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Inspired from the computational efficiency of the biological brain, spiking neural networks

(SNNs) emulate biological neural networks, neural codes, dynamics, and circuitry. SNNs

show great potential for the implementation of unsupervised learning using in-memory

computing. Here, we report an algorithmic optimization that improves energy efficiency of

online learning with SNNs on emerging non-volatile memory (eNVM) devices. We develop

a pruning method for SNNs by exploiting the output firing characteristics of neurons.

Our pruning method can be applied during network training, which is different from

previous approaches in the literature that employ pruning on already-trained networks.

This approach prevents unnecessary updates of network parameters during training.

This algorithmic optimization can complement the energy efficiency of eNVM technology,

which offers a unique in-memory computing platform for the parallelization of neural

network operations. Our SNN maintains ∼90% classification accuracy on the MNIST

dataset with up to ∼75% pruning, significantly reducing the number of weight updates.

The SNN and pruning scheme developed in this work can pave the way toward

applications of eNVM based neuro-inspired systems for energy efficient online learning

in low power applications.

Keywords: spiking neural networks, unsupervised learning, handwriting recognition, pruning, in-memory

computing, emerging non-volatile memory

INTRODUCTION

In recent years, brain-inspired spiking neural networks (SNNs) have been attracting significant
attention due to their computational advantages. SNNs allow sparse and event-driven parameter
updates during network training (Maass, 1997; Nessler et al., 2013; Tavanaei et al., 2016; Kulkarni
and Rajendran, 2018). This results in lower energy consumption, which is appealing for hardware
implementations (Cruz-Albrecht et al., 2012; Merolla et al., 2014; Neftci et al., 2014; Cao et al.,
2015). Emerging non-volatile memory (eNVM) arrays have been proposed as a promising in-
memory computing platform to implement SNN training in an energy efficient manner. eNVM
devices can implement spike-timing-dependent plasticity (STDP) (Jo et al., 2010; Kuzum et al.,
2011), which is a commonly used weight update rule in SNNs. Most demonstrations utilize eNVM
crossbar arrays to parallelize computation of the inner product (Alibart et al., 2013; Choi et al.,
2015; Prezioso et al., 2015; Eryilmaz et al., 2016; Ge et al., 2017; Wong, 2018). In addition, there
are several works focus on using eNVM hardware such as spintronic devices or crossbars with
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additional algorithmic optimization of STDP learning rules to
perform hardware implementation of SNN (Sengupta et al.,
2016; Srinivasan et al., 2016; Ankit et al., 2017; Panda et al.,
2017a,b). While eNVM crossbar arrays improve energy efficiency
at a device level for SNN training, network level algorithmic
optimization is still important to further improve energy
efficiency for wide adoption of SNNs in low power applications.

Pruning network parameters, i.e., synaptic weights, is a recent
algorithmic optimization (Han et al., 2015) that is widely used for
compressing the network to improve the energy efficiency for the
inference operation of deep neural networks. Although synaptic
pruning has been demonstrated in many biophysical SNN
models (Iglesias and Villa, 2007; Deger et al., 2012, 2017; Kappel
et al., 2015; Spiess et al., 2016), how the pruning can be used for
non-biophysical SNN has not been fully explored yet. Moreover,
this method is applied on already-trained networks and it
does not address the high-energy consumption during training,
which requires iterative weight updates. A new approach toward
network training that improves the energy efficiency of SNNs
is crucial to develop online learning systems that can learn and
perform inference in real world scenarios.

Here, we develop an algorithm to prune during training for
SNNs with eNVMs to improve network level energy efficiency
for in-memory computing applications. Although Rathi et al.
(Rathi et al., 2018) has showed pruning in SNN before, there are
several key innovations and differences of the pruning method
in this work compared to Rathi et al.’ work. Our method
considers the spiking activity of the output neurons to decide
when to prune during the training while Rathi et al. performs the
pruning at regular intervals for every batch without considering
the characteristics of the output neurons. In addition, once the
weights have been pruned during the training, we do not update
the pruned weights for the rest of the training while Rathi et al.
only temporally removes the pruned weights and they can still be
updated when new batches present to the network. Finally, we
develop soft-pruning as an extension of pruning. Soft-pruning
sets the pruned weights to a constant non-zero values. Therefore,
it is novel in terms of treating pruned weights. Rathi et al. only
implement pruning.

Our paper is organized as follows: first, we describe our
unsupervised SNN model and the weight update rule. Then, we
introduce a pruning method that exploits spiking characteristics
of the SNN to decrease the number of weight updates and thus
energy consumption during training. Finally, we discuss how
our SNN training and pruning algorithm can potentially be
realized using eNVM crossbar arrays and perform circuit-level
simulations to confirm the feasibility for online unsupervised
learning to reduce the energy consumption and training time.

