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Pathogen detection by microarray<p>New design and optimization of pathogen detection microarrays is shown to allow robust and accurate detection of a range of patho-gens. The customized microarray platform includes a method for reducing PCR bias during DNA amplification.</p>

Abstract

DNA microarrays used as 'genomic sensors' have great potential in clinical diagnostics. Biases
inherent in random PCR-amplification, cross-hybridization effects, and inadequate microarray
analysis, however, limit detection sensitivity and specificity. Here, we have studied the relationships
between viral amplification efficiency, hybridization signal, and target-probe annealing specificity
using a customized microarray platform. Novel features of this platform include the development
of a robust algorithm that accurately predicts PCR bias during DNA amplification and can be used
to improve PCR primer design, as well as a powerful statistical concept for inferring pathogen
identity from probe recognition signatures. Compared to real-time PCR, the microarray platform
identified pathogens with 94% accuracy (76% sensitivity and 100% specificity) in a panel of 36 patient
specimens. Our findings show that microarrays can be used for the robust and accurate diagnosis
of pathogens, and further substantiate the use of microarray technology in clinical diagnostics.

Background
Timely, accurate and sensitive detection of infectious disease
agents is still difficult today, despite a long history of progress
in this area. Traditional methods of culture and antibody-
based detection still play a central role in microbiological lab-
oratories despite the problems of the delay between disease
presentation and diagnosis, the limited number of organisms
that can be detected by these approaches, and the 'hit-or-
miss' nature of the diagnostic process, which depends on a
clinical prediction of the infectious source [1]. Faster diagno-
sis of infections would reduce morbidity and mortality, for
example, through the earlier implementation of appropriate

antimicrobial treatment. During the past few decades, vari-
ous methods have been proposed to achieve this, with those
based on nucleic acid detection, including PCR and microar-
ray-based techniques, seeming the most promising. These
approaches are beginning to rapidly decrease laboratory
turnaround times so that results can be available within 2-6
hours compared to perhaps 24 hours. Future developments
may see this reduced even further; and through the develop-
ment of point-of-care devices, perhaps enable the clinician to
make the diagnosis directly at the bed-side [2,3].

Published: 28 May 2007

Genome Biology 2007, 8:R93 (doi:10.1186/gb-2007-8-5-r93)

Received: 26 February 2007
Revised: 26 April 2007
Accepted: 28 May 2007

The electronic version of this article is the complete one and can be 
found online at http://genomebiology.com/2007/8/5/R93
Genome Biology 2007, 8:R93

http://genomebiology.com/2007/8/5/R93
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17531104
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


R93.2 Genome Biology 2007,     Volume 8, Issue 5, Article R93       Wong et al. http://genomebiology.com/2007/8/5/R93
While pathogen microarrays and their utility in discovering
emerging infectious diseases such as SARS have been
described, technical problems related to accuracy and sensi-
tivity of the assay prevent their routine use in patient care [4-
9]. For microarrays to become a standard diagnostic tool, the
following questions must be addressed: what are the factors
that influence probe design and performance? How is a path-
ogen 'signature' measured and detected? What is the specifi-
city and sensitivity of an optimized detection platform? Can
detection algorithms distinguish co-infecting pathogens and
closely related viral strains? [10-12].

Noisy signals caused by cross-hybridization artifacts present
a major obstacle to the interpretation of microarray data, par-
ticularly for the identification of rare pathogen sequences
present in a complex mixture of nucleic acids. For example, in
clinical specimens, contaminating nucleic acid sequences,
such as those derived from the host tissue, will cross-hybrid-
ize with pathogen-specific microarray probes above some
threshold of sequence complementarity. This can result in
false-positive signals that lead to erroneous conclusions. Sim-
ilarly, the pathogen sequence, in addition to binding its spe-
cific probes, may cross-hybridize with other non-target
probes (that is, probes designed to detect other pathogens).
This latter phenomenon, though seemingly problematic,
could provide useful information for pathogen identification
to the extent that such cross-hybridization can be accurately
predicted. With various metrics to assess annealing potential
and sequence specificity, microarray probes have tradition-
ally been designed to ensure maximal specific hybridization
(to a known target) with minimal cross-hybridization (to non-
specific sequences). However, in practice we have found that
many probes, though designed using optimal in silico param-
eters, do not perform according to expectations for reasons
that are unclear (CW Wong et al., unpublished data).

Here, we report the results of a systematic investigation of the
complex relationships between viral amplification efficiency,
hybridization signal output, target-probe annealing specifi-
city, and reproducibility of pathogen detection using a custom
designed microarray platform. Our findings form the basis of
a novel methodology for the in silico prediction of pathogen
'signatures', shed light on the factors governing viral amplifi-
cation efficiency and demonstrate the important connection
between a viral amplification efficiency score (AES) and opti-
mal probe selection. Finally, we describe a new statistics-
based pathogen detection algorithm (PDA) to link this all
together, permitting confident identification of organisms
entirely by prediction, and evaluate the entire platform in
relation to conventional PCR techniques in a cohort of
patients with lower respiratory illness.

Results and discussion
Empirical determination of cross-hybridization 
thresholds on a pathogen detection microarray
To systematically investigate the dynamics of array-based
pathogen detection, we created an oligonucleotide array
using Nimblegen array synthesis technology [13]. The array
was designed to detect up to 35 RNA viruses using 40-mer
probes tiled at an average 8-base resolution across the full
length of each genome (53,555 probes; Figure S1 and Table S1
in Additional data file 1). Together with 7 replicates for each
viral probe, and control sequences for array synthesis and
hybridization (see Materials and methods), the array con-
tained a total of 390,482 probes. Initially, we studied virus
samples purified from cell lines, reverse-transcribed and
PCR-amplified with virus-specific primers (instead of ran-
dom primers). This allowed us to study array hybridization
dynamics in a controlled fashion, without the complexity of
cross-hybridization from human RNA and random annealing
dynamics, which occur with random primers. We then
applied our findings to clinical samples amplified using ran-
dom primers.

