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Abstract

Across multiple domains of social perception—including social categorization, emotion perception, impression formation
and mentalizing—multivariate pattern analysis (MVPA) of functional magnetic resonance imaging (fMRI) data has permitted
amore detailed understanding of how social information is processed and represented in the brain. As in other neuroimaging
fields, the neuroscientific study of social perception initially relied on broad structure–function associations derived from
univariate fMRI analysis to map neural regions involved in these processes. In this review, we trace the ways that social
neuroscience studies using MVPA have built on these neuroanatomical associations to better characterize the computational
relevance of different brain regions, and discuss howMVPA allows explicit tests of the correspondence between psychological
models and the neural representation of social information. We also describe current and future advances in methodological
approaches to multivariate fMRI data and their theoretical value for the neuroscience of social perception.
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Introduction

Other people are tremendously complex, and humans must
navigate their relationships and interactions with others under
conditions of high uncertainty. Whether meeting a stranger,
reading a description of someone, or trying to determine how
a friend is feeling, we rely on a set of perceptions and inferences

about the person to determine our behavior. Understanding

how we form impressions about others has been a central focus

in social psychology for decades, and more recently, the topic

has proven to be well suited to methods from computational
neuroscience, which can readily leverage the inherently high-
dimensional nature of neuroimaging data alongside behavioral
measures of social perception. In this article, we review recent
advances in computational approaches to the neuroscience of
social perception. We focus particularly on multivariate analy-
ses of functional magnetic resonance imaging (fMRI) data, but
computational analyses of behavioral data used in conjunc-
tion with fMRI, such as using fMRI and behavioral responses
to estimate parameters of computational models, are an
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increasingly popular approach as well and are reviewed else-
where (e.g. Cheong et al., 2017; Gonzalez and Chang, 2019;
Hackel and Amodio, 2018).

As in other areas of social neuroscience, early fMRI studies

on social perception generally focused on univariate activation-

based analyses to associate relevant social cognitive processes

with particular brain regions. This research described a number
of regions important for social perception, such as the primacy

of the fusiform gyrus (FG) in face processing (Haxby et al., 2000,

2002; Kanwisher et al., 1997); superior temporal sulcus (STS) in

dynamic face and body perception (Haxby et al., 2000; Grossman
et al., 2000; Said et al., 2010) and regions such as the medial pre-

frontal cortex (MPFC; Amodio and Frith, 2006; Mitchell, 2008)
and temporo-parietal junction (TPJ; Saxe and Kanwisher, 2003)
in thinking about others and representing their mental states
(‘mentalizing’). Multivariate pattern analysis (MVPA) was first
introduced to neuroimaging research by Haxby and colleagues
(2001), expanding the conceptual and methodological toolkit of
neuroimaging researchers by providing a different way to con-
ceptualize the patterns of activation that emerge in fMRI data. In
the present review, we first briefly introduce MVPA techniques
anddiscuss their theoretical basis aswell as some related advan-
tages and limitations. We then review in turn three domains of
social perception research where these techniques have proven
highly valuable: perceiving social group memberships, perceiv-
ing identity and associated traits and person knowledge and
perceiving others’ emotional states.

MVPA approaches

Univariate approaches primarily seek to relate the overall level
of activation in a region to task conditions or experimen-
tal variables, which can provide neuroanatomical associations
with those conditions or variables and their related psycho-
logical processes (although with exceptions, e.g. adaptation
paradigms). However, neural regions assessed via fMRI do not
only vary in their mean level of activation, but also in the spatial
patterns of activation distributed across voxels. MVPA methods
are sensitive to fine-grained differences in these spatial patterns
of activation, whereas mass univariate testing treats each voxel
individually, almost always ignoring the level of activation in
contiguous voxels in statistical tests. This sensitivity enables
MVPA to differentiate experimental conditions even in cases
where differences in mean activation of a voxel cannot (Haxby
et al., 2001, 2014).

A key assumption often made about MVPA and influenc-
ing how MVPA analyses are generally interpreted is that neu-
ral response patterns inherently contain information about
an associated cognitive state (Davis et al., 2014; Haynes,
2015; Lewis-Peacock and Norman, 2014; Popov et al., 2018).
Researchers can thus probe condition response patterns to
see how they may differ between brain regions, revealing
the involvement of different regions in processing informa-
tion or representing states relevant for a given task or pro-
cess. Thus, multivariate analyses often target regions already
known to be involved in specific tasks to specify how that
region is representing information throughout the task and
what computational processes that region may support. Neu-
ronal recordings in nonhuman primates have long shown
that the aggregate activity of an assembly of neurons can
provide a ‘code’ for various kinds of sensory and abstract
cognitive information in the brain (i.e. a ‘population code’;
Averbeck et al., 2006). Although fMRI voxels are far too large

to be sensitive to individual neurons, neurons belonging
to different neuronal assemblies (e.g. related to state 1 vs
state 2) may be distributed in different ways such that the
precise assembly of neurons related to each state may vary
across voxels. This could thereby give rise to distinct fMRImulti-
voxel patterns associated with distinct states, despite a lack
of sensitivity to individual neurons (Logothetis, 2008; Chaimow
et al., 2011). In this way, MVPA provides a way to extend the
population coding approach from systems neuroscience to the
macro-scale populations measured with fMRI (Haynes, 2015;
Haxby et al., 2001, 2014; Lewis-Peacock and Norman, 2014;
but see the Conclusions section for a discussion of related
limitations).

