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Abstract: Alpha-1 antitrypsin (AAT) is the most abundant serine protease inhibitor circulating in 

the blood. AAT deficiency (AATD) is an autosomal codominant condition affecting an estimated 

3.4 million individuals worldwide. The clinical disease associated with AATD can present in 

a number of ways including COPD, liver disease, panniculitis and antineutrophil cytoplasmic 

antibody vasculitis. AATD is the only proven genetic risk factor for the development of COPD, 

and deficient individuals who smoke are disposed to more aggressive disease. Principally, AAT 

is a serine protease inhibitor; however, over the past number of years, the assessment of AAT 

as simply an antiprotease has evolved, and it is now recognized that AAT has significant anti-

inflammatory properties affecting a wide range of cells, including the circulating neutrophil.

Keywords: neutrophils, alpha-1 antitrypsin deficiency, alpha-1 antitrypsin augmentation, 

inflammation, airways disease

Introduction
Alpha-1 antitrypsin (AAT) is a member of the serpin family which also includes plas-

minogen activator inhibitor-1, alpha-1 antichymotrypsin, antithrombin and C1-inhibitor. 

These serpins play vital roles in the regulation of proteases involved in fibrinolytic, 

complement and coagulation pathways.1 AAT is a 394-amino acid polypeptide chain 

encoded by the SERPINA1 gene located at the chromosomal region 14q32.1.2 Aside 

from hepatocytes where it is mostly synthesized, AAT is also produced to a lesser 

degree by other cell types such as neutrophils,4 macrophages,3 monocytes,5 intestinal 

epithelial cells,6 pancreatic islets7 and cancer cells.8 However, from these cellular 

sources, the AAT protein is unlikely to contribute to circulating plasma levels but 

rather to local AAT concentrations.9 Within the circulation, the concentration of AAT 

is 1.21–2.17 g/L, making it one of the most abundant plasma proteins with a half-

life of 4.6 days.10 AAT is part of the acute-phase response, which means that a rapid 

rise in plasma levels of AAT is observed during acute inflammation,11 with plasma 

levels increasing three- to four fold.12 The aim of this review is to first introduce AAT 

deficiency (AATD) and then to consider the described anti-inflammatory activities of 

AAT in controlling key neutrophil functions, outline recognized signaling pathways 

and specifically recognize the features of neutrophil-driven airways disease in which 

AAT augmentation therapy has been demonstrated to be effective. Review of the 

literature was carried out using the MEDLINE (from 1986 to 2017), Google Scholar 

and The Cochrane Library databases.
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The antiprotease AAT
The predominate role of AAT is as a serine protease inhibitor, 

chiefly inhibiting neutrophil elastase (NE),13 but also other 

proteases including chymotrypsin, cathepsin G (CathG), 

proteinase 3 (PR3) and thrombin. The structure of the AAT 

is critical for its antiprotease activity and comprises 3 beta 

sheets (A, B and C), 9 alpha helices and a reactive center 

loop (RCL) at the C-terminal end.14 Furthermore, during 

AAT production, posttranslational modifications occur, and 

the protein undergoes addition of N-linked oligosaccharides 

at asparagines 70, 107 and 271. The three N-glycosylation 

sites on the AAT molecule contain mostly biantennary 

structures but also triantennery and traces of tetraantennary 

N-glycans.15 Multiple glycoforms of AAT have been identi-

fied (M0–M8), and these can be visualized by isoelectric 

focusing (IEF) and separated by the charge of the N-glycans 

(Figure 1). Adding to this field, we have recently published 

that during the acute inflammatory process of community-

acquired pneumonia (CAP), the circulating AAT molecule 

differs due to variations in its glycosylation pattern and that 

AAT glycans containing 4 sialic acids appeared during the 

resolution phase of CAP.16 Moreover, data highlight the 

role of sialylation in the anti-inflammatory activity of AAT, 

as during the resolving phase of infection there was a sig-

nificant increase in circulating levels of interleukin (IL)-8 

complexed to sialylated negative glycoforms of AAT. This 

binding event led to enhanced inhibition of C-X-C motif 

chemokine receptor (CXCR) 1 engagement on neutrophil 

plasma membranes,16 which may serve to prevent further 

migration of cells to epithelial surfaces and decrease the 

potential for neutrophil-mediated damage.