SARS coronavirus and Dengue serotype 1 genomic cDNA
were amplified in entirety (as confirmed by sequencing),
labeled with Cy3 and hybridized separately on microarrays.
The SARS sample hybridized well to the SARS tiling probes,
with all 3,805 SARS-specific probes displaying fluorescent
(Cy3) signal well above the detection threshold (determined
by probe signal intensities >2 standard deviations (SD) above
the mean array signal intensity; Figure 1a). Cross-hybridiza-
tion with other pathogen probe sets was minimal, observed
only for other members of Coronaviridae and a few species of
Picornaviridae and Paramyxoviridae, consistent with the
observation that SARS shares little sequence homology with
other known viruses [14]. The hybridization pattern of Den-
gue 1, on the other hand, was more complex (Figure 1b). First,
we observed that hybridization to the Dengue 1 probe set was
partially incomplete (that is, there were regions absent of sig-
nal) due to sequence polymorphisms. The Dengue 1 sample
hybridized on the array was cultured from a 1944 Hawaiian
isolate, whereas the array probe set was based on the
sequence of a Singaporean strain S275/90, isolated in 1990
[15]. Sequencing the entire genomes of these 2 isolates
revealed that the array probes that failed to hybridize each
contained at least 3 mismatches (within a 15-base stretch) to
the sample sequence. Second, we observed that cross-hybrid-
ization occurred to some degree with almost all viral probe
sets present on the array, particularly with probes of other
Flaviviridae members, consistent with the fact that the 4 Den-
gue serotypes share 60-70% homology. To understand the
relationship between hybridization signal output and anneal-
ing specificity, we first compared all probe sequences to each
viral genome using two measures of similarity: probe ham-
ming distance (HD) and maximum contiguous match
(MCM). HD measures the overall similarity distance of two
sequences, with low scores for similar sequences [16,17].
Genome Biology 2007, 8:R93
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MCM measures the number of consecutive bases that are
exact matches, with high scores for similar sequences [17,18].

We calculated the HD and MCM scores for every probe rela-
tive to the Hawaiian Dengue 1 isolate and observed that these
scores correlated negatively (HD) and positively (MCM) with
probe signal intensity (Figure 2). All probes on the array with
high similarity to the Hawaiian Dengue I genome, that is, HD
≤ 2 (n = 942) or MCM ≥ 27 (n = 627), hybridized with median
signal intensity 3 SD above detection threshold. Although
98% of probes were detectable at the low HD range from 0-4,
or high MCM range from 18-40, median probe signal inten-
sity decreased at every increment of sequence distance (Fig-
ure 2). Median signal intensity dropped off sharply to
background levels at HD = 7 and MCM = 15, with 43% and
46% detectable probes, respectively. The majority of probes
(>96%, n > 51,000) had HD scores between 8 and 21 and/or
MCM scores between 0 and 15, of which only 1.23% and
1.57%, respectively, were detectable.

At the optimal similarity thresholds HD ≤ 4 and MCM ≥ 18,
>98% of probes could be detected with median signal inten-
sity 2 SD above detection threshold, whereas adjusting the
similarity threshold down 1 step to HD ≤ 5 and MCM ≥ 17
would result in only approximately 85% probe detection and
median signal intensity approximately 1.2 SD above detection
threshold (Figure 2). Using these optimal HD and MCM
thresholds to guard against cross-hybridization, we binned all
probes into specific 'recognition signature probe sets' (that is,
r-signatures) most likely to specifically detect a given patho-
gen, and we defined r-signatures for each of the 35 pathogen

genomes represented on the array (Table 1). Each pathogen's
r-signature comprised tiling probes derived from its genome
sequence (HD = 0, MCM = 40), as well as cross-hybridizing
probes derived from other pathogens (HD ≤ 4, MCM ≥ 18).
According to these criteria, a given probe could belong to
multiple different r-signatures, thereby maximizing probe-
level evidence for pathogen detection.

We next considered other non-specific hybridization phe-
nomena that could affect performance of our r-signature
probes. For example, we observed a linear relationship
between probe signal and %GC content (data not shown).
Consistent with previous observations, we found that probes
<40% GC hybridized with diminished signal intensities, while
probes with >60% GC content showed higher signal intensi-
ties [19,20]. Thus, we censored probes with GC <40% or
>60% from the r-signatures, despite optimal HD or MCM val-
ues. Furthermore, as cross-hybridization with human
sequences could also confound results, we compared all
probes to the human genome assembly (build 17) by BLAST
using a word size of 15 [21]. Probes with an expectation value
of 100 were also censored (Table 1).

While the ideal pathogen r-signature would be one where all
probes would hybridize to the target sequence at detectable
levels, polymorphic variation between the probes (derived
from a consensus sequence) and the actual target would be
expected to impede the performance of the r-signature probes
at some level. To test this hypothesis, we compared the ratios
of detectable to undetectable probes across all r-signatures in
the context of the hybridization involving the Hawaiian Den-
gue 1 isolate. Although the Dengue 1 sequence used to derive
the Dengue 1 r-signature was approximately 5% different
from the Hawaiian isolate, the detectable probe ratio of the
Dengue 1 specific probes was 151/152 (99%), 12 times higher
then that for the nearest Dengue serotype signature, suggest-
ing that moderate polymorphic variation is quite tolerable,
allowing, in this case, for discernment of the correct
pathogen.