In its original application, Haxby and colleagues (2001)
used MVPA to demonstrate that ventral temporal cortex shows
spatially distributed response patterns to visual object cat-
egories that can be discriminated from the region’s face
response pattern using a classifier. Importantly, this included
the fusiform face area (FFA), a region of FG that reliably
shows higher mean activations for faces compared with other
visual categories (Kanwisher, 1997). This approach demon-
strated that regions that show selectivity in univariate sig-
nal for one category also can hold (perhaps even equivalent
amounts of) information about other categories. Such a classifi-
cation (or ‘decoding’) analysis enables researchers to use neural
response patterns to predict an associated cognitive state or
stimulus condition (Lewis-Peacock and Norman, 2014). A clas-
sifier is typically trained on one set of the data and tested on at
least one other held-out set. By training a classifier to discrimi-
nate between any given experimental factors (i.e. conditions or
stimulus characteristics), testing the classifier on held-out data
can reveal which regions are involved in representing those con-
ditions or characteristics of the stimuli. Another common way
to interpret the results of a classifier is that categorical bound-
aries between stimuli are ‘computationally relevant’ in a given
brain region if that region shows high classification accuracy
for that category boundary. This interpretation assumes that if
a brain region’s patterns of activity discriminate between two
stimulus categories, information about that category boundary
is retained in that region’s spatial response patterns because it
is relevant for whatever computation that region is performing
in that particular cognitive context.

In addition to being used to classify brain states by experi-
mental conditions or stimulus categories, multi-voxel patterns
associated with different conditions can be directly compared
by measuring pairwise similarities in their response patterns.
While sometimes quite illuminating in and of itself (showing,
for example, thatWhite individualswith a strong pro-White bias
have more dissimilar neural response patterns for the Black and
White race categories; Brosch et al., 2013), similarity between
neural patterns can also be leveraged to test explicit theories
about how the brain represents information. This technique,
called Representational Similarity Analysis (RSA; Kriegeskorte
et al., 2008), provides a shared framework for testing and com-
paring diverse models of neural computation (computational,
theoretical, behavioral) by examining their second-order iso-
morphisms (i.e. similarities in the structure of their similarity
spaces). This technique was developed by computational neu-
roscientists who have used it to assess how well the repre-
sentational structure of the ventral-visual stream corresponds
with various computer vision models (Kriegeskorte et al., 2008;
Khaligh-Razavi and Kriegeskorte, 2014; Jozwik et al., 2017).

Assuming that multi-voxel response patterns contain infor-
mation about certain cognitive factors, RSA starts by computing
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how similar (or dissimilar) each condition or category is from
each other in their neural response patterns throughout the
brain. The resulting similarity space can be directly compared
with any other second-order similarity space, most commonly
those derived from computational models or behavioral task
responses. Thus, while decoding and classification approaches
can reveal which regions contain or process information about
cognitive dimensions, RSA is able to directly test hypotheses
about how that information is organized and represented, which
can in turn address questions about which psychological or
stimulus dimensions are computationally relevant in a given
brain region (Kriegeskorte et al., 2008; Popal et al., 2019). Despite
its explanatory power, RSA is highly computationally tractable
and thus broadly approachable for researchers. RSA is espe-
cially relevant for social and affective neuroscience due to the
large number of models proposed in the literature describing
how social groups, emotion categories and traits relate to one
another along dimensions such as stereotype content, facial
cues, and affective properties (e.g. Russell, 1980; Fiske et al., 2002,
2007; Oosterhof and Todorov, 2008). RSA allows researchers to
specifically adjudicate between such models, testing competing
and complementary explanations for how the brain represents
and computes social information. We now turn our attention to
specific areas of social perception researchwhereMVPA and RSA
have been leveraged to make important new insights.

Social categories and groups

An illustrative example of the contrast between univariate and
multivariate fMRI analyses in the domain of social categoriza-
tion comes from a set of papers that used both techniques to
analyze the same dataset. In the experiment, participants were
assigned to one of two arbitrarily definedmixed-race groups and
then had to categorize faces from the two groups along either
in-group vs out-group or Black vs White dimensions. The first
paper (Van Bavel et al., 2011) reported an in-group selectivity
effect in the FFA, such that a univariate in-group vs out-group
contrast showed greater mean activity in response to in-group
vs out-group members, despite the fact that both groups were
mixed-race. However, a follow-up report showed that despite
the overall difference in activation in response to in-groupmem-
bers, the race of the faces could still be discriminated by a mul-
tivariate pattern classifier (Ratner et al., 2013; Contreras et al.,
2013). These results indicated that the race of the faces was
still computationally relevant in the FFA, regardless of the differ-
ence inmean activation driven by the social context and current
processing goals.