The antiprotease inhibitor activity of the molecule lies 

within the 9-amino acid RCL. AAT, unlike most proteins, 

folds into a metastable state which has a considerably lower 

conformational stability.17 Fundamentally, the AAT molecule 

acts as a trap with the RCL as its bait. NE cleavage between 

amino acids 358 and 359 of the RCL results in the creation 

of an AAT:NE complex between the cleaved AAT molecule 

and NE. The process results in irreversible inactivation of 

both molecules, and thus, in the ideal scenario, AAT exists 

in the lungs surplus to the amount of protease in order to 

protect the lung parenchyma from degradation. Moreover, the 

structural rearrangement that enables the AAT:NE complex to 

form exposes a binding site that can engage with a receptor 

known as SERPIN:enzyme complex receptor. The interac-

tion of this AAT:NE complex with the SERPIN:enzyme 

complex receptor on cell surfaces such as hepatocytes causes 

a positive feedback loop leading to increased expression of 

the SERPINA1 gene.18

AAT deficiency
AATD is an autosomal, codominant, genetic disorder that is 

characterized by low circulating levels of AAT as a result of 

a mutation of the SERPINA1 gene. The worldwide frequency 

of AATD varies according to population and is particularly 

prevalent in Europe with multiple studies reporting a high 

prevalence of the deficiency alleles in Poland,19,20 France,21 

Italy22 and Ireland.23 AATD is characterized by circulating 

levels <11 µmol/L, which is the putative protective threshold 

level.24 The AAT phenotype is determined by codominant 

expression of parental alleles with the majority of individu-

als carrying 2 copies of non-mutated M allele. The M allele 

in homozygous individuals leads to AAT plasma levels 

>1.04 g/L or 20 µM. However, the SERPINA1 gene is highly 

pleomorphic, and at least 120 genetic variants have been 

reported to date,25 with the Z (Glu342Lys) and S (Glu264Val) 

mutations (Figure 1) being the most common. The substitu-

tion of glutamic acid for lysine at position 342 leads to the 

Z mutation, and that of glutamic acid for valine at position 

264 gives rise to the S mutation.26,27

In individuals heterozygous for the S mutation, AAT 

levels typically remain above the protective threshold of 11 

µM. This mutation is thus considered to carry a negligible 

risk of AATD-associated disease unless co-inherited with 

another deficiency allele such as the Z allele. The Z mutation 

gives rise to the most severe plasma deficiency and occurs in 

more than 95% of individuals with AATD.28 Z-AAT protein 

Figure 1 Isoelectric focusing gel illustrating AAT phenotype mutations. The glycan 
numbers for the phenotypes are labeled.
Abbreviation: AAT, alpha-1 antitrypsin.

MM

M2
+

–

M4

M6

pH
 4

.2
–4

.9

M7

M8

Z2

Z4

Z6

S8

S6

MZ ZZ SZMM MS

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Inflammation Research 2018:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

125

Neutrophils in alpha-1 antitrypsin deficiency

polymerizes and  becomes trapped within the endoplasmic 

reticulum (ER), thus accumulating in hepatocytes. This 

results in impaired secretion of the protein,29 leading to 

plasma deficient in AAT, with individuals homozygous for 

the Z mutation having 10%–15% of normal circulating lev-

els. It is because of these low circulating levels of AAT that 

patients with this condition are at a high risk of developing 

emphysema.30 The low level of AAT in ZZ individuals results 

in an imbalance of proteases and antiproteases in the AATD 

lung, resulting in unchecked levels of active serine proteases 

that damage alveolar tissue leading to lung disease.28,31

Another class of mutations in the SERPINA1 gene are 

termed silent or “null” mutations. The plasma levels of this 

class of variants are undetectable by conventional techniques 

such as nephelometry and IEF, and as such, these mutations 

are classically thought to result in a complete absence of 

AAT production and therefore a high risk of developing 

emphysema.32 While the consequence of the null alleles is 

unified, that is, undetectable plasma levels of AAT, the muta-

tional events from which they arise vary from gene deletions, 

premature stop codon insertions, to mRNA degradation. For 

example, the Q0
granite

 falls genotype arises from a single base 

pair deletion, resulting in a premature stop codon and a lack 

of mRNA production.33

The classical manifestation of AATD in the lungs is 

panacinar34 and lower lobe-predominant emphysema, involv-

ing the distal airway structures and resulting in uniform 

enlargement of the bronchioles and alveoli (Figure 2). The 

clinical presentation of COPD in AATD is similar regardless 

of AAT phenotype, with patients commonly complaining 

of dyspnea and cough with frequent respiratory infections. 