Predicting genome-wide amplification bias
Random priming amplification, rather than primer-specific
amplification, is preferred for identifying unknown patho-
gens in clinical specimens. However, in initial experiments
using random priming amplification to identify known path-
ogens, we frequently observed incomplete hybridization of
the pathogen genome marked by interspersed genomic
regions not detected by the probes. An example involving the
amplification of respiratory syncytial virus (RSV) B from a
human nasopharyngeal aspirate is shown in Figure 3. In pre-
liminary analyses, sequence polymorphisms, probe GC con-
tent and genome secondary structure failed to explain this
phenomenon, suggesting that it might result from a PCR-
based amplification bias stemming from differential abilities
of the random primers to bind to the viral genome at the
reverse transcription (RT) step. The random primer used in

Heatmap of microarray probe signal intensitiesFigure 1
Heatmap of microarray probe signal intensities. Cells corresponding to 
probes are aligned in genomic order and colored according to the signal 
intensity-color scales shown. Hybridization signatures corresponding to 
(a) SARS Sin850 or (b) Dengue 1 Hawaiian isolate are shown.
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our experiments was a 26-mer composed of a random non-
amer (3') tagged with a fixed 17-mer sequence (5'-GTTTC-
CCAGTCACGATA) [4,9,22]. Intra-primer secondary
structure formation, such as dimer and hairpin formation
between the 17-mer tag and nonamer, and probe melting tem-
perature are known to influence binding efficiency [23,24].
To explore our hypothesis, we designed an algorithm to
model the RT-PCR process using experimental data (see
Additional data file 1 for details). Briefly, it calculates the
probability that a 500-1,000 base-pair product (average size
range of PCR product) can be generated from each possible
starting position in the genome assuming that a nonamer in
the random primer mix will complement the viral sequence

perfectly. This probability is reduced when intra-primer hair-
pin formation is predicted, and increased according to degree
of complementarity between tag sequence and viral sequence.
In this manner, the probability that each nucleotide will be
successfully PCR-amplified is reflected in its AES (see supple-
mental methods in Additional data file 1 and [25]). To vali-
date the algorithm, we ranked the hybridization signal
intensities for all 1,948 probes tiled across the RSV B genome
and compared them to their AES values (Figure 3). We
observed that high AES significantly correlates to probe
hybridization signal intensity above the detection threshold
(P = 2.2 × 10-16; Fisher's exact test). In another experiment
involving a patient sample positive for metapneumovirus

Relationship between probe HD, probe MCM and probe signal intensityFigure 2
Relationship between probe HD, probe MCM and probe signal intensity. Average probe signal intensity and percentage of detectable probes (signal 
intensity > mean + 2 SD) decreases as HD increases and MCM decreases. The optimal cross-hybridization thresholds HD ≤ 4 or MCM ≥ 18, where >98% 
of probes can be detected, is shaded in blue.
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(hMPV), the probes tiled across the hMPV genome showed a
similar result, P = 1.3 × 10-9. Repeatedly, we observed that
higher AES correlated with greater probe detection, with, on
average, >70% detection for probes in the top 20% AES (see
supplemental methods in Additional data file 1).

While HD, MCM, %GC and sequence uniqueness were valua-
ble parameters for probe selection, they did not take into
account PCR bias, and were insufficient predictors of probe
performance when considered in the absence of AES (Figure

4). We found that using only the probes within the top 20%
AES (Table 1) substantially improved the efficacy of our pre-
diction algorithm (discussed in the following section). In
total, after applying all probe selection criteria, the r-signa-
tures utilized 9,768 of the >50,000 unique probes initially
included on the array.

We next hypothesized that amplification efficiency scoring
could be used to select an optimal tag sequence (that is, for
the RT-PCR primers) for achieving uniformly high AES

Table 1

Binning of probes into specific pathogen signature probe sets

Pathogen Family Genome 
size (nt)

Total 
tiling 

probes

Top 20% 
AES* (a)

GC 
content 
filter (b)

Human 
genome 
filter (c)

No. of filtered 
probes left (d 
= a - (b + c))

No. of predicted 
cross-hybridizing 

probes (HD ≤ 4 and 
MCM ≥ 18) (e)

No. of probes in 
pathogen r-

signature (d + e)