In section Input layer to section Testing, we discuss our
SNN model and the algorithms relating to weight updates.
In section Pruning during training, we discuss methods to
prune during training. In section Results and discussion, we
discuss our software simulation results, compare our SNN
with state-of-the-art unsupervised SNN algorithms on MNIST
and explore the method to implement our SNN model and
pruning algorithm using the eNVM crossbar array through
circuit-level simulations.

NEURAL NETWORK ARCHITECTURE

Inspired by the information transfer in biological neurons via
precise spike timing, SNNs temporally encode the inputs and
outputs of a neural network layer using spike trains. The weights
of the SNN are updated via a biologically plausible STDP, which
modulates weights based on the timing of input and output spikes
(Nessler et al., 2013; Tavanaei et al., 2016). This can be easily
implemented on an eNVM crossbar array (Kuzum et al., 2011),
making it ideal for online learning in hardware.

Our SNN performs unsupervised classification of handwritten
digits from the MNIST dataset. It is a single layer network
defined by the number of inputs neurons n, the number
of outputs neurons m, and an m by n weight matrix.
The number of input neurons can vary depending on
preprocessing, but by default there are 784 input neurons
to account for each grayscale pixel in a training sample.
The output layer consists of 500 neurons to classify the 10
classes of the MNIST dataset (60,000 training images and
10,000 testing images). Figure 1 describes the fully connected
network architecture.

As an overview of the pipeline, we first train the SNN
by sequentially presenting samples from the training set. The
purpose of training is to develop the weights of each output
neuron so that they selectively fire for a certain class in MNIST.
Afterwards, we present the training set for a second time to label
each trained output neuron with the class of training samples
that has the highest mean firing rate. This organizes the output
neurons into populations that each respond to one of the classes.
Finally, we test the SNN by predicting the label of each of the test
samples based the class of output neurons with the highest mean
firing rate.

FIGURE 1 | Each training sample is represented by n input neurons (n-1 input

neurons and a bias term). The weight matrix is an m by n array composed of

the weights that connect input neurons to output neurons in the single

layer network.
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Input Layer
We first remove the pixels that are used to represent the
background in at least 95% of the training samples to reduce the
number of input layer neurons. Because the grayscale pixels have
intensity values in the range [0, 1], the pixels with a value of 0
correspond to the background and are thus checked for removal.
After this step, we retain 397 of the original 784 pixels, reducing
the complexity of the SNN. Therefore, we have 398 input neurons
for a given training sample after accounting for an additional
bias input neuron, which has a value of 1. Our output neurons
do not have refractory periods and there is no lateral inhibition
between them.

We encode each of these inputs as a Poisson spike train at a
frequency of 200 times its value, leading to a maximum input
firing rate of 200Hz. We round the timing of each spike that
is generated by the Poisson process to the nearest millisecond,
which is the time of one time step in the SNN. The SNN displays
each training sample for the first 40ms of a 50ms presentation
period, and thus the input spikes for a given training sample
can only occur in this 40ms window. Figure 2A shows an
example of the input spiking activity for the duration of three
training samples.

Output Layer
For output spikes, we use the Bayesian winner-take-all (WTA)
firing model (Nessler et al., 2013). Unlike traditional integrate-
and-fire models (Gupta and Long, 2007; Diehl and Cook, 2015a),
this model is shown to demonstrate Bayes’ rule (Nessler et al.,
2013), which is a probabilistic model for learning and cognitive
development (Perfors et al., 2011). The SNN fires an output spike
from any given output neuron according to a 200Hz Poisson
process. The output neuron that fires is chosen from a softmax
distribution of the output neurons’ membrane potentials:

p (uk) =
exp (uk)

∑m
i=1 exp (ui)

, (1)

where
{

p (uk)
}

k=1, ...,m
is the softmax probability distribution of

the membrane potentials {uk}k=1, ...,m.m is the number of output
neurons. Our firing mechanism is probabilistic instead of hard
thresholding the membrane potentials. Therefore, the neuron
with higher membrane potential means that it has higher chance
to fire. We calculate membrane potentials uk using (2)

uk =
∑

i

WkiXi + bk (2)

where Wki is the weight between input neuron i and output
neuron k, Xi is the spike train generated by input neuron i and bk
is the weight of the bias term. Equation (2) calculates an output
neuron’s membrane potential as the inner product between the
input spikes at a given time step and the output neuron’s weights,
but this does not need to be integrated with each time step.
Instead, we only calculate the membrane potentials at time
steps when an output neuron fires because it is only used to
determine which output neuron to fire. This removes additional
parameters and resources needed with typical integrate-and-
fire neuron models, which use the membrane potential to also

find when to fire output neurons, allowing for a more efficient
hardware implementation.

Weight Updates: STDP Rule
When an output neuron fires, a simple STDP rule determines
which weights to update via long-term potentiation (LTP) or
long-term depression (LTD). As shown in Figure 3A, if an input
neuron’s most recent spike is within σ = 10ms of the output
spike, then the weight for this input-output synapse is increased
(LTP). Otherwise, if it is beyond this 10ms window of the output
spike, then the weight is decreased (LTD).