Onset occurs at a significantly younger age in AATD patients 

however, often in the 3rd to the 4th decade of life. This is 

in contrast to typical COPD, which usually involves upper 

lobe-predominant centrilobular emphysema35 that commonly 

manifests in the late 6th or 7th decade.30

The risk for emphysema is increased in individuals het-

erozygous for the Z mutation who are smokers.29 Smoking 

has been demonstrated to further exacerbate the imbalance 

between proteases and antiproteases by rendering AAT 

 inactive.36,37 Increased release of NE in bronchoalveolar 

lavage fluid (BALF)38 in patients who smoke has been 

reported, and a direct correlation has been made between 

the NE burden in the BALF and the degree of emphysema 

seen on computed tomography scans.40 Moreover, the inverse 

relationship between the degree of emphysema and the anti-

elastase activity in BALF of COPD patients further supports 

the protease/antiprotease theory of emphysema.41 In addition 

to the increased release of proteases, another process that 

can occur which further contributes to airway inflammation 

is oxidative stress. The conversion of hydrogen peroxidase 

to its product hypochlorous acid by myeloperoxidase, along 

with other reactive oxygen species, can render AAT inactive 

through oxidation and chlorination.42 Hydrogen peroxidase, 

a component of cigarette smoke, oxidizes 2 methionine resi-

dues, 351 and 358, located on the RCL of AAT. The outcome 

of AAT oxidation is loss of anti-NE capacity.

The traditional view behind the cause of AATD-related 

emphysema is that it is a result of the imbalance of proteases 

and antiproteases in the lung. However, it has recently come 

to light that AAT is more than just an antiprotease. AAT has 

been shown to have anti-inflammatory capacities outside 

of its antiprotease activity. The loss of this AAT function is 

apparent as the manifestations of AATD are not confined to 

lung disease but extend to systemic inflammatory conditions 

such as vasculitis43 and panniculitis,44 which will be discussed 

below. Therefore, disease manifestations seen in AATD are 

due to loss of AAT function as both a protease inhibitor and 

an anti-inflammatory molecule.

The neutrophils in the pathogenesis 
of AATD disease
Neutrophils are the source of NE, CathG and PR3, the key 

drivers of inflammation that destroy alveolar tissue in AATD. 

Published data have demonstrated an increased number of 

these polymorphonuclear leukocytes in the BALF of AATD 

patients.45 These cells are produced from myeloid precursors 

in the bone marrow and have a short circulating half-life of 

Figure 2 A computed tomography scan showing severe bilateral, lower lobe-
predominant panacinar emphysema in a patient with AATD homozygous for the 
Z mutation.
Abbreviation: AATD, alpha-1 antitrypsin deficiency.
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~8 hours.46 Neutrophils are typically the first leukocytes that 