1 LCMV Arenaviridae 10,056 1,283 348 2 8 338 0 338

2 Hantaan Bunyaviridae 6,533 834 156 5 5 146 6 152

3 Sin Nombre Bunyaviridae 6,562 837 182 1 2 179 6 185

4 229E Coronaviridae 27,317 3,495 494 11 11 472 0 472

5 OC43 Coronaviridae 30,738 3,937 634 15 22 597 3 600

6 SARS Coronaviridae 29,711 3,805 575 8 2 565 1 566

7 Dengue serotype 1 Flaviviridae 10,717 1,370 230 2 8 220 8 228

8 Dengue serotype 2 Flaviviridae 10,722 1,370 241 0 9 232 11 243

9 Dengue serotype 3 Flaviviridae 10,707 1,370 230 0 4 226 13 239

10 Dengue serotype 4 Flaviviridae 10,649 1,361 229 1 7 221 3 224

11 Japanese encephalitis Flaviviridae 10,976 1,404 310 3 2 305 12 317

12 West Nile Flaviviridae 10,962 1,401 320 2 2 316 9 325

13 Yellow fever Flaviviridae 10,862 1,389 255 2 3 250 2 252

14 Hepatitis B Hepadnaviridae 3,215 409 147 14 0 133 0 133

15 Influenza A† Orthomyxoviridae 12,561 1,582 510 1 15 494 0 494

16 Influenza B Orthomyxoviridae 14,452 1,822 665 5 18 642 2 644

17 Human papillomavirus 
type 10

Papillomaviridae 7,919 1,011 287 16 9 262 0 262

18 hMPV Paramyxoviridae 13,335 1,705 322 44 17 261 0 261

19 Newcastle disease Paramyxoviridae 15,186 1,943 329 0 2 327 3 330

20 Nipah Paramyxoviridae 18,246 2,335 389 12 5 372 0 372

21 Parainfluenza 1 Paramyxoviridae 15,600 1,995 330 8 13 309 2 311

22 Parainfluenza 2 Paramyxoviridae 15,646 2,002 333 10 2 321 0 321

23 Parainfluenza 3 Paramyxoviridae 15,462 1,979 409 28 23 358 3 361

24 RSV B Paramyxoviridae 15,225 1,948 383 28 4 351 4 355

25 Echovirus 1 Picornaviridae 7,397 945 238 1 10 227 22 249

26 Enterovirus A Picornaviridae 7,413 946 193 3 0 190 8 198

27 Enterovirus B Picornaviridae 7,389 944 179 0 4 175 22 197

28 Enterovirus C Picornaviridae 7,401 945 183 0 0 183 4 187

29 Enterovirus D Picornaviridae 7,390 944 155 0 3 152 8 160

30 Foot and mouth 
disease

Picornaviridae 8,115 1,036 194 14 3 177 0 177

31 Hepatitis A Picornaviridae 7,478 955 163 1 6 156 0 156

32 Rhinovirus A (type 89) Picornaviridae 7,152 913 191 6 6 179 1 180

33 Rhinovirus B Picornaviridae 7,212 920 197 2 2 193 0 193

34 HIV 1 Retroviridae 9,181 1,174 191 4 0 187 0 187

35 Rubella Togaviridae 9,755 1,246 117 65 0 52 0 52

T
ot
al

419,242 53,555 9768 9921

*AES scores for all tiling probes were ranked together and only those probes in the top 20th percentile were retained. †Segment 7 of Influenza A was omitted during probe 
design.
Genome Biology 2007, 8:R93
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across viral genomes, thus globally maximizing PCR effi-
ciency (see supplemental methods in Additional data file 1
and [25]). Briefly, we generated 10,000 primer sequences,
eliminated those that formed self-dimers, and calculated AES
for every genome based on each candidate primer tag. Primer
A2, which had the highest average AES for all 35 viruses
present on the array, was selected as the 'AES-optimized'
primer. In a comparative study of eight patient samples (five
RSV, three hMPV), we observed that primer A2 showed a
marked improvement in overall PCR efficiency in amplifying
both RSV and hMPV over the original primer, A1 (Figures S2
and S3 in Additional data file 1). The increased PCR efficiency
contributed to increased hybridization of DNA to the probes,
and is reflected in the uniformly higher signal intensities
observed using primer A2. Consequently, >70% of viral

probes had signal intensities above detection threshold when
using primer A2, compared to approximately 20% using
primer A1 (Anova test, P = 0.00026; Figure S3 in Additional
data file 1).

PDA: an algorithm for detecting pathogens
We observed that while the signal intensities for all pathogen
r-signatures approximate a normal distribution, a large pro-
portion of probes comprising the signature of a detectable
pathogen have relatively strong signal intensities resulting in
a right-skewed distribution (Figure 5a). We reasoned that
analysis of the tails of the signal intensity distributions for
each r-signature might better enable not only the identifica-
tion of an infecting pathogen, but also the presence of co-
infecting pathogens in the same sample. Thus, we devised a

Measurement and application of AESFigure 3
Measurement and application of AES. An RSV patient sample was amplified using original primer A1 (black line), or AES-optimized primer (blue line). The 
probes that have detectable signal above threshold are shown in purple in the corresponding heatmaps. For primer A1, the detectable regions correspond 
to regions that have higher AES scores than undetectable regions.
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robust statistics-based PDA that analyzes the distribution of
probe signal intensities relative to the in silico r-signatures
(see supplemental methods in Additional data file 1 and [25]).
The PDA software comprises two parts: evaluation of signal
intensity of probes in each pathogen r-signature using a
modified Kullback-Leibler Divergence (KL); and statistical
analysis of modified KL scores using the Anderson-Darling
test.

Since the original KL cannot reliably determine differences in
the tails of a probability distribution, and is highly dependent
on the number of probes per genome and the size of each sig-
nal intensity bin, we incorporated the Anderson-Darling sta-
tistic to give more weight to the tails of each distribution. By
using a cumulative distribution function instead of the origi-
nal probability distribution, the p value generated is inde-
pendent of the binning criteria, eliminating errors that occur
if a particular signal intensity bin is empty [26,27]. We call
our modified KL divergence the 'weighted Kullback-Leibler
divergence' (WKL):

where Qa(j) is the cumulative distribution function of the sig-

nal intensities of the probes in Pa found in bin bj ;  is the

cumulative distribution function of the signal intensities of

the probes in  found in bin bj. R-signatures representing

absent pathogens should have normal signal intensity distri-

butions and thus relatively low WKL scores, whereas those

representing present pathogens should have high, statisti-

cally significant outlying WKL scores (Figure 5b). In the sec-

Effects of probe filtering criteria on r-signature probe detectionFigure 4
Effects of probe filtering criteria on r-signature probe detection. The 1,948 
probes tiled across the RSV B genome were binned according to different 
filtering criteria and plotted against the percentage of probes with 
detectable signal. Measurements reflect the average of five experiments.
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ond part of PDA, the distribution of WKL scores is subjected

to an Anderson-Darling test for normality. If P < 0.05, the

WKL distribution is considered not normal, implying that the

pathogen with an outlying WKL score is present. Upon iden-

Table 2

Comparison of microarray and real-time PCR performance in detection of pathogen genera (HRV, pneumovirus)

Patient ID Array WKL P value PDA genus diagnosis PCR diagnosis PCR Ct value Virus copy no.