Many studies examining univariate social category res-
ponses in regions such as the FG/FFA interpreted greater acti-
vation for one category vs another as enhanced processing of
or greater attention to the target category in the contrast (Golby
et al., 2001; Lieberman et al., 2005). Some have interpreted such
results as providing a neural basis for long-standing out-group
deficit effects in social psychology, such as better memory for
in-group vs out-group faces along a number of dimensions
(Hugenberg et al., 2010; Meissner and Brigham, 2001; Hugenberg
et al., 2010). Multivariate decoding approaches simultaneously
challenge and complement these results by demonstrating that
even if a brain region does not show univariate selectivity for a
given category, it still might represent and process information
about that category.

Still, to date, relatively few studies have used multivariate
decoding on social category responses. In one of the earliest

applications of MVPA to social categorization, Kaul Chaimow
et al. (2011) found that face gender could be reliably decoded
from an array of brain regions commonly associated with vari-
ous levels of face processing. Classifier performancewas highest
in themedial orbitofrontal cortex (mOFC), FG and inferior occipi-
tal gyrus (IOG). Contreras and colleagues (2013) showed that both
face gender and race could be decoded from neural response
patterns in a social categorization task, but after controlling for
low-level differences in the stimuli from each category, the only
region that showed accurate decoding was the FFA, further dis-
tinguishing the importance of this region in representing faces
at the level of social categories. In a study that aimed to decode
multi-voxel patterns associated with the broadest social group
distinction possible (i.e. ‘us’ vs ‘them’), classificationwas used to
show that the dorsal anterior cingulate cortex/middle cingulate
cortex (dACC/MCC) and anterior insula (AI) contain high-level
information about group boundaries ranging from arbitrarily
defined ‘minimal’ groups to political groups (Cikara et al., 2017).

Reconciling and integrating findings from univariate and
multivariate fMRI is an important ongoing task across all fields
that use neuroimaging (Davis et al., 2014). RSA has recently
proven quite useful for these purposes, since it can not only help
reveal which brain regions represent social category-relevant
information, but also the nature and organization of those rep-
resentations. In social psychology, social categorization has
traditionally been considered an automatic and obligatory per-
ceptual process that precedes any more ‘cognitive’ social pro-
cesses such as stereotyping (Allport, 1954). However, alternative
approaches emphasize the idea that social-conceptual knowl-
edge (i.e. stereotypical associations) and other top-down social
cognitive processes can weigh in on face processing before a
percept has solidified, thereby allowing implicit stereotypes to
shape face perception (Freeman and Ambady, 2011; Freeman
and Johnson, 2016). Recent work applying RSA has examined
whether an individual’s stereotypical associations are reflected
in how the brain represents others’ faces, an approach which
can also reveal how ‘deeply’ such top-down associations reach
(i.e. regions that would suggest perceptual vs post-perceptual
processing of faces). Stolier and Freeman (2016) found that neu-
ral representations of faces’ social categories (e.g. Black, Female,
Happy) in the FG and orbitofrontal cortex (OFC) demonstrated a
similarity structure thatwas predicted by a subject’s own unique
stereotype knowledge about those categories. That is, if some-
one held more similar stereotypes about the categories ‘Male’
and ‘Anger’, the multi-voxel patterns associated with those cat-
egories exhibited a greater similarity when subjects passively
viewed faces belonging to those categories (Figure 1).

These findings suggest that the way face category represen-
tations are organized in regions important for face perception,
such as the FG, is partially determined by stereotypes about
those categories. Moreover, the fact that this similarity structure
was also observed in the OFC suggests that domain-general per-
ceptual processes associated with the OFC may be involved in
driving the impact of stereotypes on face perception (Freeman
and Johnson, 2016). In particular, the object recognition litera-
ture suggests that the OFC is recruited in perceptual categoriza-
tion tasks when incoming visual input matches a pre-existing
visual association or heuristic in memory (Bar, 2003; Bar et al.,
2006; Summerfield and Egner, 2009). This effect is strengthened
when the visual input is ambiguous or impoverished, suggest-
ing that the OFC is involved in exerting visual predictions about
category membership before those categorizations have fully
solidified. One possibility is that the OFC is involved in a similar
predictive capacity in perceiving social categories, supplying the
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Fig. 1. MVPA shows that stereotypes and emotion concepts shape representations of other people’s faces in the FG. Stolier and Freeman (2016) usedmultiple regression

RSA on fMRI data from a task in which subjects viewed faces, showing that stereotypes partially structure how face’s social categories are represented in regions

important for face perception such as the FG. (a) An example pair of corresponding DMs, depicting the corresponding representational structures of social categories

in both stereotypes and subjective face perception. (b) Results from a whole-brain searchlight analysis, which performed multiple-regression RSA at each searchlight

sphere, measuring the correspondence between the subjective perceptual and neural DMswhile controlling for threemodels of visual similarity. This analysis revealed

that the right fusiform gyrus (rFG) and OFC represent social categories in amanner consistent with the influence of stereotypes on processing of faces’ social categories.