migrate to the site of inflammation, exiting the bloodstream 

where they transmigrate through the endothelium and travel 

to the site of infection. Neutrophil localization to the infected 

site is crucial for the clearance of infection, as a defective 

neutrophil response has been shown to lead to bacterial 

colonization.47

Upon arrival at the site, the activated neutrophil has an 

increased life span to ensure microbial clearance.48 The neu-

trophil’s arsenal of antimicrobial serine proteases is stored 

within primary granules. Upon neutrophil activation, there 

is a rapid translocation of primary granules to the plasma 

or phagocytic membrane, thereby releasing serine prote-

ases including NE, CathG and PR3 into the extracellular 

or phagocytic space where they play an important role in 

host defence.49,50 For example, NE is essential in the killing 

of Gram-negative bacteria, as evidenced by the finding that 

NE-knockout mice are more susceptible to these microbes.51 

Conversely, besides playing a protective role against invading 

microorganisms, these proteases have been associated in the 

pathogenesis of emphysema and COPD.52,53 Indeed, NE is 

referred to as a double-edged sword as unchecked levels can 

degrade a wide variety of host substrates. In AATD, NE is 

considered to be the major protease involved in the destruc-

tion of lung tissue as it possesses the ability to damage every 

component of the extracellular matrix including cross-linked 

fibrin, collagen and proteoglycans.54

Additionally, NE amplifies the inflammatory burden by 

stimulating mucin secretion yet decreasing the beat frequency 

of cilia of bronchial epithelial cells, thereby interrupting 

mucociliary clearance.55,56 Studies in mice have shown that 

NE augments the activity of further destructive proteases, 

including matrix metalloprotease (MMP) 9.52 Furthermore, 

NE also retains the capability to inactivate the innate inhibi-

tors of these proteases including tissue inhibitors of metal-

loproteinases 1 and 2, inhibitors of MMP-957 and MMP-258 

and other relevant protease inhibitors such as elafin59 and 

secretory leukocyte protease inhibitor.60

By proteolysis of complement receptors61,62 and CXCR163 

on neutrophils, NE quickly impairs the capacity of neutrophils 

to kill invading microbes. NE also weakens innate immunity 

by cleaving TIM-3 (T-cell Ig and mucin domain-containing 

molecule-3) from epithelial and neutrophil cell surfaces,64,65 

and humoral immunity by cleaving immunoglobulins.66 NE 

destroys signaling cytokines including the interferon-gamma 

(IFN-γ)-inducing factor IL-18,67 thus potentiating the airway 

inflammatory environment. Adding to the proteolyic burden, 

CathG digests host substrates and is seen at higher levels in 

patients with emphysema.52 There is thus a tremendous need 

to curtail the excessive activity of both NE and CathG, and 

by binding to them, AAT inhibits the destructive nature of 

these proteases. Indeed, AAT is a regulator of NE,68 CathG69 

and PR3,70 and it is for this reason that the balance created 

by AAT is essential for protection of the lung matrix (Figure 

3). During pulmonary exacerbations, the sputum of AATD 

patients has been found to have increased levels of PR3. As 

the elastolytic ability of PR3 is less than NE, PR3 likely 

plays a lesser role in the manifestation of emphysema.71 In 

contrast, however, anti-PR3 autoantibodies have been pro-

posed to exacerbate the degranulation process by binding PR3 

expressed on surface membranes of monocytes and neutro-

phils, resulting in excess protease release and contributing 

to both vascular and endothelial injuries.71,72

Studies aimed at understanding the increased neutrophil 

burden seen in AATD patients have demonstrated that indi-

viduals either homozygous or heterozygous for the Z allele 

Figure 3 Protease/antiprotease balance shown in the lung of a healthy individual and a person with AATD. In a normal individual, the lung parenchyma is protected from 
serine protease activity of Ne, CathG and PR3 by AAT. In an AATD individual, unchecked levels of proteases damage lung tissue due to low levels of AAT.
Abbreviations: AAT, alpha-1 antitrypsin; AATD, AAT deficiency; CathG, cathepsin G; Ne, neutrophil elastase; PR3, proteinase 3.
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have an increased influx of neutrophils into their lungs.73 A 

