
CF = cystic fibrosis; CFTR = cystic fibrosis transmembrane conductance regulator; PAGE = polyacrylamide gel electrophoresis; wt = wild-type.
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Introduction
Interest in glycosylation has been rekindled in the field of
CF research since the identification of the CF gene, which
encodes the CFTR membrane glycoprotein [1]. The
renewed interest has been stimulated by recent develop-
ments resulting from attempts to reconcile the proposed
function of CFTR with phenomena that are known to be
involved in the pathogenesis of the disease. Before the
identification of the CFTR gene, many laboratories had
described alterations in the glycosylation of CF glycopro-
teins, but no connection between the altered glycosylation
and the pathogenesis of CF was established (for review
[2]). This renewed interest fortuitously coincides with the
development of automated methods for analysis of the
extremely small amounts of relevant oligosaccharides in
biologic systems [3].

For the past decade, reports have described CFTR as exist-
ing in three different forms, depending on glycosylation:
nonglycosylated; core glycosylated; and complex glycosy-
lated, fully mature. It has been reported that only the fully
mature form is trafficked to the surface membrane, where it
functions as a chloride channel. In some of those studies
[4–7] the data have not been completely convincing,
although the results have been widely accepted. Neverthe-
less, the most common mutation ∆F508 has been labeled a
processing mutation. It has been reported that, at 26°C,
∆F508 CFTR travels to the surface, where it has chloride
channel activity [8]. ∆F508 CFTR is also active when recon-
stituted into a lipid bilayer [9]. Indeed endogenous ∆F508
CFTR has been identified in the surface membranes of CF
cells in culture [10–15]. As yet, no one has directly investi-
gated the carbohydrate structure of CFTR, although many
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reports have appeared regarding a glycosylation phenotype
of material from CF sources (for review [2]). The CF glyco-
sylation phenotype, which is modulated by CFTR, is
expressed as decreased sialic acid and an increased
amount of fucose linked α1,3 to N-acetyl glucosamine [16].

Oligosaccharides of cystic fibrosis
transmembrane conductance regulator
Recently, O’Riordan et al [17] addressed glycosylation of
CFTR directly. Following their earlier studies [18] on the
isolation of CFTR from over-expressing Chinese hamster
ovary and insect cells, CFTR was isolated from several cell
types that were transfected with wtCFTR and that over-
expressed it. The over-expression provided those investiga-
tors with sufficient CFTR to analyze the oligosaccharide
residues in more detail. After immune precipitation the
oligosaccharides were released from CFTR with
N-glycanase and/or endo-β-galactosidase, and were
further separated or examined using polyacrylamide gel
electrophoresis (PAGE) and lectin (Datura stramonium
agglutinin and Maackia amurensis agglutinin) affinity
overlay. N-glycanase releases N-linked oligosaccharides
from the protein, whereas endo-β-galactosidase cleaves
polylactosamine containing Galβ1,4GlcNAcβ1,3 repeating
units. They also used fluorophore-assisted carbohydrate
electrophoresis analysis, a highly sensitive method that pro-
vides structural information on purified oligosaccharides.

Interestingly, those investigators found that fully mature,
immunopurified CFTR from Chinese hamster ovary cells
and a mammary tumor cell line (C127) transfected with
wtCFTR contained polylactosamine. T-84 cells (a human
colon carcinoma cell line) that were not transfected also
had polylactosamine-containing CFTR. The significance of
polylactosamine/CFTR would be much greater if endoge-
nous CFTR were extracted from primary human tissue.
Unfortunately, the three cell lines have transformed or
tumor properties, and polylactosamine is known to occur in
tumor cells [19] and Chinese hamster ovary cells [20].
Perhaps this is precisely why the authors did not expand on
a relationship to the three size classes of CFTR. In addition,
transformed and tumor cells also have an abundance of tri-
antennary and tetra-antennary oligosaccharides, so this
may have influenced their results [21]. A case in point is
the analysis of CFTR from insect cells, Sf9, which were
infected with wtCFTR/baculovirus. In this case the authors
reported that CFTR contained the insect glycosylation phe-
notype and was not fully glycosylated. As the authors
pointed out, the glycosylation phenotype is influenced by
the host’s enzymes; however, C127 cells transfected with
∆F508 CFTR showed the PAGE position of core glycosy-
lated CFTR. If confirmed that CFTR isolated from C127
cells after transfection with ∆F508 was core glycosylated,
then one has to assume that factors in addition to the host
enzymes influence glycosylation of transfected cells.
However, this mutant CFTR was not analyzed.