111 35915 ND ND

122 35887 20.87 2.47 × 10-29 Pneumovirus Pneumovirus 24.8 5.0 × 104

133 71180 22.33 6.93 × 10-62 Pneumovirus Pneumovirus 25.1 4.0 × 104

165 66691 16.95 3.49 × 10-4 Pneumovirus Pneumovirus 27.9 3.9 × 103

185* 66696 ND ND

254 70935 25.02 2.87 × 10-39 Pneumovirus Pneumovirus 22 5.4 × 105

261* 66697 ND ND

283* 63781 23.99 2.28 × 10-25 Pneumovirus HRV 28.3 6.1 × 104

14.07 4.66 × 10-11 HRV

312* 66701 ND Pneumovirus† 33.7 44

321* 71006 ND Pneumovirus† 31.1 340

324* 35259 20.61 3.55 × 10-94 Pneumovirus Pneumovirus 21.4 3.0 × 106

331* 66698 ND HRV 31.7 3.6 × 103

337 71192 21.73 3.49 × 10-14 Pneumovirus Pneumovirus 26.2 1.1 × 105

8.3 1.92 × 10-4 HRV HRV 29.1 3.1 × 104

355 35662 18.00 2.97 × 10-40 Pneumovirus Pneumovirus 20.3 6.7 × 106

368* 66702 ND ND

374 66695 ND Pneumovirus 34.1 500

378 70933 13.82 7.77 × 10-17 Pneumovirus Pneumovirus 23.9 5.4 × 105

393* 71189 25.41 1.15 × 10-18 HRV HRV 30.2 2.1 × 105

412 35890 19.66 2.42 × 10-49 Pneumovirus Pneumovirus 23.5 6.9 × 105

414 71025 49.91 1.18 × 10-65 Pneumovirus† Pneumovirus† 22.3 3.9 × 105

HRV 33 2.6 × 103

461 66699 ND ND

478 71027 ND Pneumovirus† 34.8 18

483* 36053 12.17 1.47 × 10-12 Pneumovirus Pneumovirus 24.8 2.9 × 105

554 70997 78.55 4.59 × 10-120 HRV HRV 23.5 1.5 × 106

573 66700 38.09 6.26 × 10-22 HRV HRV 22.2 3.6 × 106

639* 71182 9.23 7.91 × 10-6 HRV ND

699 71007 ND ND

769 73067 24.62 3.70 × 10-52 Pneumovirus Pneumovirus 25.7 2.5 × 104

818 70927 10.40 1.63 × 10-8 HRV HRV 34.2 1.2 × 103

832 73068 13.52 4.54 × 10-6 Pneumovirus Pneumovirus 28.2 3.1 × 103

40.43 1.73 × 10-36 Pneumovirus† Pneumovirus† 23.8 1.2 × 105

841 73070 22.11 6.80 × 10-50 Pneumovirus Pneumovirus 20.9 4.5 × 106

35.4 8

HRV 29.2 3.3 × 104

853* 66690 ND ND

859 71188 72.17 1.42 × 10-128 HRV HRV 24.5 2.8 × 106

892* 68359 12.43 5.77 × 10-5 HRV Pneumovirus 34 27

HRV 32.3 4.2 × 103

913 71028 40.67 1.60 × 10-50 Pneumovirus† Pneumovirus† 19.1 4.7 × 106

924* 66703 12.79 2.56 × 10-6 Pneumovirus† Pneumovirus† 31.5 250

Pneumovirus 33.7 630

*Hospitalized patients. †RSV A patient samples. ND, none detected.
Genome Biology 2007, 8:R93
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tification of a pathogen, that pathogen's WKL score is left out,

and a separate Anderson-Darling test is performed to test for

the presence of co-infecting pathogens. In this manner, the

procedure is iteratively applied until only normal distribu-

tions remain (that is, P > 0.05). The PDA algorithm is

extremely fast, capable of making a diagnosis from a hybrid-

ized microarray in less than 10 seconds.

Microarray performance on clinical specimens
To assess the clinical utility of the pathogen prediction plat-
form, we analyzed 36 nasal wash specimens according to the
workflow illustrated in Figure 6. These specimens were
obtained from children under 4 years of age with lower respi-
ratory tract infections (LRTI), of which 14 were hospitalized
for severe disease and 22 with ambulatory LRTI. The clinical
diagnosis of these patients was bronchiolitis or pneumonia.
All 36 specimens had been previously analyzed for the pres-
ence of hMPV, and RSV A and B using real-time PCR.
Twenty-one specimens tested positive for one or more
viruses, while fifteen were PCR-negative for all three. All

specimens were analyzed by microarray in a blinded fashion
(Table 2).

As the RSV A full-genome sequence has not been published,
our array was not designed to specifically detect this virus.
Thus, we first assessed array performance using only results
from the 16 patients diagnosed with either hMPV or RSV B by
PCR (Table 3). Of this cohort, the microarray correctly
detected the presence of hMPV or RSV B in 13/16 samples.
This corresponds to an assay specificity of 100%, sensitivity of
76%, and diagnostic accuracy of 94%. All 4 false negative
samples (patients 374, 841, 892, and 924) had Ct values
>33.5, which is near the detection limit of real-time PCR, and
thus perhaps beyond the range of detection by microarray.