(c) Similar results are shown from Brooks et al. (2019), which reported an fMRI study in which subjects passively viewed faces varying in emotion expression. The

researchers also measured subjects’ conceptual similarity between the emotion categories Anger, Disgust, Fear, Happiness, Sadness and Surprise (corresponding to

the facial expressions shown in the scanner). The correspondence between this idiosyncratic conceptual DM and the brain’s representational structure (neural DM)

was measured using multiple-regression RSA in a whole-brain searchlight analysis, also controlling for three visual similarity models. This analysis revealed that

the rFG represents facial emotion categories in a manner consistent with the influence of a perceiver’s conceptual knowledge on processing of facial emotion. Figure

adapted from Stolier and Freeman (2016) and Brooks et al. (2019) .
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FGwith top-downvisual predictions or expectations about social
categories. In this case, the use of RSA permits inferences about
the way social category representations are organized in visual
processing regions as well as the high-level regions that may be
involved in providing top-down social information to them.

It is sensible that visual face processing regions would par-
tially depend on such rapid top-down input, as there are a
number of challenges faced in social categorization, particu-
larly when faces have atypical or ambiguous features. Any given
facial feature can be more or less related to any set of social cat-
egories at once, and faces naturally vary on featural continua
related to gender, race and a host of other category dimen-
sions. For example, a White face may not only have more or
less White category-associated cues but may bear partial cues
related to the Black category as well (Locke et al., 2005). Previous
work suggests such multiple cues co-activate multiple cate-
gory representations regardless of the ultimate categorization
(Freeman et al, 2008; Freeman et al., 2010). MVPA has recently
been used to investigate how the perceptual system is guided
toward a final categorization despite features that may initially
activate multiple social categories. Based on prior computa-
tional models of social categorization (Freeman and Ambady,
2011), Stolier and Freeman (2017) tested the possibility that
initially the perceptual system co-activates any categories asso-
ciated with features on a face, which then must compete and
resolve over hundreds of milliseconds. They additionally exam-
ined whether cognitive monitoring processes may be recruited
help resolve the competition, either to flag more attentional
resources to be directed to the stimulus or perhaps to play an
inhibitory role in the competition. For example, a femininemale
face may initially elicit simultaneous partial activation of the
categoriesMale and Female, and then, cognitivemonitoring pro-
cesses may help resolve the competition such that one category
(‘Male’) wins out and the other category is cleared from process-
ing (‘Female’). A likely candidate for such processeswould be the
pre-supplementarymotor area (pre-SMA)/dACC, a region central
to cognitive monitoring and competition between decisions in
tasks (Dosenbach et al., 2007).

In the study, subjects were presented with faces manip-
ulated to vary in the typicality of their gender or race fea-
tures, such that one category (e.g. Male or White) could
have features more or less related to the alternate category
(e.g. Female or Black). To measure perceivers’ co-activation of
multiple categories while viewing each face, participants per-
formed a mouse-tracking task in the scanner, in which they
made speeded face categorization decisions with a computer
mouse while the trajectories of their mouse movements were
recorded. The deviation ofmouse trajectories toward unselected
categories has been well validated as a measure of multiple cat-
egory co-activation during perception (Freeman and Ambady,
2010; Freeman, 2018). For instance, a mouse trajectory that
deviated toward the ‘Male’ response option en route to a catego-
rization of ‘Female’ putatively reflects co-activation of the Male
category despite a final categorization of ‘Female’. To measure
how brain regions involved in face perception held informa-
tion pertaining to both competing categories during the mouse-
tracking task, the FG multivariate response pattern to each
individual trial’s face (e.g. ‘Male’) for one category was compared
with the mean response pattern to the alternate category (e.g.
‘Female’). The results showed that, during trials in whichmouse
trajectories showed greater category co-activation (i.e. deviation
toward the alternate category), multivariate response patterns
in the FG for those trials showed a greater similarity to the
mean response pattern for the alternate category. For instance,
when subjects steered the mouse toward the ‘Female’ response
option en route to ‘Male’ for a given face, the FGmulti-voxel pat-
tern in response to that face was more similar to the average

multi-voxel response pattern for ‘Female’. To explore how cog-
nitive monitoring may assist perceivers in converging on their
ultimate percept, the researchers also examined univariate acti-
vation in the pre-SMA/dACC. They found that, on trials where
mouse-tracking showed more category co-activation (and over-
lapping neural response patterns), the pre-SMA/dACC became
additionally engaged, suggesting a recruitment of conflict res-
olution processes to help the FG converge on a stable percept
of a face. These findings suggest that other people’s complex
and sometimes ambiguous facial cues lead the FG to temporar-
ily co-represent multiple categories, which through the help of
the pre-SMA/dACC rapidly resolve over time to drive the stable
categorization of other people.

Traits, identity and person knowledge

Perhaps more than in any other domain of social neuroscience,
enormous effort has been invested in determining which brain
regions are most involved in thinking about other minds
(i.e. mentalizing and theory of mind). This research has iden-
tified a set of brain regions that are reliably engaged by storing,
retrieving and updating knowledge about others, such as the
MPFC, TPJ, precuneus and posterior cingulate cortex (PCC). The
MPFC has been a particular focus in social neuroscience for its
frequent associations with inferences about other minds, both
in terms of fairly stable qualities like personality traits andmore
fleeting or situational mental states.