This 10ms window is in accordance with the fact that
training samples are not displayed during the final 10ms of their
presentation period—they are only displayed for the first 40ms
of the 50ms presentation period. Thus, there are no input spikes
in the final 10ms of each presentation, as seen in Figure 2A.
Therefore, this STDP window prevents LTP weight updates that
are potentially caused by the input spiking activity of the previous
training sample. For example, when a new training sample is
inputted to the SNN, an output spike occurring at simulation
time t = 50ms cannot have a spike-timing difference with an
input spike occurring from t = 41ms to t = 49ms, since this is
within the 10ms window for LTP weight updates.

Figure 2B shows an example of the output spiking activity
for 10 representative output neurons with randomly initialized
weights, illustrating the random spiking activity of an untrained
SNN. The effect of performing weight updates is to train the
network to selectively fire to certain classes of inputs. At the
start of training, we randomly initialize all weight values between
[−1, 1], and the LTP and LTD update rules keep the weight
values within the range [−1, 1]. The LTP weight update is
an exponential function of the form 1wLTP(w) = ae−b(w+1)

(Figure 3B), where a ∈ {R : 0 < a < 1} and b ∈ R>0 are
parameters that control the scale of the exponential, and w is
the current weight value. For LTP updates to keep weight values
within the upper bound of 1, we pick the parameters such that the
weight update decays toward 0 as the current weight approaches
1. As a result, exponential LTP updates will guarantee that the
weights converge to the upper bound of 1.

Unlike LTP, the LTD weight update is a constant function
that disregards the current weight value: wLTD = −c,
where c ∈ {R : 0 < c < 1} is a parameter that controls the
magnitude of the weight decrease. Because there is no guarantee
of convergence as with the exponential LTP update, the SNN
clips weights to the lower bound of −1. Alternatively, we
can have an exponential LTD update that is mirrored about
w = 0 from the exponential LTP update, i.e., 1wLTD (w) =

−aeb(w−1), and choose parameters to have weight convergence
as in the case of LTP. However, the constant LTD update
is easier to implement in hardware since there are less
parameters to tune. The specific parameter choices of a, b ,and
c are shown in Table 1 and they come from cross validation
of the parameter set to optimize the classification accuracy.
Several previously published papers have proposed probabilistic
synapses to perform STDP weight update (Vincent et al., 2014;
Srinivasan et al., 2016). It is worth to note that the synapses
in our network is deterministic and only the firing mechanism
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FIGURE 2 | Spike raster plots showing examples of (A) input spiking activity, (B) output spiking activity for an untrained SNN, and (C) output spiking activity for a

trained SNN. For (B) and (C), 10 output neurons’ spiking activities are selected as a representative example. After the SNN is trained, the output spike firing activity is

more coordinated, which is indicated by the output neurons selectively firing to certain input stimuli. The time duration on the x axis indicates the presentation of

training samples. Since the output neuron firing rate is 200Hz, therefore there are around 10 spikes (# of spikes = presentation time × frequency = 50ms × 0.001 ×

200Hz = 10) will be generated within 50ms presentation time.

FIGURE 3 | (A) STDP rule showing the 10ms window for an output-input

spike time difference (tout–tin ) that determines whether an LTP or an LTD

update is performed. If the output-input spike time difference (tout–tin) is within

10ms, the weight corresponding to this input-output synapse is updated via

LTP. Otherwise, the weight is updated via LTD. The LTP update is an

exponential function that depends on the current weight, and the LTD update

is a constant. (B) The exponential LTP update is dependent on the current

weight w and it helps keep the weight values within the range [−1, 1].

of output neurons is probabilistic as explained in section
Output layer.

Scaling Weight Updates as a
Normalization Method
To perform a weight update, we add to the current weight wt the
weight update, which is scaled by an additional factor depending
on whether the update is LTP or LTD:

wt+1 =

{

wt +
d
n1wLTP(wt), LTP

wt +
p
n1wLTD, LTD

(3)

where d is the number of weights to undergo LTD, p is the
number of weights to undergo LTP, and n is the total number
of weights for an output neuron, which also corresponds to
the number of input neurons. Because of the STDP rule, all n
weights of an output neuron are updated at any given output
neuron firing event, which means that d + p = n. Because

TABLE 1 | Simulation parameters used in training, labeling and testing for this

work.

Parameters 10–digits

Training Labeling Testing

# of neuron Input 398

Output 500

Firing rate (Hz) Input 200 200 200

Output 200 200 600

Image presenting time (ms) 50 50 200

Neuron removal threshold – 0.75 –

Pruning threshold Prune

parameter (r)

10 – –

Spice count 8 – –

STDP a = 0.0667

b = 2.5

c = 0.0167

the number of LTP updates is often disproportionate with
that of LTD due to the probabilistic spike firing, the scaling
factors d and p keep the net weight change of both types
of updates proportional so that for all output neurons, the
distribution of weight values have roughly the same mean and
variance. With this, an overview of the SNN training method is
outlined in Figure 4.