We next assessed array performance in the group of patients
PCR-positive for RSV A (n = 7) and PCR-negative for all
tested viruses (n = 15). The microarray made only two positive
calls in this group, both for RSV B. Interestingly, both RSV B
calls corresponded to high-titre RSV A specimens by PCR
(patients 414 and 913), suggesting that certain probe sets can

Schema of pathogen detection processFigure 6
Schema of pathogen detection process. AD, Anderson-Darling.
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detect the presence of related, but unspecified, viruses. Anal-
ysis of the published RSV A partial genome sequence (923 bp,
Genbank ID: AF516119) revealed that 7 probes on our micro-
array had 100% identity to RSV A. We created an 'RSV A r-
signature' comprising these 7 probes, enabling the specific
detection of RSV A by microarray in 4/7 patient samples PCR-
positive for RSV A (patients 414, 832, 913, and 924). Although
the performance of this small r-signature was not as robust as
the other virus r-signatures (median size: 249 probes), it sug-
gested that it was feasible to pursue a 'viral discovery'
approach using r-signatures created to detect viruses at the
family or genus level that were related to those species already
represented on the microarray. Specifically, we binned
probes into family- or genus-level r-signatures by relaxing
our similarity criteria (to HD ≤ 5 or MCM ≥ 25) and selecting
probes common to genome sequences within families and
genera for the picornaviridae family, paramyxoviridae family,
rhinovirus genus (HRV) and pneumovirus genus (inclusive of
RSV and hMPV).

Upon re-analysis of all 36 samples, we identified the presence
of pneumovirus in 17 specimens as expected (1 false positive,
patient 283), and additionally detected the presence of HRV
in 9 specimens (Table 2). As HRV was a novel discovery, we
re-screened all 36 samples by PCR and found HRV in 11 spec-
imens. All nine HRV calls by microarray were confirmed by
PCR except for one. This finding was intriguing given that the
genomic diversity of the over 100 known rhinovirus serotypes
makes detection by PCR notoriously difficult [28]. As the
real-time PCR primers were capable of identifying only
approximately 70% of rhinovirus strains, it is possible that

the microarray correctly detected a rhinovirus strain that PCR
failed to detect. Similarly, the pneumovirus genus detected in
patient 283 could not be verified by RT-PCR, possibly owing
to subtle genetic variations that prevented primer annealing.
Thus, the greater genomic coverage afforded by the microar-
ray might, in some cases, provide a more sensitive and accu-
rate detection capability than pathogen-specific PCR.

Though the microarray identified the majority of HRV and
RSV A samples using the genus-level r-signatures, it failed to
detect three samples positive for HRV and three positive for
RSV A by real-time PCR. These false negatives had an average
Ct value >32, again suggesting a detection threshold close to
that of real-time PCR. However, that the microarray also
made a number of accurate discoveries in the 30-35 Ct range
suggests a considerable degree of detection variability in the
titre range above an approximately 30 Ct equivalency. Nota-
bly, the microarray correctly detected the presence of co-
infecting pathogens in two samples (337 and 832), demon-
strating the unique potential of this microarray platform to
reveal complex disease etiologies.

Alternative methods of array design and pathogen 
detection
Though pathogen detection by microarray is a young field, a
number of different platforms and approaches have been
described, each with important attributes. For example, the
array described by Wang et al. [9] is based on probes designed
to recognize the most conserved viral domains, facilitating
the detection of a taxonomic fingerprint that provides power-
ful clues to viral identity with minimal probe usage. Lin et al.

Table 3

Comparison of microarray and real-time PCR performance in detecting RSV B or hMPV

Patient ID Array WKL P value PDA diagnosis PCR diagnosis PCR Ct value Virus copy no.

122 35887 20.87 2.47 × 10-29 hMPV hMPV 24.8 5.0 × 104

133 71180 22.33 6.93 × 10-62 hMPV hMPV 25.1 4.0 × 104

165 66691 16.95 3.49 × 10-4 hMPV hMPV 27.9 3.9 × 103

254 70935 25.02 2.87 × 10-39 hMPV hMPV 22 5.4 × 105

769 73067 24.62 3.70 × 10-52 hMPV hMPV 25.7 2.5 × 104

832 73068 13.52 4.54 × 10-6 hMPV hMPV 28.2 3.1 × 103

892* 68359 ND hMPV 34 27

324* 35259 20.61 3.55 × 10-94 RSV B RSV B 21.4 3.0 × 106

355 35662 18.00 2.97 × 10-40 RSV B RSV B 20.3 6.7 × 106

374 66695 ND RSV B 34.1 500

378 70933 13.82 7.77 × 10-17 RSV B RSV B 23.9 5.4 × 105

412 35890 19.66 2.42 × 10-49 RSV B RSV B 23.5 6.9 × 105

483* 36053 12.17 1.47 × 10-12 RSV B RSV B 24.8 2.9 × 105

924* 66703 ND RSV B 33.7 630

337 71192 21.73 3.49 × 10-14 RSV B RSV B 1.1 × 105

841 73070 22.66 4.21 × 10-50 RSV B RSV B 20.9 4.4 × 106

hMPV 35.4 8

*Hospitalized patients. ND, none detected.
Genome Biology 2007, 8:R93
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[8], on the other hand, described a probe-dense resequencing
array capable of detecting a smaller set of predefined patho-
gens, but with higher detection specificity, including the abil-
ity to discern highly related subtypes. The microarray
described herein represents a blend of these two concepts,
integrating a probe tiling approach for substantial genomic
coverage (though with lower probe density than a resequenc-
ing array), with a taxonomy-based strategy for binning probes
into pathogen recognition signatures. Thus, our analytical
output includes both family- and genus-level predictions (for
r-signatures restricted to conserved probes) as well as spe-
cies-specific predictions (for r-signatures composed of con-
served and unique probes). Indeed, this capability allowed us
to detect and accurately identify viruses in clinical samples
(Table 2).