Our ability to recognize and tailor our behavior toward
numerous personally familiar individuals would be compu-
tationally intractable without an extremely efficient coding
scheme in brain regions associated with thinking about others.
Univariate fMRI approaches have shown that individual identi-
ties can activate associated person knowledge in regions such
as the MPFC (Cloutier et al., 2011; Todorov et al., 2007), but that
does not necessarily mean that the brain stores individual rep-
resentations for each known identity. Recently, multivariate
approaches have extended this work by demonstrating the com-
plexity and flexibility of these identity representations. MVPA
and RSA have been particularly well suited to studying rep-
resentations of personality and identity due to the multitude
of theories in social psychology about the dimensions under-
lying our representations of others. In particular, RSA allows
explicit tests of how well such dimensional theories of person-
ality predict the brain’s representational structure during social
perception or mentalizing tasks (e.g. Tamir et al., 2016; Thornton
and Mitchell, 2018). Due to the highly consistent set of regions
associatedwith high-level social cognition in the univariate fMRI
literature (i.e. MPFC, TPJ, PCC/precuneus; see Figure 2), MVPA
investigations in this domain have had a well-defined set of a
priori regions of interest to explore. Research using classifica-
tion and RSA approaches has begun targeted assessments of
the representational structure in these regions, revealing the
granularity or discriminability of identity or personality rep-
resentations, which category boundaries seem to be relevant
for processing in these regions, and which aspects of social
cognition each region is most computationally relevant for.

For example, research using a searchlight-based classifica-
tion approach showed that multi-voxel response patterns in the
MPFC, TPJ and precuneus could discriminate between person-
ally familiar and unfamiliar individuals, and further, that neural
patterns in the MPFC could distinguish individual identities
from both the familiar and unfamiliar conditions, potentially
reflecting rapid encoding of coarse personality representations
of the unfamiliar identities during the course of the experi-
ment (Castello et al., 2017). Research introducing biographical
information about novel targets found such information rapidly
shapes multi-voxel patterns in response to their faces in the
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Fig. 2. MVPA sheds new light on how ‘social brain network’ regions represent other people. The ‘social brain network’, including regions such as the MPFC, pre-

cuneus/PCC, anterior temporal lobe (ATL) and TPJ, has long been known to be involved in social cognition and person perception. MVPA and RSA have been important

tools in recent progress made in understanding how this network of regions specifically represents and computes social information. In a study by Thornton and

colleagues (Thornton et al., 2019a), RSA was used to show that these regions represent individual identities in a manner consistent with the sum of a person’s men-

tal state representations. Other studies have found that person and identity representations in these regions are structured by high-level social cognitive factors

such as social network characteristics (Parkinson et al., 2017). In separate lines of work, MVPA and RSA have also proven helpful in disentangling the computational

roles of these regions, e.g. suggesting that the MPFC is involved in representing information about individual people, while medial parietal regions such as the pre-

cuneus/PCC are more involved in representing information about the social context (Thornton and Mitchell, 2017). Figure adapted from Thornton and colleagues

(Thornton et al., 2019b).

bilateral FG, where face representations were grouped by the
amount of biographical information participants learned about
each individual (Verosky et al., 2013). Thornton and Mitchell
(2017) similarly found that identity and person knowledge about
personally familiar others are represented in discriminable
patterns of neural activity in regions such as the MPFC, TPJ
and precuneus, but the task involved imagining these indi-
viduals in various contexts rather than looking at their faces.
Subjects in this experiment also made judgments about how
accurate and vivid they felt their mental simulations were,
and these judgments were predicted by how typical (for that
target individual) the neural response pattern in the medial
parietal cortex/precuneus was on the relevant trial. Moreover,
the medial parietal cortex/precuneus was the only region that
reliably encoded information about the situational context of the
mental simulation in addition to information about the individ-
ual imagined in the simulation. While speculative, this possibly
indicates the different computational roles of these regions,
such that the MPFC stores and organizes person knowledge, but
medial parietal regions are more involved in integrating per-
son knowledge into social-cognitive judgments and contextual
aspects of mental prospection.

But what is the nature of these representations of other
minds, and how are they organized? While a comprehensive
answer to this question remains elusive, recent work has used
RSA to characterize the organization of person knowledge, indi-
cating a number of complex yet efficient ways for organizing
knowledge about numerous individuals along shared dimen-
sions. Building off the extensive history of dimensional models
in the person perception literature (e.g. Fiske et al., 2002, 2007;
Oosterhof and Todorov, 2008), Tamir and colleagues (2016) tested

how well a large set of hypothesized social-cognitive dimen-
sions from the literature explained the representational space of
multi-voxel patterns elicited when subjects thought abstractly
about mental states such as ‘awe’ and ‘self-consciousness’.
Using principal components analysis, the researchers found
that a smaller set of three dimensions explained a majority of
the variance in mental state representations: rationality, social
impact, and valence. Complementarywork used RSA to test how
well four specific models of person perception (including the big
five-factor model of personality traits and warmth-competence
model of social cognition) predicted the neural representational
space of response patterns during mentalizing (Thornton and
Mitchell, 2018). The researchers found that all the four mod-
els significantly predicted the brain’s representational structure,
but not as well as a synthetic model derived from a combina-
tion of all four candidate models. Thus, while there may be a
low-dimensional space that largely explains how we represent
information about others, ultimately our understanding of the
nature of these representations is only emerging. Related work
recently found neural representations of others hold informa-
tion pertaining to the mental states most attributed to each
individual, with those mental states weighted more strongly in

a given target’s multi-voxel response patterns (Thornton et al.,
2019a; see Figure 2).