This scaling of LTP and LTD weight updates is used
to prevent certain output neurons from firing more than
others. It effectively normalizes the weight distributions of each
output neuron so that they fire according to the correlation
between their weights and the training sample, rather than
firing because the magnitude of their weights artificially
increases their membrane potential. This foregoes the need
to normalize the weight distributions of each output neuron
through calculating the mean and standard deviation, which
requires additional resources when implementing the weight
update in hardware.
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FIGURE 4 | SNN training algorithm.

Testing
After training is done, we fix the trained weights and assign a
class to each neuron by the following steps: First, we present
the whole training set to the SNN and record the cumulative
number of output spikes Nkj, where k = 1, ..., m (m is number
of output neurons) and j = 1, . . . , n (n is number of classes, for
MNIST, n = 10). Then, for each output neuron i, we calculate its
response probability Zkj to each class j using Eq. (4). Finally, each
neuron k is assigned to the class that gives the highest response
probability Zkj.

Zkj =
Nkj

∑n
j=1 Nkj

(4)

After training and labeling are done, we fix the weights and
present test set to our network. We use Eq. (5) to predict the
class of each sample, where Sjk is the number of spikes for the
kth output neuron that are labeled as class j and Nj is the number
of output neurons labeled as class j.

J = argmax
j

∑Nj

k=1
Sjk

Nj
(5)

Pruning During Training
Pruning is a concept inmachine learning that removes redundant
branches from a decision tree to reduce complexity and improve
accuracy of the classifier. It prevents overfitting by learning the
general structure of the input data instead of learning minute
details. Han et al. implement pruning on trained convolutional
neural networks to remove unimportant weights that have low
contribution to the output (Han et al., 2015). For example,
weights with values close to 0 can be removed since their inner
product with their respective inputs will yield low output values.
This removal effectively sets the weight values to 0, allowing for
a sparser representation of the network for mobile applications
while still retaining the same classification performance. Instead
of pruning after training, we propose a method to prune during
training on SNNs to reduce the number of weight updates.

Our implementation of pruning removes unimportant
weights belonging to each output neuron, and each output
neuron is only pruned once during training. When an output
neuron fires, its weights can potentially be pruned based on the
level of development in its weights. There is a tradeoff in choosing
when to prune an output neuron. If we prune weights early
during training, we save computation by not having to update
these weights later on. However, by pruning early, the weights
might not be trained enough to recognize a certain class in the
dataset at the time of pruning, and this early pruning can hamper
the future development of the weights. Conversely, pruning late
better insures that the weights are trained at the expense of
computing more weight updates.

To determine when to prune the weights of an output neuron,
we refer to the spiking activity of the output neurons. The
output neuron spiking activity is an inherent feature of SNNs that
indicates the level of development in an output neuron’s weights.
Once an output neuron is trained enough to recognize a certain
class from the dataset, it will start to fire more consistently, as
in Figure 2C, due to its high membrane potential. To quantify
this consistent output neuron firing behavior, we accumulate a
count of the occurrences where there are at least 8 consecutive
output spikes (Table 1) from a specific output neuron during
the 40ms presentation period of a training sample. This count

is kept for each output neuron as shown in Figure 5, and
once an output neuron accumulates r (r = 10 in our case as

shown in Table 1) such counts during training, the SNN prunes

a user-defined percentage of its weights. We choose to look
for 8 consecutive output spikes based on the 200Hz output
firing rate, and the 10 count threshold is a hyperparameter
to control how early or late to prune an output neuron. It is
worth noting that the pruning percentages are set externally in
our method and they can be chosen according to the dataset,
the accuracy requirement and power/latency budget of the
specific applications.

We explore two different methods of pruning in this work.
We use the conventional pruning method (Han et al., 2015)
to prune the weights by setting their values to 0, which we
also refer to pruning in this work. We also investigate a soft-
pruning method (Kijsirikul and Chongkasemwongse, 2001) as
an extension of conventional pruning. Instead of completely
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FIGURE 5 | The illustration of consecutive output spikes of 10 output neurons

as a representative example. The consecutive output spikes of Neuron 8 are

boxed in red.

removing the weights by setting them to 0, soft-pruning keeps the
pruned weights constant at their current values for the remainder
of training, or even keeping certain weights constant at the
lowest or highest weight values allowed. This allows for more
flexible criteria in regard to which weights are pruned, and what
values they take as a result of pruning. In this work, we set the
pruned weights to the lowest possible weight values, which is
−1 for our network. The advantage of pruning is in reducing
the representation of the weight matrix by introducing more
sparsity. Figure 6 demonstrates this by the physical removal of
synapses. However, depending on the dataset, the number of
weights that will be close enough to 0 to comfortably prune
without losing important information can vary. While soft-
pruning does not necessarily introduce more sparsity, it can
allow for more weights to be pruned, thus saving computation
by preventing more weight updates without drastically altering
the weight distribution. Figure 6 shows the pruned weights via
soft-pruning as dashed lines to indicate that they still need to
be stored in memory and participate in the testing. Soft-pruning
does not increase the sparsity of weight matrix. However, since
these weights are no longer updated, this can reduce energy
consumption in the hardware implementation.

