on which it is trained. Therefore, this study adds to the

ongoing project of genome annotation by identifying sequences

that have a functional role in the Hb. The development of regula-

tory language is a pivotal step in the prediction of functional vari-

ation by inspection of the primary sequence and as such this study

makes a significant first step in the development of a Hb lexicon.

Methods

Tissue-specific enhancer models
We extracted 771 human sequences from the VISTA Enhancer
Browser (Visel et al. 2007) with validated in vivo enhancer activity
in 23 tissues. We were able to retrieve at least 29 sequences each for
11 of these tissues.

Hindbrain enhancer models for mouse, chicken, frog,
and zebrafish

Orthologous regions of the human Hb enhancer training set
were identified using the liftOver utility from the UCSC Genome
Browser (Karolchik et al. 2008). We discarded mapped sequences
longer than 5 kb. We successfully mapped 100%, 86%, 74%, and
47% of the 211 Hb enhancers onto the mouse (mm9), chicken
(galGal3), frog (xenTro2), and zebrafish (danRer5) genomes re-
spectively (See Supplemental custom tracks 2–5).

Forebrain, midbrain, and limb enhancers identified
using ChIP-seq

Genomic regions enriched for EP300 binding in mouse forebrain,
midbrain, and limb tissues were extracted from Supplemental Ta-
bles 2–4 of Blow et al. (2010). We identified orthologous regions of
the mouse coordinates with the liftOver utility from the UCSC
Genome Browser (Karolchik et al. 2008). Sequences longer than
1 kb were discarded, resulting in a total of 2199 forebrain se-
quences, 1909 midbrain sequences, and 3155 limb sequences.

Background genomic sequences

For each enhancer in the training set, 10 controls with similar
length, GC, and repeat-content were randomly drawn from the
noncoding portion of the corresponding genome.
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TFBS mapping

Putative TFBSs were identified by searching the sequences with
MAST (Bailey and Elkan 1994) for 775 motifs in TRANSFAC Release
2009.2 (Matys et al. 2006) and JASPAR (Bryne et al. 2008). MAST
was run independently on each individual sequence with default
setup and parameters.

TF binding to de novo motifs

The identity of the TFs binding to the de novo motifs was queried
using STAMP (Mahony and Benos 2007) and JASPAR (Bryne et al.
2008).

Association between TFs and TFBSs

TF annotation for known TFBSs was obtained from TRANSFAC,
JASPAR, and the Broad Institute MsigDB database (Subramanian
et al. 2005).

TFBS enrichment

Overrepresented TFBSs were determined by comparing the occur-
rence of the motifs among query sequences and background ge-
nomic sequence, and applying Fisher’s exact test. We used a P-value
threshold of 0.05. When indicated, we adjusted the P-values for
multiple testing using the procedure suggested by Benjamini and
Hochberg (1995).

Enhancer models

Each enhancer model was trained to distinguish between enhancers
specific for a given tissue and other noncoding sequences, randomly
drawn from the noncoding human sequence, with length, GC, and
repeat-content distributions similar as those observed for the en-
hancers. The decision of the corresponding classifier was based on
the presence or absence of two different types of motifs: 775 cor-
responding to binding specificities of vertebrate TFs compiled in
public databases (TRANSFAC and JASPAR [Matys et al. 2003; Bryne
et al. 2008]), and 20 short sequence patterns enriched among the set
of enhancers, identified with PRIORITY (Narlikar et al. 2007), which
should account for the binding of unknown TFs or TFs with un-
known binding specificities. Thus, each sequence was represented
as a feature vector indicating the number of matches per base pair to
each of these motifs, computed using MAST (Bailey and Gribskov
1998). We built the classifier using linear SVMs (implemented in
libsvm [Chang and Lin 2011]), assuming no prior knowledge of TFs
active in the different tissues, with the goal being to discover them
using the feature weights learned by the classifier.