One particularly informative approach for mental state and

trait representation researchers has been to compare repre-

sentations of self and other, and of many familiar others,

within naturalistic groups of friends or acquaintances. Recently,

Thornton and colleagues (2019) examined the relationship

between a given individual’s representation of their own self-



J. A. Brooks et al. | 833

knowledge with the neural representations of others’ mental
states. The researchers used RSA to show that the neural pat-
terns associated with one’s own self-concept are more distinct
or discriminable than those associated with knowledge about
others, as reflected in regions such asMPFC, TPJ and dorsolateral
prefrontal cortex (DLPFC). Other work employed a round-robin
design in an fMRI study on a sample of close friends, finding that
multi-voxel representations of a given individual’s self-concept
in the MPFC were correlated with their friend’s MPFC repre-
sentations of their personality (Chavez and Wagner, 2020). The
strength of this relationship was associated with how similar
trait ratings were between the target individual (rating their own
traits) and the friend in question, suggesting that one factor
driving ‘accuracy’ in personality judgments is how well our
mental models of an individual’s personality match their own
self-assessments.

Another fMRI study on a group of familiar individuals used
a large sample drawn from a cohort of first-year MBA students
(Parkinson et al., 2017), using RSA to show that representations
of familiar others are organized along social network dimen-
sions. Multiple social network attributes—including distance
(number of intermediate paths between any given two people
in the network) and eigenvector centrality (generally charac-
terizing how well connected a given person is within their
network)—were used to construct dissimilarity matrices (DMs)
reflecting pairwise relationships between each individual in the
social network on these metrics. These network characteristics
were found to predict the representational structure of neural
response patterns in regions such as the MPFC, superior tempo-
ral cortex (STC), inferior parietal lobule (IPL) and precuneus/PCC
when subjects viewed videos of their classmates introducing
themselves in the scanner. This work suggests that representa-
tions of familiar others are organized in a manner partly deter-
mined by the overall structure of the social network in which an
individual is embedded.

The brain’s representational structure of identity and person-
ality concepts is consistent with a number of different models
of high-level social cognition that predict how different minds
relate to one another. Together, these studies demonstrate that
person representations (identity, traits, personality) in the brain
are highly structured, with high-level social dimensions such as
personality similarity and social network position partly orga-
nizing neural response patterns. It is likely that a smaller set
of underlying social cognitive dimensions explain most of the
variance in pattern response in brain regions such as MPFC
and TPJ, rather than representations in these regions being
simultaneously constrained by several different psychological
models of personality and behavior. However, research investi-
gating any such low-dimensional representational space is only
emerging.

Emotion perception

Understanding how others are feeling is an important tool for
navigating the social world safely and effectively, and under-
standing which emotion categories perceivers can successfully
‘recognize’ in others has been a central focus of the literature on
emotion perception. Early, seminal models of face perception
(Bruce and Young, 1986) emphasized a processing dissociation
between static and dynamic facial cues, and since facial emo-
tion is often categorized based on dynamic facial movements,
it has largely been treated separately in the literature from

dimensions of social perception that have categorical bound-
aries defined by static cues (e.g. race and sex). The particu-
lar neuroanatomical dissociation is between the FG, thought
to be more important in processing configurations of static
facial cues, and the STS, known to be involved in processing
dynamic facial actions as well as socially relevant actions more
broadly, such as body movements (Haxby et al., 2000, 2002).
The neuroimaging literature on emotion perception has been
further complicated by studies that aimed to isolate regions
most involved in perception of specific discrete emotions, for
example, by showing participants facial expressions typically
categorized as Angry, Disgusted and Neutral, and computing
univariate Angry>Neutral and Disgusted>Neutral contrasts to
determine which regions are preferentially engaged by Angry
and Disgusted facial expressions, respectively. Numerous stud-
ies associated different possible brain regions with different
specific emotions, most famously strongly associating the
amygdala with perceiving fear (Adolphs et al., 1995; Adolphs,
2008), although neuroimaging meta-analyses have been unable
to find specific associations that are consistent across the liter-
ature (Lindquist et al., 2012).