The usage of these two different pruning methods is
dependent on the dataset to be classified. For example, the
features of an image from MNIST can be separated into binary
categories, i.e., the foreground and the background. In such a
case, an example of soft-pruning is to prune a percentage of
the lowest-valued weights of an output neuron by keeping these
weight values at the lowest possible value, which for our SNN is
−1. This variant of soft-pruning is analogous to learning a weight
representation where the pixels representing the background take
a single value, but the pixels representing the foreground can
take on a range of values. Intuitively, soft-pruning results in a
weight representation that does not waste resources to encode the
black background pixels in MNIST in order to learn the details
of the foreground, which can have varying levels of intensity

FIGURE 6 | Pruning prunes weights with values around 0 by setting these

weights to 0. Much like a sparse matrix, these weights do not have to be

stored in memory if their index is stored. Therefore, the synapses are physically

removed to represent pruning. In contrast, soft-pruning prunes weights with

values meeting certain criteria by keeping these weights constant at a certain

value for the rest of training. Therefore, the pruned weights still need to be

stored because they can be nonzero, but they are represented by dashed lines

to indicate that they no longer need to be updated during training of the SNN.

due to the stroke weight of the handwriting. The top row of
Figure 7 shows an example of the learned weight visualizations
of 10 representative output neurons when the SNN is trained on
theMNIST dataset in three cases: without pruning, with pruning,
and with soft-pruning. By the seeding of the random number
generator, we control the spiking activity of all three cases so
that the third output neuron (N3) is the first to meet the pruning
criteria. Therefore, up to the point before N3 is pruned, the SNNs
for each of the three cases have the exact same spiking activity
and weight update history for all output neurons. For example,
the middle row of Figure 7 shows that N3’s weight distribution is
the same for all three cases. After this point, the different pruning
methods between the three cases cause the weights of the output
neurons between each case to develop differently.

Comparing the weight distributions for N3 in the final row
of Figure 7, we can verify that soft-pruning is more reasonable
than pruning for the MNIST dataset because it better preserves
the shape of the original weight distribution, without pruning,
in Figure 7A. In this example, we use both pruning methods to
prune half of an output neuron’s weights to clearly demonstrate
the effect of each pruning method on the weight distribution.
For pruning in Figure 7B, pruning 50% of the weights centered
about the value 0 results in compressing a wide range of weights,
shown by the space between the two dashed lines in the middle
panel. Effectively, these pruned weights, most of which represent
the foreground features of the MNIST dataset, are set to 0.
Although the final panel of Figure 7B shows a somewhat binary
weight distribution, which matches the binary foreground and
background features of the MNIST dataset that we want to
learn, the problem is that the shape of this weight distribution
is drastically different than that of the weight distribution when
the weights develop without pruning, as seen in the final panel of
Figure 7A. In contrast, the effect of soft-pruning on the shape of
the weight distribution, as seen in the final panel of Figure 7C, is
minimal when compared to the case without pruning. Therefore,
the pruned output neurons will produce comparable membrane
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FIGURE 7 | Pruning example. (Top row) Weight visualization of the 10 representative output neurons after the SNN is trained in 3 different cases: (1) without pruning,

(2) with pruning (while pruning 50% of the weights), and (3) with soft-pruning (while pruning 50% of the weights). (Middle row) Weight distribution of a representative

output neuron (N3) before it is about to be pruned during training. (Bottom row) Weight distribution of the same output neuron at the end of training. It is worth to note

that we only recover the removed pixels (black pixels) for visualizing the learned weights. Since those pixels are not used during training, histograms only include

corresponding digit pixels (color bar) and pruned pixels (white pixels). (A) Without pruning, the STDP rule causes the weights for the MNIST dataset to follow a

distribution where many of the weight values saturate at the lowest possible value. These low weights represent the background of MNIST training samples that are

being learned by the SNN. (B) Pruning prunes the weights between the two dashed lines, which represent the 50% of the weights that centered about 0, and sets their

values to 0 (red bar). (C) Soft-pruning prunes the weights to the left of the dashed line, which represent the 50% of the weights that are the lowest-valued weights, to

the lowest possible value, which is at −1 (red bar). For both pruning and soft-pruning, the weights that are not pruned continue to develop for the rest of training.

potentials to the unpruned output neurons during training,
resulting in balanced training between all output neurons.

With more complex datasets, e.g., color images, we might
want to prune weights by setting weights around 0 to 0, or by
setting weights to their current value. Han et al. demonstrate the
former (Han et al., 2015). In the latter case, an interpretation
can be that we set unimportant weights to their current
value with the assumption that their current representation is
already satisfactory for learning. Another approach is to freeze
important, high-valued weights, which is a recently explored
neuro-inspired concept called consolidation (Mnih et al., 2015).