Extracting homogeneous Hb enhancer data sets

Hb enhancers tend to drive expression in multiple tissues, and
even show heterogeneous patterns of expression within the Hb. As
a result it is unlikely that we would be able to identify a unique set
of sequence features representing all Hb enhancers. Thus, similarly
to the approach taken in Narlikar et al. (2010), we selected a large
subset of these sequences sharing homogeneous sequence features
as an attempt to reduce the sequence heterogeneity among the 212
human Hb enhancers. For this purpose, we repeated the 10-fold
cross-validation on five random partitions of the Hb enhancer data
set as well as on that of the corresponding controls, and selected
only those Hb enhancers that were classified as such in at least 50%
of the times in which they were tested for the final training set.
Therefore, the final human Hb enhancer data set contained 124
sequences.

Performance assessment of enhancer classifiers

The performance of the classifiers was evaluated in a 10-fold cross-
validation, using the area under the ROC curve (AUC). AUC values
range from 0.5 (random discrimination) to a theoretical maximum
of 1.

Linear SVMs

Training a linear SVM classifier is equivalent to solving the following
constrained optimization problem (Shawe-Taylor and Cristianini
2002):

Given the training samples T = xi; yið Þjxi 2 Rp; yi 2 �1;1f g
� �n

i =1
,

find the values of w, b and ji that minimize

1

2
wT �w + C +

n

i = 1

ji

satisfying the constraints

wj $ 0

and

ji $ 0 8i = 1; . . . ;n:

The decision function of the classifier for an unknown sample
x is given by

wj < 0:

The dual form of this problem is:
Giventhe trainingsamplesT = xi;yið Þjxi 2 Rp;yi 2 �1;1f g

� �n

i = 1
,

find the values aif gn
i = 1 that maximize

+
i

ai �
1

2
+
n

i =1

+
n

j =1

aiajyiyjx
T
i xj

satisfying the constraints

0 # ai # C 8i = 1; . . . ;n

and

+
n

i =1

aiyi = 0:

Samples xi for which ai $ 0 are called support vectors.
The vector w can be computed in terms of ai as

w = +
n

i =1

aiyixi

and, therefore, contains the weighted features of the support
vectors.

SVM parameter selection

Linear SVMs have only one parameter, C, which controls the trade-
off between errors on the training data and margin maximization.
We found that the performance of the Hb enhancer classifier was
relatively stable with respect to changes in C. We estimated C based

on the training data as

�
1

n
+
n

i =1

xij j
��2

.

Additionally, because the training data are unbalanced (there
are 10 controls for each enhancer sequence), misclassifications are
penalized differently depending on the class of sequences (controls
and enhancers), proportionally to the total number of sequences
in each class.

Motif rankings

After obtaining a linear SVM model, the weight vector w can be
used to decide the relevance of each feature (Guyon et al. 2002).
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The larger wj

�� ��, the more important role of feature j in the decision
function. We rank features—in our case, motifs—according to wj

�� ��.
We exclude de novo motifs from these ranks unless stated other-
wise. It is important to note that this interpretation for w is only
valid for linear SVMs.

Hindbrain genes

We identified a set of 787 human genes likely to be involved
in Hb function by retrieving genes with relevant phenotypes
from the Online Mendelian Inheritance in Man (OMIM) data-
base (Amberger et al. 2009) and the corresponding orthologs of
genes with pertinent annotation in the Mammalian Phenotype
(MP) Browser at the Mouse Genome Informatics website, The
Jackson Laboratory, Bar Harbor, Maine (http://www.informatics.
jax.org).

Genome scans

We applied three human Hb enhancer models trained on (1) the
complete Hb data set, (2) the subset of Hb enhancers that are active
in the anterior Hb, and (3) the subset of enhancers which functions
in the posterior Hb to scan sequences highly conserved across
mammals using the Most Conserved Elements database from the
UCSC Table Browser (Siepel et al. 2005). Noncoding conserved
sequences were determined based on annotation in UCSC Known
and RefSeq (Hsu et al. 2006; Pruitt et al. 2009). Sequences within
100 bp of each other were clustered together and clusters <100 bp
were excluded from the analysis. Using classifiers trained on
the orthologous sequences of the complete data set of human
Hb enhancers, we utilized an analogous procedure to predict
Hb-specific enhancers in the mouse, chicken, frog, and zebrafish
genomes.