In an analogous manner to the fMRI literature on social cat-
egorization, multivariate approaches have shifted the neurosci-
entific study of emotion perception from a focus on associating
brain regions with emotion categories to a greater understand-
ing of the relevant information different regions process. As
with the study of traits and identity, this makes MVPA par-
ticularly beneficial to the study of emotion perception because
of the degree of debate in the field surrounding different can-
didate models of emotion perception. The core of this debate
concerns how to specify the relationship between emotion cat-
egories (e.g. Anger) and facial actions, with some assuming
that specific facial expressions map directly onto corresponding
emotion categories and others assuming a more context—and
perceiver-dependent relationship (Barrett et al., 2019). Not only
can diverse candidate models be directly tested against each
other using RSA, classification and decoding approaches can
demonstrate which aspects of emotion expressions determine
boundaries between emotion categories and perceiver impres-
sions, addressing theoretical predictions about the determi-
nants of emotion percepts.

Multivariate classification approaches demonstrate that
facial emotion categories can be decoded in regions such as early
visual cortex (V1; Petro et al., 2013), the posterior superior tem-
poral sulcus (pSTS; Said et al., 2010) and the FG (Harry et al., 2013;
Wegrzyn et al., 2015a). For static images of facial expressions,
(Wegrzyn et al. 2015a) compared classification performance in
multiple brain regions, finding that classification performance
was highest in the FG, indicating that this region contains and
processes emotion category-relevant information. This is con-
sistent with work showing that facial emotion categories exhibit
category selectivity effects in a manner consistent with social
category perceptions (Calder et al., 1996; De Gelder et al., 1997;
Etcoff et al., 1992; Wegrzyn et al., 2015b). A recent study fur-
ther challenged the common FG/STS distinction by showing that
emotion category representations in response to dynamic facial
movements could be decoded in the FG and that emotion cat-
egory representations in response to static facial expressions
could be decoded in the STS (Liang et al., 2017). However, in
studies characterizing the representation of fine-grained facial
movements associated with emotion, the pSTS seems to be the
most computationally relevant region (Srinivasan et al., 2016;
Deen and Saxe, 2019).



834 | Social Cognitive and Affective Neuroscience, 2021, Vol. 16, No. 8

As in the domain of perceiving social categories and groups,
the idea that social cognitive processes and semantic represen-
tations of emotion categories may shape face processing has
become important in understanding facial emotion perception.
Classic categorical approaches such as basic emotion theory
would predict a neural representational space in which differ-
ent categories are primarily represented on the basis of their
differences in facial cues. In a recent study using RSA, we mea-
sured the neural representational space of emotion categories
from a task in which subjects passively viewed emotional facial
expressions and also measured each subject’s conceptual space
of emotion categories (Brooks et al., 2019). We found that each
individual’s unique conceptualmodel of emotion categories was
reflected in multi-voxel pattern structure in the FG when view-
ing faces belonging to those categories, even when acknowl-
edging intrinsic visual differences in the emotion expressions
themselves. Specifically, when an individual believed any given
pair of emotions (e.g. Angry and Sad) were more conceptually
similar, there was a corresponding similarity in the multi-voxel
response patterns in the FG to faces belonging to those cate-
gories (see Figure 1c). Of relevance for comparing conceptually
shaped models of emotion perception with more categorical
models, these results emerged even when controlling for three
different models of similarity between categories in their dis-
played facial cues and low-level visual properties, strengthening
the claim of conceptually structured representations in the FG.
These findings suggest that individual differences in conceptual
understanding ofwhat different emotionsmeanmay impact the
visual representation of facial expressions commonly associated
with those categories.

Beyond using RSA to assess the correspondence between
idiosyncratic conceptual structure and neural pattern struc-
ture in FG, RSA has also proven useful in adjudicating between
different theoretical models of emotion in terms of how well
they predict the brain’s representational structure of emotion
categories. In the domain of emotion perception, the domi-
nant models have been the categorical ‘basic emotion’ model
and a dimensional ‘circumplex’ model. Basic emotion theory
posits a small set of psychologically distinct emotion categories
thought to yield associated facial expressions that are univer-
sally recognized in a categorical fashion (Ekman, 1993; Ekman
et al., 1969; Ekman and Friesen, 1971, 1976). The circumplex
model emphasizes two underlying dimensions of valence (posi-
tive vsnegative) and arousal (high vs lowphysiological activation
or perceived intensity) that all emotion judgments map onto
(Russell, 1980, 2003).

In a study using RSA to explicitly compare how well these
models fit representations of 20 emotion categories inferred
from reading stories about individuals, Skerry and Saxe (2015)
found that neither model fit multi-voxel representations in the
‘theory of mind network’ (including multiple sub-regions of
MPFC as well as the right temporo-parietal junction; rTPJ) as
well as a higher-dimensional model generated from behavioral
responses. This model contained 38 dimensions describing var-
ious contextual and situational factors that constrain perceiver
appraisals. While these brain regions, more often associated
with mentalizing and theory of mind, have not been extensively
studied in the context of emotion perception, it is of course
true that emotion perception is fundamentally a case of men-
tal state attribution, as with mentalizing. Indeed, an additional
study (Skerry and Saxe, 2014) showed that the representational
space of emotion categories in the MPFC was shared across sit-
uational inferences and facial emotion perception, indicating
that these regions implicated in theory of mind may represent

and compute high-level aspects of emotion perception across
multiple modalities. Given that valence has also been found to
partly organize the brain’s mental state representations (Tamir
et al., 2016), future work is needed to disentangle the represen-
tations and possibly shared underlying dimensions of emotion
and mental state representations.