RESULTS AND DISCUSSION

We simulate our SNN model, pruning and soft-pruning in
MATLAB. To determine a suitable size for the training dataset,
we find via Figure 8A that three epochs (60,000 training samples
per epoch) is sufficient to reach ∼94% classification accuracy.
Additionally, from Figure 8B, we use a 50ms presentation period
per training sample because longer presentation times show
diminishing improvements in classification accuracy. Figure 8C
shows the accuracy increases as the number of output neurons
increase. However, adding output neurons will significantly

increase the simulation time. Therefore, we choose to use 500
output neurons.

Following the pruning methods described in section Pruning
During Training, we investigate the performance through
software simulations. Simulation of classification accuracy for
different p values in Figure 9A suggests that r = 10 provides
the high accuracy even for very large pruning percentages (up
to 80%). Figure 9B shows the performance of pruning and
soft-pruning for varying pruning percentages when applied
after training and during training. When applied after training,
pruning and soft-pruning are comparable with each other until
∼50% pruning rate. After this point, the accuracy for the
regular pruning method falls below ∼90% at ∼60% pruning
rate, but with soft-pruning, the accuracy stays at ∼90% until
∼75% pruning rate. When each method is applied during
training to save on computation of weight updates, the
accuracy with pruning falls below ∼90% at around a ∼40% of
pruning rate, and the accuracy with soft-pruning falls below
this mark at a ∼75% of pruning rate. The performance of
pruning drops much earlier than soft-pruning because pruning
compresses the representation of important weights and causes
uneven firing between output neurons, as mentioned in section
Pruning During Training. Soft-pruning during training provides
comparable accuracy to pruning after training for up to 75%

Frontiers in Neuroscience | www.frontiersin.org 7 April 2019 | Volume 13 | Article 405

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Shi et al. Soft-Pruning During SNN Training

FIGURE 8 | Classification accuracy vs. (A) number of training epochs, (B) sample-present time and (C) output neuron numbers. Classification accuracy does not

have noticeable increase after 3 epochs and 50ms present time. Therefore, 3 epochs and 50ms are used in the training. Although the accuracy can be further

improved if neuron number increases, it will significantly increase the simulation time. Therefore, we choose to use 500 output neurons in our simulation.

pruning rate while preventing excess computation on weight
updates. Additionally, when soft-pruning is applied during
training, the classification accuracy is maintained at ∼94% with
a pruning rate up to 60%. The aim of our work is mainly
energy optimization during SNN training. Therefore, soft-
pruning is chosen to maintain high accuracy with larger pruning
percentage, while providing significant energy reduction during
training. Since soft-pruning does not completely remove synaptic
weights, it is not the best way to achieve memory optimization.
Alternatively, conventional pruning (Han et al., 2015) presented
in this work completely removes synaptic weights and it can be
used to reduce the size of memory array used for inference with a
little loss in accuracy (Figure 9B).

We also compare the number of weight updates of
conventional STDP (Song et al., 2000), STDP used in this work
and STDP used in this work with 50% soft-pruning in Table 2.
Since conventional STDP demonstrated by Song et al. bound the
number of weight update of excitatory synapses (ga) between 0
and gmax while our STDP bound the weights between −1 and
1, the number of weight updates of conventional STDP and
our STDP are almost the same as shown in the Table 2. On
the other hand, STDP+Soft-pruning significantly reduces the
number of device updates for 50% soft pruning. In addition,
soft-pruning is conceptually similar to stop learning that has
been proposed in semisupervised models (Brader et al., 2007;
Mostafa et al., 2016). However, there are two major differences
between soft-pruning and stop-learning. Our SNN training is
unsupervised. Therefore, the criterion for our soft-pruning to
stop updating the synapses is when an output neuron can
generate enough count of consecutive spikes to a specific class
of MNIST digits (See section Pruning during training in the
manuscript). Brader et al. (2007) use a semi-supervised model.
Therefore, stop-learning will happen when the total current h
of an output neuron is in agreement with instructor signal
(target). The threshold θ is chosen to determine if the output
neuron satisfies the criterion. Furthermore, our soft-pruning
stops updating part of the synapses of an output neuron
depending on the pruning percentage the user set. This means

TABLE 2 | The number of weight updates of conventional STDP (Song et al.,

2000), STDP used in this work with and without 50% soft-pruning.

# of weight updates

Conventional STDP (Song et al., 2000) 649289638

STDP (this work) 648669156

STDP (this work) + 50% Soft-pruning 357656929

that the un-pruned synapses still can be updated for the rest
of the training. However, Brader et al. stop updating all the
synapses of an output neuron once the stop-learning criterion
is satisfied.