Scaled summary Hb score

Each scanned sequence is given three scores, scoreanterior Hb,
scoreposterior Hb, and scoregeneral Hb; by the classifiers trained on the
subset of Hb enhancers that are active in the anterior Hb, the
subset of enhancers which functions in the posterior Hb, and
the complete Hb data set, respectively. The scores are distributed
in the range [�17,15], [�20,15], and [�22,15], respectively (see
Supplemental Fig. S4). Scores >0 correspond to putative en-
hancers active in the anterior Hb, in the posterior Hb, and in the
(general) Hb, respectively. Approximately 130,000 sequences
scored >0 for at least one of the classifiers, while 40,000 sequences
scored >0 for all three. Scores for all classifiers are subsequently
linearly scaled according to

score� =
� 1� score�scoremin

�scoremin

� �
; if score < 0

score
scoremax

; if score $ 0

(
;

where scoreminand scoremax are the minimum and maximum scores
obtained in the genome-wide scan, respectively.

Finally, we define the scaled summary Hb score as the maxi-
mum between score�anterior Hb, score�posterior Hb, and score�general Hb.

Association between enhancer predictions and loci

For defining gene loci in the human genome, we used the
knownGene and RefSeq annotation tracks available at the UCSC
Genome Browser (November 2011). Each locus was defined by
one or more overlapping transcripts, prohibiting overlap among
different loci. Putative Hb enhancers were associated with loci
based on genomic proximity. Thus, each putative Hb enhancer is
assumed to target the genes in the nearest locus.

DNase I hypersensitivity

We compared our putative Hb enhancers with human fetal brain,
heart, and lung DNase I hypersensitive peaks from http://nihroadmap.
nih.gov/epigenomics/.

H3K4me1 and H3K27ac

H3K4me1 and H3K27ac peaks were downloaded from http://
genome.ucsc.edu/ENCODE/ (The ENCODE Project Consortium
2011) and correspond to multiple human cell lines (all available to
date).

In vivo validation

Candidate Hb enhancers for validation were selected randomly
from positively scoring sequences with rank less than or equal to
;40,000. Controls were selected among sequences that scored
among the bottom 1% (i.e., rank greater than or equal to ;334,000)
for all classifiers. Zebrafish were maintained as previously described
(Kimmel et al. 1995; Westerfield 2000). Predicted enhancers were
amplified by PCR from human genomic DNA and cloned using
Gateway Technology (Invitrogen). PCR fragments were TA-cloned
into the pCR8/GW/TOPO vector (Invitrogen) then TOPO-cloned
using attL1 and attL2 sites into the pT2cfosGW vector for injection
into zebrafish embryos. Short fragment sequences for HB01 and
HB16 were synthesized as double-stranded oligos, A overhangs
added, then cloned as predicted enhancers. At least 100 embryos
were injected per construct at the two-cell stage with tol2 trans-
posase as previously described (Fisher et al. 2006). Injected em-
bryos were screened for GFP expression in the CNS at 24 and
48 hpf. Those showing CNS expression were raised to adulthood
and crossed to AB zebrafish. G1 embryos were screened for Hb
expression at 24, 48, and 72 hpf. GFP positive embryos were live-
imaged at 72 hpf using a Carl Zeiss Lumar V12 Stereo microscope
with AxioVision version 4.8 software. Embryos were fixed in 4%
PFA (Sigma) overnight then post-fixed in 100% acetone (JT Baker)
and washed in PBS with 0.5% Tween. Embryos were blocked in
10% goat serum and 1% BSA for two hours, then incubated with
chicken anti-GFP (Invitrogen A10262, 1:1000) overnight. After
washing, Alexa Fluor 488 goat anti-chicken IgG (Invitrogen
A11039, 1:3000) was added and incubated overnight. After
washing, embryos were stored in 80% glycerol at 4°C for future
imaging.
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