number of models have been proposed to help explain this 

increase, and one suggestion is the deposition of polymers 

of mutated Z-AAT protein. Polymerization of the Z-AAT 

protein occurs mainly within hepatocytes but is also thought 

to occur spontaneously in the lungs of AATD individuals. In 

ZZ-AATD individuals, these polymers have been detected in 

BALF74 and additionally in the alveolar walls of individuals 

with emphysema.75 The presence of polymerized Z-AAT 

induces a pro-inflammatory response as these polymers can 

act as a chemoattractant, inducing chemotaxis levels compa-

rable to IL-876 and complement component C5a ( Figure 4).77 

Z-AAT polymers have also been reported to stimulate 

neutrophil adhesion and induce neutrophil degranulation.77 

Extending on this concept, while many investigators agree 

that mutations of the AAT protein can lead to the forma-

tion of Z-AAT polymers that are retained within the ER of 

hepatocytes in ZZ-AATD,78,79 the characteristics of Z-AAT 

polymers and ER stress in immune cells from ZZ-AATD 

patients are less well studied. In neutrophils, an intrinsic 

defect due to misfolded AAT protein within the ER of cir-

culating ZZ-AATD cells results in increased expression of 

the proapoptotic transcription factor CHOP, with accelerated 

apoptosis of ZZ-AATD neutrophils associated with decreased 

bacterial killing.80

When describing neutrophil-dominated inflammation with 

regard to AATD, it is important to discuss panniculitis. This rare 

condition (occurring in 0.1% of Z homozygotes)81 is character-

ized by intense neutrophil infiltrates in the skin, presenting as 

a painful skin rash.81 It has been described most commonly in 

ZZ patients but has also been found in MZ and SZ individu-

als.81 The pathophysiology of AATD-related panniculitis has 

not been definitively described, but skin biopsies demonstrate 

neutrophil infiltration into the subcutaneous tissues and resul-

tant tissue destruction due to the low levels of antiprotease and 

high levels of protease. The presence of polymers of Z-AAT 

in the skin is significant,82 as these have been shown to be a 

powerful neutrophil attractant, as mentioned earlier.75

The effect of AAT on neutrophil 
function
IL-8 is a commanding neutrophil chemoattractant pro-

duced by airway epithelial cells and alveolar macrophages 

in response to inflammation83 and has been shown to be 

increased in the sputum of MZ heterozygous individu-

als.84 IL-8 engages with CXCR1 on the neutrophil mem-

brane, resulting in amplified neutrophil adhesion due to 

increased membrane expression of CD11b and CD18.85 The 

 engagement of IL-8:CXCR1 also causes a rise in intracel-

lular calcium levels, which facilitates neutrophil cytoskeletal 

rearrangements ultimately enabling chemotaxis.86 It has been 

shown that NE can induce the expression of this chemokine 

in bronchial epithelial cells via Toll-like receptor 4, thus 

adding to the inflammatory burden in the lung.87 In a similar 

fashion, unopposed protease activity results in the activation 

of protease-activated receptors (PARs). PARs 1, 2, 3 and 4 

have all been found in the lung,88,89 and in the absence of AAT, 

these PARs are overactivated by neutrophil serine proteases, 

thus amplifying inflammation.

In recent years, it has emerged that AAT possesses a 

variety of anti-inflammatory properties. In this regard, it has 

been found that AAT can modulate IL-8-induced chemotaxis 

by binding this chemokine. At physiological pH, AAT pro-

tein has an overall negative charge that enables electrostatic 

interaction between AAT and positively charged IL-8. The 

oligosaccharides on AAT are vital for this anti-inflammatory 

function as it has been shown that non-glycosylated AAT 

fails to bind IL-8.90 This binding event between AAT and 

IL-8 impedes docking of IL-8 with CXCR1,90 impacting 

negatively upon the downstream signaling events involved in 

cytoskeleton rearrangement, F-actin formation and calcium 

flux, ultimately resulting in decreased neutrophil migration.

AAT has also been shown to influence neutrophil che-

motaxis in response to soluble immune complexes (sICs). 

Neutrophil engagement of sICs results in increased tumor 

necrosis factor-alpha (TNF-α)-converting enzyme (TACE) 

activity, causing release of the glycosylphosphatidylinositol-

anchored Fc receptor (FcγRIIIB), which is a prerequisite for 

chemotaxis. AAT was shown to modulate TACE activity, 

thereby preventing the release of membrane FcγRIIIB.90 

Moreover, the ability of AAT to reduce neutrophil chemotaxis 

in response to a third stimuli, namely, formyl-methionyl-

leucyl-phenylalanine, with subsequent reduced adherence 

to lung-derived endothelial cells has been demonstrated.91 

Furthermore, leukotriene B
4
 (LTB

4
) is another stimulant 

that can affect neutrophil function, increasing cell adhesion, 

degranulation and chemotaxis.92–94 In a vicious circle of 

inflammation, released NE can signal back to the neutrophil 

causing increased production of LTB
4
 and upregulation of its 

receptor BLT1 on the neutrophil membrane. In turn, in vitro 

AAT has been reported to exercise strong anti-inflammatory 

effects against LTB
4
, binding this lipid mediator via a central 

hydrophobic pocket on the protein surface. This binding 

event inhibits the engagement of LTB
4
 with BLT1 on the 

neutrophil plasma membrane, thereby preventing neutrophil 

activation (Figure 4).94
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With regard to degranulation, in the neutrophil-burdened 