Our classification accuracy is comparable to previous software
implementations of unsupervised learning for theMNIST dataset
with SNNs (Table 3). As can be seen from the table, multilayer
SNNs (Diehl and Cook, 2015a; Kheradpisheh et al., 2017;
Tavanaei and Maida, 2017; Ferré et al., 2018) generally have
higher accuracy than single layer SNNs. However, the works
with accuracy higher than 95% (Kheradpisheh et al., 2017;
Tavanaei and Maida, 2017; Ferré et al., 2018) all require using
multiple convolution and pooling layers, and other complex
processing techniques, which are difficult to implement in
hardware. Compared to the SNNs without convolution layers,
our classification accuracy is much higher than previous single
layer SNNs (Nessler et al., 2013; Al-Shedivat et al., 2015)
and achieves performance very close to Diehl and Cook
(2015a) with much fewer neurons and synapses. Our single
layer SNN architecture does not require complex processing
and is particularly suitable for easy hardware implementation.
Differing from all previous approaches, we present a novel
pruning method to reduce the number of updates to network
parameters during SNN training. Hence, despite only part
of the synapses in our network needing to be updated
during training, our SNN still maintains a high classification
accuracy with up a 75% pruning rate. Therefore, our pruning
scheme can potentially reduce the energy consumption and
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FIGURE 9 | (A) Classification accuracy vs. prune parameter (r) for varying pruning percentages. Prune parameter is the criterion to decide when to prune for each

neuron during training. (B) Classification accuracy vs. pruning percentage for pruning and soft-pruning when applied during training and after training. The data points

are taken in steps of 10%. The dashed line represents classification accuracy of 90%. Soft-pruning during the training performs better than pruning especially for high

pruning percentages. Soft-pruning maintains > 90% up to 75% pruning percentage while pruning falls below 90% at only 40% pruning. Although we focus on pruning

during training, we also present results from pruning weights after training as a baseline for previously established pruning methods from the literature. The parameters

used in the simulation are specified in Table 1.

TABLE 3 | Classification accuracy comparison between this work and the state-of-the-art software demonstrations of unsupervised learning of SNNs on the MNIST

dataset.

Architecture Complex Processing Learning rule #Neurons/synapses Pruning during training Performance

Spiking deep neural network

(Kheradpisheh et al., 2017)

Convolution, DOG filter, Pooling Simplified STDP N/A None 98.4%

Multi layer (Ferré et al., 2018) Convolution, Pooling, Dropout Binary STDP N/A None 98.49%

Three layer (Tavanaei and

Maida, 2017)

Convolution, Pooling Probabilistic STDP N/A None 98.36%

Two layer (Diehl and Cook,

2015a)

None Exponential STDP 7,184/5,017,600 None 95%

One layer (Al-Shedivat et al.,

2015)

Population Coding Probabilistic STDP 1,696/200,704 None 78.4%

One layer (Nessler et al., 2013) Population Coding Exponential STDP 808/70,800 None 80.14%

One layer (this work) None Simplified STDP 898/∼199,000 Yes (∼75%) 94.05%

The table lists the complex processing techniques used, the learning rule, and the #Neurons/synapses used in each work. The table also indicates if pruning during training is involved

in the work. The numbers of neurons are counted by summing the input and output neurons.

training time in hardware implementation. The simple one-
layer SNN architecture and STDP rule proposed in our work
mainly focus on demonstrating the idea of pruning during
the training. Scaling our SNN algorithm to larger datasets can
be achieved by modifying the network architecture in several
approaches such as by adding more fully connected layers
(Diehl et al., 2015b; Lee et al., 2016; O’connor and Welling,
2016) or convolutional layers (Diehl et al., 2015b; Lee et al.,
2016; Tavanaei and Maida, 2017; Kulkarni and Rajendran,
2018), adjusting learning rule and involving the supervision
(Kulkarni and Rajendran, 2018).

Our single layer SNN network (Figure 10A) can be directly
mapped to a crossbar array based on eNVMdevices (Figure 10B)

to perform online learning. The input of the network is decoded
into a Poisson spike train based on the pixel intensity (see

section Input layer for details) and it can be mapped to the input

voltage spikes of the crossbar array (Figure 10A). There aremany

demonstrations showing that eNVM devices can have multilevel
conductance states to emulate analog weight tuning (Jo et al.,
2010; Kuzum et al., 2011). Therefore, the weights in the SNN can
be represented using the conductance of eNVMdevices. Since the
weights in our network is ranging from −1 to 1, there are two
ways to use device conductance to represent the weights. One
approach could be using a single device to represent a synaptic
weight. The weights in the network are linearly transformed to
the conductance range as shown in Equation (6) for the hardware
implementation (Serb et al., 2016; Kim et al., 2018; Li et al., 2018;
Oh et al., 2018; Shi et al., 2018).