Central to pathogen prediction are the algorithms that weigh
the microarray data against pre-defined recognition
signatures. Unfortunately, few such algorithms exist, and
only one algorithm, E-Predict, has been reported and vali-
dated [5,29,30]. E-Predict matches hybridization signatures
with predicted pathogen signatures derived from the theoret-
ical free energy of hybridization for each microarray probe. To
examine the performance of E-predict on our microarray
platform, we analyzed a number of samples with both E-pre-
dict and our PDA algorithm. When applied to our microarray
data, E-Predict performed well, with its first prediction tend-
ing to be the correct one (Table S2 in Additional data file 1).
However, for each specimen, a number of false positive calls
were also made, which seemed to reflect species with
considerable sequence similarity to the true infecting patho-
gen (Table S2 in Additional data file 1). For example, in
patient sample 412, E-Predict detected RSV (the correct path-
ogen), but also multiple species of coronavirus (which share
some sequence similarity with RSV), yet real-time PCR using
pancoronavirus primers as well as primers specific for strains
OC43 and 229E indicated the absence of coronavirus from
this sample (Figure S4 in Additional data file 1). These false
positive calls can be explained by the fact that the function of
E-Predict is less geared towards identifying and distinguish-
ing specific pathogen strains, and aimed more at elucidating
the best possible candidates as supported by the available
probes. Thus, E-Predict is particularly advantageous in situa-
tions where a pathogen's sequence is not fully known [5]. In
contrast, our PDA algorithm is designed to make calls with
greater species-level resolution. A major strength of PDA is its
ability to specifically identify sequence-characterized and co-
infecting pathogens with low false positivity. This is aptly
demonstrated by the ability of PDA to detect specifically the
presence of Dengue 1 in the clinical sample, where 7/35
viruses on the array are from the Flaviviridae family, includ-
ing 4 dengue serotypes that share 70% sequence homology.
The benefits of using both algorithms simultaneously for
detecting both known and novel pathogens should be further
evaluated.

An important discovery in this study was that the composi-
tion of the random primer tag has a significant impact on the
efficiency of viral genome amplification, as assessed by an
amplification efficiency score. The measurement of amplifi-
cation efficiency allowed us to predict which probes would
provide the most informative recognition signatures, mark-
edly improving our pathogen prediction capability. Moreo-
ver, this finding allowed us to design AES-optimized primers
that increased the amplification efficiency of our samples,
resulting in greater sensitivity of pathogen detection.
Whether multiplex RT-PCR using a variety of AES-designed
primer tags can further increase amplification efficiency war-
rants further investigation. Additionally, it is feasible that
other tag-based PCR applications, such as the generation of
DNA libraries and enrichment of RNA for resequencing, may
benefit from primer optimization using the AES algorithm.

DNA microarrays have the potential to revolutionize clinical
diagnostics through their ability to simultaneously investi-
gate thousands of potential pathogens in order to make a
diagnosis. However, questions remain regarding their sensi-
tivity and reliability. In this work, we investigated the myriad
factors that influence microarray performance in the context
of virus detection in clinical specimens, and describe an opti-
mized platform capable of identifying individual and co-
infecting viruses with high accuracy and sensitivity that
brings microarray technology closer to the clinic. Future
improvements will include significant reductions in microar-
ray manufacturing and usage costs. Multiplex microarray for-
mats and 're-usable' arrays are developing technologies that
promise to drive down these costs. Furthermore, alternative
technologies, such as beads [31], microfluidics [32,33] and
nanotube microarrays [34], might provide advantages in both
assay cost and speed relative to traditional microarray plat-
forms. Technology considerations aside, the advantages of a
highly parallel, nucleic acid-based screening approach for
detecting disease pathogens are clear. Validations in larger
patient cohorts and in diverse clinical settings will be an
important next step towards establishing the clinical role of
pathogen detection microarrays.

Materials and methods
Microarray synthesis
Complete genome sequences of 35 clinically relevant human
viruses (Table S1 in Additional data file 1) were downloaded
from the NCBI Taxonomy Database [35] and used to generate
40-mer probe sequences tiled across each genome and over-
lapping at an average 8-base resolution. Seven replicates of
each probe were synthesized at random positions on the
microarray using Nimblegen proprietary technology [13]. For
quality control purposes, 10,000 random sequence probes
with 40-60% GC content were included to assess background
signal levels. Additional controls included 400 probes to
human immune genes (positive controls) and 162 probes to a
Genome Biology 2007, 8:R93
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plant virus, PMMV (negative control). In total, 390,482
probes were synthesized on the array.

Sample preparation, microarray hybridization and 
staining
Dengue (ATCC #VR-1254) was cultured as per ATCC recom-
mendations and Sin850 SARS was cultured as described [36].
Clinical specimens (nasopharyngeal washes) were obtained
from an Indonesian pediatric population using a standard-
ized WHO protocol as described [37]. The patients were all
aged between 0 and 48 months, showed symptoms of LRTI,
and were diagnosed with bronchiolitis or pneumonia when
they visited the clinic between February 1999 and February
2001. Of these patients, 14 were subsequently hospitalized.
The samples were stored at -80°C in RNAzol (Leedo Medical
Laboratories, Inc., Friendswood, TX, USA). RNA was later
extracted from samples with RNAzol according to the manu-
facturer's instructions [38,39], resuspended in RNA storage
solution (Ambion, Inc., Austin, TX, USA) and frozen at -80°C
until further use. A detailed protocol is provided in the sup-
plemental methods in Additional data file 1. Briefly, RNA was
reverse transcribed to cDNA using tagged random primers as
described [9,40]. The original primer A1 was 5' GTTTC-
CCAGTCACGATANNNNNNNNN; and the AES-optimized
primer A2 was 5' GATGAGGGAAGATGGGGNNNNNNNNN.
The cDNA was then amplified by random PCR, fragmented,
end-labeled with biotin, hybridized onto the microarray and
stained as previously described [19] with 1 exception: the
addition of 0.82 M tetramethylammonium chloride (TMAC)
to Nimblegen's hybridization buffer to minimize nonspecific
hybridization.