airways, there is an exuberant release of cytotoxic granule 

proteins to the outside of the cell. In landmark studies, 

degranulation of all granule subtypes in response to either 

TNF-α or LTB
4
 was significantly reduced by AAT. In this 

regard, Bergin et al reported a substantial rise in TNF-α 

membrane expression in circulating neutrophils isolated from 

AATD individuals compared to healthy controls, on par with 

levels in patients with rheumatoid arthritis.95 The authors sug-

gested that AAT may in turn control TNF-α bioactivity and 

therefore could reduce neutrophil degranulation in response 

to TNF-α.96 Ensuing in vitro results demonstrated that AAT 

modulates degranulation of neutrophil secondary and ter-

tiary granules and that the inhibitory mechanism involves 

the ability of AAT to bind TNF receptors (TNFRs), thereby 

blocking TNF-α engagement with TNFR1 and TNFR2.95 

This blockade of receptor engagement led to the preven-

tion of downstream signaling events including MAPK p38 

phosphorylation, a key step in the neutrophil degranulation 

process.97 This is further supported by in vivo and in vitro 

data on the ability of AAT to modulate TNF-α-induced apop-

tosis.98,99 AAT’s capacity to inhibit ligand–receptor binding 

with resultant reduced downstream signaling events has also 

been described for transferrin.100 Collectively, these studies 

strongly support the vital role that AAT plays in reducing the 

neutrophil burden in the airways and protecting lung tissue 

architecture from destruction, as seen in AATD.

The implications of augmentation 
therapy for neutrophil function in 
AATD patients
It is evident that the protease/antiprotease balance in the lung 

is of great importance in maintaining healthy tissue. There-

fore, a logical treatment of AATD-related lung disease is to 

reestablish physiological concentrations of AAT. The current 

gold standard treatment for AATD is augmentation therapy 

utilizing AAT sourced from pooled human plasma at a dose 

of 60 mg/kg, administered by slow intravenous infusion once 

weekly. In the early 1980s, it was shown that intravenous 

infusion of purified human AAT corrected the concentration 

of AAT in plasma and on the lung epithelial surface which 

was used as a surrogate for lung parenchyma.101,102 It has 

been subsequently proven that AAT augmentation therapy 

ameliorates AATD-related lung disease, with the RAPID 

(Randomized, Placebo-controlled Trial of Augmentation 

Therapy in Alpha-1 Proteinase Inhibitor Deficiency) trial 

being the first to conclusively demonstrate the benefit of 

Figure 4 Overview of inflammation caused in AATD liver and lung disease. AAT Z-polymers misfold in the liver leading to retention/aggregation in the eR, resulting in 
low levels of plasma AAT. Low levels of AAT and active uninhibited serine proteases can cause damage to lung parenchyma ultimately leading to emphysema and COPD.
Abbreviations: AAT, alpha-1 antitrypsin; AATD, AAT deficiency; eR, endoplasmic reticulum.
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AAT  augmentation therapy as compared to placebo.103 The 