∆∆F508 cystic fibrosis transmembrane
conductance regulator
O’Riordan et al [17] pointed out that the elongation of
polylactosamine, in the Golgi at 21°C [22], correlates with
the fact that ∆F508 will traffic to the membrane and have
chloride channel activity at a reduced temperature [8].
They suggest that, at lower temperature, ∆F508 arrives at
and trafficks through the Golgi at a slow rate and is poly-
lactosaminylated. Another possibility is that an existing
polylactosamine is elongated, and the glycosylation
pattern of ∆F508 CFTR must be examined further to differ-
entiate between these mechanisms. In recent studies,
which are yet to be confirmed, a tissue-specific variation of
∆F508 CFTR expression from null to apparently normal
amounts indicated that ∆F508 CFTR maturation can be
modulated, suggesting that determinants other than CFTR
mislocalization may play a role in ∆F508 CF respiratory
and intestinal disease [23]. Trafficking between the endo-
plasmic reticulum and the Golgi appears more complex
than was originally believed, and it has recently been pro-
posed that wtCFTR follows a unique pathway [24].

In investigations into CFTR in immortalized airway epithelial
cells, Wei et al [10] compared morphologically identifiable
surface membranes with total cell membrane preparations
containing intracellular membranes. Surface membrane
CFTR had lower turnover defined by pulse/chase ratios
than that of the total cell membrane preparations. More-
over, in the presence of 50 µmol/l castanospermine, an
inhibitor of processing α-glucosidases that prevents
binding to calnexin, a more rapid turnover of mutant CFTR
was found in the total cell membrane preparation, whereas
wtCFTR had a slower response. The results are compati-
ble with a pool of CFTR in or near the surface membranes
that has an altered turnover in CF and a glycosylation-
dependent alteration in the processing of mutant CFTR
[10]. It will be interesting to determine whether the surface
membrane population of CFTR molecules is for use exclu-
sively as channel proteins, whereas within the cell more
than one function may be attributed to the protein.

A hypothesis has been proposed [25] that wtCFTR, by
virtue of its proton pump function, contributes to Golgi
processing and sorting [26] in airway epithelial cells. The
hypothesis is supported by recent reports that the relevant
activities of glycosyltransferases and levels of mRNA are
the same in both CF and non-CF airway cells, despite the
differences in the amounts of fucose and sialic acid in ter-
minal positions in their cell surface membrane glycopro-
teins [16,25]. ∆F508 CFTR is proposed to affect
glycoprotein processing in the Golgi, causing faulty com-
partmentalization of the glycosyltransferases, which
results in the CF glycosylation phenotype. That is, if α1,3-
fucosyltransferase is sorted to a compartment positioned
prior to α1,2-fucosyltransferase and sialyl transferase,
then the activity of the latter two enzymes would be
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decreased because the same substrate is required for all
three enzymes [27]. The glycosylation pattern of wt and
mutant CFTR could influence these events.

It has been shown with the use of over-expressing mutants
that the features that determine the processing of CFTR are
distinct from those that determine channel function [28].
Cunningham et al [29] postulated that the regulatory sites
for CFTR trafficking must be either at the trans-Golgi
network or peripheral vesicular pools, because the move-
ment of CFTR out of the trans-Golgi network appears to
control the onset of CFTR-mediated chloride secretion in a
Brefeldin-sensitive pathway [30]. It has been proposed that
a difference between CF and non-CF is the inability of
∆F508 CFTR to break out of a recycling pathway between
surface membrane and a closely linked compartment [10].
Prince et al [31] reported a lack of internalization of wtCFTR
with the addition of cAMP. That hyposialylation occurs in CF
(for review [2,32]) may suggest that mutant CFTR does not
return as efficiently to the trans-Golgi in its recycling
pathway. The lack of proper oligosaccharides on the protein
may cause this stable form of CFTR to be more sensitive to
proteases, and hence to be degraded. It is also possible
that both function and localization could independently vary
in different cell types and different organs, accounting for
the multiple phenotypes that characterize CF.

Conclusion
The methods utilized by O’Riordan et al [17] have given the
most complete information on the glycosylation of CFTR to
date. Those investigators should be congratulated and
encouraged to pursue these studies with endogenous
human CFTR. The micromethods for oligosaccharide analy-
sis are in place, and both CF and non-CF airway tissues
are available. When these analyses are complete, earlier
studies can be reassessed and this will provide a more
cohesive picture of the relationship of CFTR to glycosyla-
tion and of how CFTR is affected by glycosylation.

The key roles of oligosaccharide structures in some
disease processes have recently been emphasized [3,33].
As pointed out by O’Riordan et al [17], the glycosylation
of CFTR has potential implications for the treatment of CF.
The determination the oligosaccharide structures of both
mutant and wtCFTR from primary human tissue should
provide new insights into the pathogenesis of CF. These
new insights will provide the foundation for the develop-
ment of new therapies for CF.
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