G = W
(Gmax − Gmin)

2
+

(Gmax+Gmin)

2
(6)

An alternative approach could be using of two devices as
one synaptic weight as shown in previous literature (Burr
et al., 2015; Li et al., 2018). Both positive and negative
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FIGURE 10 | (A) Schematic of SNN with n input neurons and m output neurons. The pixel intensities of input image are decoded into passion spiking training and fed

to the input of the network. The weights (W13, W23, …, WN3) of output neuron Z3 has been highlighted. (B) Schematic of a crossbar array based on eNVM devices.

The input of (A) can be mapped to the voltage. The weights (W13, W23, …, WN3) are mapped to the conductance (G13, G23, …, GN3) of the devices. The weighted

sum can be obtained by measuring the current at the end of each column. The postspike pulses are generated based on the weighted sums (I). The overlap of pre

and post spike pulses as shown in callout window programs the device to different conductance states.

FIGURE 11 | (A) Analog synaptic core uses a single cell with multi-level conductance states to represent one synaptic weight. One transistor is added to each cell in

order to avoid sneak path problem. The crossbar wordline (WL) decoder can activate all WLs, bitline (BL) read out the weighted sum results, and source line (SL) can

be used to perform weight update. Multiplexer (MUX) is used to share the neuron circuitry. The neuron circuit contains analog-to-digital converters (ADCs), adders,

registers and shift adders, which are used to perform weighted sum. (B) The energy and (C) latency without and with overhead estimation for soft-pruning from 10 to

80% with a step of 10% using SNN+NeuroSim. Without overheads (W/O overheads) results mean that flagging mechanism is implemented in software. With

overheads (W/ overheads) results mean that flagging mechanism is implemented in hardware.

weights can be represented by taking the difference
between conductance of two devices (G = G+ − G−).
The weighted sum operation for calculating membrane
potential (see section Output layer for details) can be
calculated in a single step by accumulating the current
flowing through each column in the crossbar array
(Eryilmaz et al., 2016). Our STDP weight update rule can
be realized by overlapping of the prespike and postspike
pulses (Figure 10B) to program the device to different
conductance levels, as shown in previous demonstrations
(Kuzum et al., 2011, 2012).

In order to implement pruning in hardware, the pruned cells
need to be flagged to prevent them from being updated further.
One solution is to use an extra binary device associated with
each eNVM synaptic weight to serve as a hardware pruning flag.
This binary device is initially programmed to “0” (the lowest
conductance state), to indicate that the cell has not been pruned.
We update the pruning flag of an output neuron’s weights to
“1” (the highest conductance state) when it has been pruned
during training. Before the weight update, we read the hardware
flag of the winning neuron’s weight to decide whether or not
to update. The weights are only pruned once during the entire
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training. As a result, each hardware flag is just written once
and hence the energy overhead will be negligible. However, the
hardware pruning flag will slightly increase the area of the array.
If the size of the array is crucial for a system, an alternative
way can be used to implement the hardware flag without area
overhead. The pruned cells can be reset to a very low conductance
state with additional reset current (Arita et al., 2015; Xia et al.,
2017). Such cells generally require reforming to be programmed
to a multi-level conductance state regime again (Wong et al.,
2012). Therefore, the pruned cells will not be further updated
during training and we can use its very low conductance state
as pruning flag.

In order to confirm the feasibility of the proposed hardware
implementation of pruning during SNN training. We perform
circuit-level benchmarking simulations with NeuroSim (Chen
et al., 2018) to evaluate the performance of a full system of analog
synaptic core as shown in Figure 11A. NeuroSim is a C++

based simulator with hierarchical organization starting from
experimental device data and extending to array architectures
with peripheral circuit modules and algorithm-level neural
network models (Chen et al., 2018). We develop a SNN
platform for NeuroSim (SNN+NeuroSim). SNN+NeuroSim
can simulate circuit-level performance metrics (area, energy
and latency) at run-time of online learning using eNVM
arrays. We implement the hardware flagging mechanism
of pruning in SNN+NeuroSim and estimate energy and
latency overheads caused by flagging mechanism. Figures 11B,C
show energy and latency without and with overheads due
to pruning. The results show that the energy and latency
can be significantly decreased as the pruning percentages
increase. The results also suggest that energy consumption
and latency do not significantly increase due to the overheads
associated with the hardware flag for the pruning percentages
from 10 to 80%.

CONCLUSION

In this work, we first demonstrate a low-complexity single
layer SNN training model for unsupervised learning on MNIST.
We then develop a new method to prune during training for
SNNs. Our pruning scheme exploits the output spike firing
of the SNN to reduce the number of weight updates during
network training. With this method, we investigate the impact
of pruning and soft-pruning on classification accuracy. We show
that our SNN can maintain high classification accuracy (∼90%)
on the MNIST dataset and the network can be extensively
pruned (75% pruning rate) during training. We also discuss
and simulate the possible hardware implementation of our
SNN and pruning algorithm with eNVM crossbar arrays using
SNN+NeuroSim. Our algorithmic optimization approach can
be applied to improve network level energy efficiency of other
SNNs with eNVM arrays for in-memory computing applications,
enabling online learning of SNNs in power-limited settings.
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