extension to this trial, RAPID-OLE (RAPID open-label 

extension), further supported the continued efficacy of AAT 

in decelerating the progression of AATD lung disease over 

4 years.104

Perhaps surprisingly, the RAPID trial did not demonstrate 

a significant reduction in frequency of exacerbations with 

AAT augmentation therapy.103 Exacerbations are commonly 

neutrophil-driven events characterized by worsening of 

dyspnea and cough with increased sputum production. There 

is some evidence for a reduction in exacerbation frequency 

with augmentation therapy,105 but this is a notoriously dif-

ficult outcome to capture, and thus, inadequate power could 

be an explanation for the lack of benefit observed. Further 

anecdotal evidence for a benefit comes from surveys amongst 

AATD patients, reporting a decrease in both chest infec-

tions and hospitalizations in association with augmentation 

therapy.106

These results lend weight to the clinical use of AAT 

augmentation therapy for airways disease, which is currently 

available in the US, Canada and several European countries 

including Spain, Italy and Germany. Intravenous augmenta-

tion with AAT is also used as a treatment for panniculitis 

since the first report in 1987 in 2 ZZ patients whose skin 

condition had proven refractory to conventional therapy.107 

Both demonstrated remarkable improvement with augmenta-

tion therapy. Subsequently, numerous case reports support the 

use of this therapy, commonly at a higher dose of 120 mg/

kg weekly.81 Occasionally, panniculitis may coincide with a 

marked neutrophilic serositis manifesting as pleural effusions 

or arthritis and also characterized by dramatic improvement 

following AAT augmentation therapy.108 Successful treatment 

of nonspecific vasculitis in an AATD patient with intravenous 

augmentation therapy has also been described.109

A number of studies have specifically investigated the 

effect of AAT augmentation therapy on neutrophil dysfunc-

tion seen in AATD. Bergin et al found that in clinically stable 

ZZ patients, the neutrophils have increased levels of TACE 

activity on their membranes, leading to a higher chemotac-

tic index.90 Post AAT augmentation therapy, the increase 

in plasma concentration of AAT resulted in normalized 

ZZ-AATD neutrophil chemotactic responses by inhibiting 

TACE activity and thereby preventing FcγRIIIB from being 

shed from the cell membrane, reducing it to that of healthy 

control levels. Further work demonstrated that augmentation 

therapy restored AAT plasma levels and normalized TNF-α 

signaling, thereby preventing TNF-α-induced neutrophil 

release of secondary and tertiary granules and resultant 

production of autoantibodies.80 Additionally, it was recently 

reported that AATD is associated with increased neutrophil 

 membrane-bound NE, which can trigger an inflammatory 

cycle inducing secretion of LTB
4
 that further stimulates pri-

mary granule release. Overall, these findings highlight a novel 

interplay between LTB
4
 and NE released from neutrophils. In 

vivo plasma levels of both LTB
4
 and neutrophil membrane-

bound NE were reduced in AATD patients receiving AAT 

augmentation therapy, compared with untreated patients 

matched by forced expiratory volume in 1 second and in 

fact normalized to healthy control MM levels. Relevant to 

the latter findings, a reduction in airway levels of IL-8 and 

LTB
4
 in individuals with cystic fibrosis (CF) treated with 

aerosolized AAT has been reported,93 suggesting the use of 

AAT outside of the context of AATD.

Moving to the end of the neutrophil’s life cycle, AAT 

augmentation therapy has been reported to impact upon 

neutrophil apoptosis. In AATD patients receiving AAT aug-

mentation therapy, reduced TACE activity and TNF-α sig-

naling and normalized neutrophil apoptosis were reported.80 

AAT also binds to and inhibits caspase-3, thereby preventing 

lung endothelial cell apoptosis.111 Additionally, although not 

specific to neutrophils, AAT prolonged allograft survival and 

modulated cellular immunity in treatment of mice that had 

undergone pancreatic islet allograft.99,112–114 An investiga-

tion into how AAT protects islets cells revealed that AAT 

potentiated insulin secretion and the effects of glucagon-like 

peptide-1 and forskolin.115 Furthermore, AAT was shown to 

protect a diabetic cell line from TNF-α-mediated apoptosis 

and to significantly reduce apoptosis caused by a combination 

of TNF-α, IL-1β and IFN-γ.115

Positive effects of AAT as treatment 
in other lung diseases
The increasing recognition of the immune-modulatory effects 

of AAT, alongside its broad antiprotease activity, has led to its 

consideration as a therapeutic agent in a wide range of condi-

tions characterized by injurious neutrophilic inflammation,116 

most prominently in CF. CF is the most commonly inherited 

fatal disease in Caucasians. It results from mutations in the 

CFTR gene that codes for an ion channel present on the lung 

epithelial membrane (amongst other tissues). Mutation results 

in viscous respiratory mucus that cannot be cleared from 

the lung. Chronic respiratory infection ensues, ultimately 

resulting in bronchiectasis or permanent enlargement of the 

proximal airways with destruction of their walls. Neutrophils 

are centrally implicated in this condition, with increased levels 

of NE suggesting a relative deficiency of AAT in the lung,117 
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leading to the evaluation of AAT as a potential therapy in CF. 