Real-time PCR for clinical samples
A 20 μl reaction mixture containing 2 μl of the purified
patient RNA, 5 U of MuLV reverse transcriptase, 8 U of
recombinant RNase inhibitor, 10 μl of 2X universal PCR Mas-
ter Mix with no UNG (all from Applied Biosystems, Foster
City, CA, USA) was combined with 0.9 μM primer and 0.2 μM
(RSV B and hMPV), 0.3 μM (HRV) or 0.5 μM (RSV A) probe.
The primers and probe sequences for hMPV were: 5'-
AGCAAAGCAGAAAGTTTA TTCGTTAA-3'; 5'-ACCCCCCAC-
CTCAGCATT-3'; and 5'-FAM-ATTCATGCAA GCTTATGGT-
GCTGGTCAAA-TAMRA-3'. Primers and probes for RSV [41]
and HRV [42] have been described. Samples underwent
reverse transcription at 48°C for 30 minutes, then were
heated at 95°C for 10 minutes and amplified by 40 cycles of 15
s at 95°C and 1 minute at 60°C on an ABI Prism 7900HT
Sequence Detection System (Applied Biosystems). During
amplification, fluorescence emissions were monitored at
every thermal cycle. The threshold (Ct) represents the cycle at
which significant fluorescence is first detected. Ct value was
converted to copy number using a control plasmid of known
concentration: RSV A, 5.06 × 109 copies had a Ct value of
10.469; RSV B, 2.61 × 109 copies had a Ct value of 11.897;
hMPV, 7.51 × 109 copies had a Ct value of 10.51; HRV, 1.73 ×
107 copies had a Ct value of 20.20.

One-step real-time PCR for coronavirus
Frozen live cultures of human coronavirus OC43 and 229E
were purchased from ATCC (Cat #VR-1558, VR-740) for use
as positive controls. RNA was extracted from these cultures
using RNA Mini Kit (Qiagen, Hilden, Germany) in accord-
ance with the manufacturer's instructions. The samples were
amplified using diagnostic primer pairs for pancoronavirus,
OC43 and 229E as previously described [43].

Data analysis
Microarrays were scanned at 5 μm resolution using an Axon
4000b scanner and Genepix 4 software (Molecular Devices,
Sunnyvale, CA, USA). Signal intensities were extracted using
Nimblescan 2.1 software (NimbleGen Systems, Madison, WI,
USA). Using an automated script (J George and V Vega), we
calculated the median signal intensity and standard deviation
from the seven replicates of each probe. The probe signal
intensities were sorted by genome and arranged in sequence
order, then reformatted into CDT format for graphical view-
ing of signal intensities in Java Treeview [44]. In parallel, the
probe median signal intensities were analyzed using PDA to
determine which pathogen was present, and the associated
confidence level of prediction. The AES and PDA algorithms
are described in detail in the Results section and all algo-
rithms, formulae, software and microarray data are available
on the supplemental website [25] and in Additional data file 1.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 includes supple-
mentary materials and methods, figures, tables, pathogen
microarray data and software.
Additional data file 1Supplementary materials and methods, figures, tables, pathogen microarray data and softwareAll files are available for download in PDF, JPG, GIF, TIFF, HTML or ZIP formats as indicated on the webpage [25]. Supplementary methods: sample amplification and microarray protocols (PDF); RT-PCR modeling and amplification efficiency score (AES); patho-gen detection algorithm (PDA). Supplementary figures. Figure S1: Probe design schema. Probes (40-mers) were tiled at an average 8-base resolution across each of the 35 viral genomes in the manner depicted above. Numbers represent the start and end positions of each probe. Figure S2: Choice of primer tag in random RT-PCR has significant effect on PCR efficiency. Heatmap of probe signal inten-sities for a clinical hMPV sample following random RT-PCR using original primer (a) A1 or (b) AES-optimized primer A2. Figure S3: Comparison of amplification efficiency of original primer A1 and AES-optimized primer A2. RNA from patients infected with RSV B (n = 5) or hMPV (n = 3) were reverse-transcribed and amplified using primer A1 or A2 and the percentage of r-signature probes with signal above detection threshold was determined. Figure S4: Diagnostic PCR results for RSV patient 412 show that the patient does not have a coronavirus infection. (a) PCR using pancoronavi-rus primers. Lane 1, 1 kb ladder; lane 2, blank; lane 3, OC43 coro-navirus positive control; lane 4, 229E coronavirus positive control; lane 5, RSV patient 412; lane 6, PCR primers and reagents only, as a negative control. (b) PCR using OC43 specific primers. Lane 1, 50 bp ladder; lane 2, blank; lane 3, OC43 coronavirus positive control; lane 4, RSV patient 412; lane 5, purified RSV from ATCC; lane 6, PCR negative control. (c) PCR using 229E specific primers. Lane 1, 229E coronavirus positive control; lane 2, RSV patient 412; lane 3, PCR negative control; lane 4, 1 kb ladder. Supplementary tables. Table S1: List of genomes represented on the pathogen detection microarray. Table S2: Comparison of E-Predict and PDA algo-rithms. Pathogen microarray data: data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO accession number GSE3779 [45]. Software downloads. Amplifica-tion efficiency score software: Primerselect Readme.txt; Primerse-lect.java. Pathogen detection algorithm (PDA): WKL Readme.txt; WKL.cpp.Click here for file
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