Conclusions

Across multiple domains of social perception, multivariate
analyses of fMRI data have permitted amore fine-grained under-
standing of how social information is processed and represented
in the brain and an increased understanding of the computa-
tional relevance of specific brain regions in social-perceptual
processes. Such an approach is equally informative from
neuroscientific and psychological perspectives, better character-
izing the computational characteristics of specific brain regions
as well as allowing explicit tests of how well psychological
models fit the brain’s representational structure of social infor-
mation. It is important to note that this review was relatively
limited to classification and RSA approaches, but there are a
number of other data-driven methods and advanced analy-
sis techniques that have been similarly useful in moving the
field past localization approaches (see Wagner et al., 2019 for
a relevant review). Additional methodological tools are rapidly
accumulating and gaining sophistication. For example, some
recent work has expanded the use of multivariate pattern clas-
sifiers to include multivariate patterns of connectivity between
brain regions, which can also be leveraged to make stronger
causal claims about the relationships between distant brain
regions in their representational spaces (Anzellotti et al., 2017).
In the domain of social perception, this has already been used
to decode wide-scale patterns of connectivity associated with
facial emotion categories (Liang et al., 2018). Future work is
needed to better understand the relationship between these
various approaches.

While promising, these approaches are not without limi-
tations. Notably, RSA is inherently correlational and does not
permit any causal inferences about determinants of neural rep-
resentational structure. Additionally, decoding approaches are
sometimes particularly sensitive to idiosyncratic factors such as
the specific sample, stimuli, and task context (Todd et al., 2013;
Davis et al., 2014). For this reason, it is essential to test decoding
models outside of the original sample, and recent applications
have made progress incorporating this level of rigor. Large-scale
openly shared fMRI datasets, and concurrent development of
sophisticated tools to analyze them, also serve to mitigate these
issues. It is also important to note that MVPA analyses are not
immune to several issues faced by univariate fMRI. In particu-
lar, following a searchlight or whole-brain MVPA analysis that
maps representational similarity or classification accuracy at
each voxel in the brain, the resulting maps undergo voxel-wise
statistical tests, making MVPA vulnerable to the same statisti-
cal correction and reporting pitfalls observed in univariate fMRI
research.

Another challenge of multivariate fMRI lies in interpreting
MVPA results and using them to inform and develop psycholog-
ical theory. What does it really mean to be able to discriminate
patterns of fMRI signal along a cognitive dimension? Multi-
voxel patterns associated with a particular category are often
reported as the neural representation of that particular category,
but this interpretation requires care. The precise relationship
between neuronal activity and differences in spatial distribu-
tion of fMRI signal is unknown (but see Haynes, 2015 for a
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summary of existing knowledge about the relationship between
multi-voxel patterns and the activity of neurons). However,
empirical and theoretical efforts are underway to better char-
acterize the nature of multi-voxel response patterns and their
precise relationship with underlying neural activity as well as
the cognitive dimensions they seem to encode (Russell, 2003;
Davis et al., 2014; Grootswaters et al., 2018; Popov et al., 2018;
Ritchie et al., 2019). The idiosyncrasies of sample and stimuli
can also introduce issues of interpretation. Researchers should
take caution when interpreting a classifier trained and tested
on one sample as reflecting the ‘neural code’ for that cognitive
dimension. As noted above, the interpretability and theoretical
utility of decoding models principally depends on their gen-
eralizability out of sample (Kriegeskorte and Douglas, 2019).
Increased use of RSA and related methods may elucidate some
of these open questions about the nature of representation in
fMRI response patterns. In particular, while RSA does not permit
causal inferences, its ability to test the dimensionality and infor-
mational content of neural activation patterns in a targeted way
affords stronger conclusions about how a given brain region
encodes information.

While more work is needed to address these and other ques-
tions, the field stands to benefit from continued use of MVPA
and related approaches. Techniques are constantly evolving and
improving, building an exciting set of new avenues for compu-
tational neuroimaging research on social perception, such as
MVPA in conjunction with naturalistic stimuli and tasks such as
movies and real-time interactions (Wagner et al., 2019). Future
work using RSA would benefit from choosing diverse candidate
models to test at the level of neural representation. Of partic-
ular relevance to social perception are the astoundingly rapid
advances in ‘deep’ neural network models of computer vision,
which approach or approximate human performance in a num-
ber of object recognition and categorization tasks (Goodfellow
et al., 2016; Hassabis et al., 2017; Kriegeskorte and Golan, 2019).
Comparing internal representations from advanced computer
visionmodels to neural and behavioral category representations
has already proven useful in the object recognition literature
(Jozwik et al., 2017; Kriegeskorte and Golan, 2019; Storrs et al.,
2017) and could benefit the neuroscientific study of visual social
perception as well. These approaches, and other theoretical
and methodological advancements, show promise in improving
our understanding of how visual input from another person’s
face and body is transformed into a socially relevant category
representation in the brain.
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