A clinical trial of aerosolized AAT at a dose of 1.5–3 mg/kg 

twice daily for 1 week demonstrated safety and tolerability 

as well as inhibition of airway NE and improved clearance 

of bacteria.118 A subsequent study extended therapy to 4 

weeks, demonstrating a reduction in airway neutrophils.110 In 

contrast, however, a Phase II trial examining the effect of non- 

glycosylated recombinant AAT demonstrated safety and toler-

ability but showed a limited effect on NE activity and other 

markers of inflammation.119 A similar result showed decreased 

taurine, a surrogate for neutrophils, with no change in NE 

activity.120 These discrepancies may be caused by a number 

of reasons including but not limited to the glycosylation state 

of the AAT protein, different aerosol devices and methods of 

sampling CF airways. This remains an active area of research 

with randomized placebo-controlled trials in progress.

Another condition in which AAT is being investigated as a 

therapy in humans is bronchiolitis obliterans syndrome (BOS), 

a subtype of chronic rejection following lung transplant that is 

characterized by neutrophilic and lymphocytic inflammation 

and fibrosis of small airways.121 There is a theoretical basis and 

some supporting data for the potential benefit of AAT in other 

conditions characterized by excessive neutrophilic inflamma-

tion such as inflammatory bowel disease, rheumatoid arthritis 

and postoperative systemic inflammatory response syndrome 

(SIRS).122 For example, Daemen et al have demonstrated that 

AAT mitigates renal reperfusion injury in mice via reduced 

TNF-α and neutrophil influx.123 Kaner et al have shown that 

transgenic mice expressing the human AAT gene have reduced 

levels of liver and pancreatic dysfunction compared to wild-

type mice in an SIRS model, as well as improved survival at 

24 hours.124 Studies on human pancreatic beta cells in vitro 

and in mice have suggested a protective and regenerative 

effect of AAT on these insulin-producing cells, with poten-

tial implications in the treatment of autoimmune diabetes 

mellitus.99,125 Likewise, AAT has been shown to prolong 

survival of transplanted beta cells in mice112 and monkeys126 

and ameliorate graft-vs-host disease in a mouse model.127 

These results are the basis for several ongoing clinical trials 

in humans. In summary, AAT also has numerous effects on 

a range of cell types including monocytes, B cells, T cells, 

dendritic cells and macrophages, both directly and indirectly. 

These effects have been reviewed in detail elsewhere116,128–129 

and further strengthen the concept of AAT as an important 

modifier of immune and inflammatory responses. Further 

understanding of how AAT interacts with the neutrophil, as 

well as other immune cells, may expand its use as a therapeutic 

agent outside of the setting of genetic AATD.

Conclusion
The lungs of an AATD individual are burdened with high 

levels of proteolytic agents including NE, CathG and PR3 as 

a result of neutrophilic inflammation (Figure 3). The primary 

function of AAT as a protease inhibitor protecting the lung 

parenchyma from these destructive proteases is apparent in 

AATD as the diminished AAT levels in these individuals enable 

these proteases to go unchecked. However, recent work has 

shown that this multifaceted protein exerts more than just an 

antiprotease function in the circulation and lung. It has been 

found that AAT possesses anti-inflammatory properties inde-

pendent of its antiprotease activity, bringing us away from the 

classical view of AAT. These anti-inflammatory properties are 

fundamental when trying to understand the manifestation of 

both the lung and systemic inflammation that is seen in AATD. 

The AATD neutrophils have dysregulated neutrophil adhesion, 

chemotaxis, degranulation and apoptosis. The ability of AAT 

to correct this dysregulation is seen following augmentation 

therapy, as AAT binds a number of pro-inflammatory media-

tors via hydrophobic and electrostatic interactions resulting in 

normalized neutrophil responses. This demonstrates that AAT 

exerts a wide array of immune-modulating effects, illustrating 

the wider role it plays, rather than just the protease inhibitor it 

was once thought. Nevertheless, a number of challenges remain 

in the development of AAT as an anti-inflammatory therapy 

such as expanding our knowledge of its mode of action and 

the development of new sources of glycosylated AAT with 

equivalent anti-inflammatory capacity to that of plasma purified 

protein. Despite these challenges, AAT holds incredible poten-

tial as a novel anti-inflammatory molecule, which has already 

been established as a safe and well-tolerated therapeutic agent.
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