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The symbiont side of symbiosis: do microbes really benefit?
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Microbial associations are integral to all eukaryotes. Mutualism, the interaction of two
species for the benefit of both, is an important aspect of microbial associations, with
evidence that multicellular organisms in particular benefit from microbes. However, the
microbe’s perspective has largely been ignored, and it is unknown whether most microbial
symbionts benefit from their associations with hosts. It has been presumed that microbial
symbionts receive host-derived nutrients or a competition-free environment with reduced
predation, but there have been few empirical tests, or even critical assessments, of
these assumptions. We evaluate these hypotheses based on available evidence, which
indicate reduced competition and predation are not universal benefits for symbionts. Some
symbionts do receive nutrients from their host, but this has not always been linked to a
corresponding increase in symbiont fitness. We recommend experiments to test symbiont
fitness using current experimental systems of symbiosis and detail considerations for other
systems. Incorporating symbiont fitness into symbiosis research will provide insight into
the evolution of mutualistic interactions and cooperation in general.
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INTRODUCTION
Microbes have been recognized as an important force in eukaryotic
evolution (McFall-Ngai et al., 2013), but recognition of the impact
of eukaryotes on microbial evolution has lagged behind. Inter-
species interactions between microbes and eukaryotic hosts fall
on a continuum from parasitism to mutualism. Fitness effects of
these interactions are routinely investigated in hosts, but it is nec-
essary to consider both partners to understand how interactions
evolve and persist. There is a robust framework for understand-
ing how parasitic interactions promote the fitness of parasitic
microbes (pathogens), but the microbe’s perspective has largely
been ignored in putatively mutualistic interactions, and it is
unknown whether most non-parasitic microbes benefit from host
association.

Most research of mutualisms has focused on the host, as
they are larger and usually a more tractable experimental organ-
ism. The effect of microbial association on hosts is routinely
tested by comparing fitness in hosts with and without symbionts
(Figure 1A; e.g., Kikuchi et al., 2007). Analogous experiments
for symbionts are rarely performed, even in well-described sys-
tems. It is often assumed that symbiont fitness is higher in
hosts relative to other niches because they receive a competition-
free environment, reduced predation, or host-derived nutrients.
Population size is a straightforward way to measure microbial fit-
ness (i.e., the replication capacity of a clonal population), but
it should be used to quantify symbiont fitness in the same way
that it is for hosts – as the difference in replication in the pres-
ence and absence of its interacting partner. When tested, some
experiments have shown that symbionts suffer deleterious effects
or costs such as suppressed growth in hosts (Ahmadjian, 1993;
Wooldridge, 2010; Login and Heddi, 2013; Udvardi and Poole,
2013). The presence of some costs in the host relative to other
niches does not necessarily preclude the symbiont from gaining

a net fitness benefit through host association [e.g., acquiring
genetic diversity through horizontal gene transfer (HGT)], but
it does suggest an important aspect that should be consid-
ered.

The semantics of symbiosis may be partially to blame for the
neglect of microbes. There have been two prominent uses of “sym-
biosis” over the past century. The first follows from the definition
of symbiosis by de Bary as “the living together of unlike organ-
isms” and is applied to interspecies associations regardless of the
relationship (parasitism, commensalism, or mutualism; Douglas,
2010; Leigh, 2010). In the second, symbiosis is synonymous with
mutualism and indicates a generally beneficial relationship. This
is usually applied when it is known that the host benefits from an
association and implies that the symbiont does as well. Here we
consider any long-term, intimate association to be a “symbiosis”
while reserving mutualism for only those interactions known to
be beneficial for both partners.

Here we evaluate evidence for reciprocal benefit in presumed
mutualistic microbial symbioses, emphasizing environmentally
acquired (horizontal) microbial symbionts in eukaryotic hosts.
We also re-examine the role of hosts and microbes in sym-
bioses in light of evidence for symbiont benefit. Although it
has previously been recognized that symbionts must be more
thoroughly investigated (Douglas and Smith, 1989; Bronstein,
2001; Wilkinson and Sherratt, 2001; Kereszt et al., 2011), recent
advances in technology and new study systems provide novel tools
and opportunities for investigating the symbiont side of symbiosis.

AN EVALUATION OF ASSUMED SYMBIONT BENEFITS
COMPETITION
It is assumed that microbial symbionts benefit from a competition-
free environment inside hosts because they live in the absence of
other microbes that compete for resources. While some systems
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FIGURE 1 | (A) Experimental designs to test the effect of symbiosis
on host fitness (left) and symbiont fitness (right). Both experiments
involve measuring growth or other fitness parameters (see section
Recommendations for Investigating Symbiont Fitness) in the presence
and absence of their partner. Experiments on host fitness have been
performed in diverse systems, but the equivalent symbiont fitness
experiment is rarely performed. (B) Experimental design from
Wollenberg and Ruby (2012) for measuring the relative growth of two

groups of bobtail squid symbionts within naturally infected hosts.
Competition assays were performed to test within-host fitness by
inoculating the seawater of a hatchling squid with a symbiont strain
from each symbiont group (left). A separate experiment confirmed that
the symbionts had an equal ability to colonize the squid after
single-strain inoculations (not pictured). Symbiont growth was tested in
the environment by inoculating filtered (middle) and unfiltered (right)
seawater from the natural habitat of the squid and symbiont.

have monoclonal symbiont populations (Gage, 2002; Martens
et al., 2003; Kubota et al., 2007; Dubilier et al., 2008; Aanen et al.,
2009), likely due to bottlenecks during repeated vertically trans-
mission or winnowing during horizontal transmission, not all
host-symbiont associations are monoclonal. Within-host compe-
tition between strains is important for pathogen fitness (Bell et al.,
2006) and some vertical symbionts (Oliver et al., 2006). This is
likely also true for horizontal symbionts as hosts from many sys-
tems harbor multiple symbiont genotypes (Baker and Romanski,
2007; Dubilier et al., 2008; Fay et al., 2009; FitzPatrick et al., 2012;
Van Horn et al.,2012; Garcia et al., 2014). Even hosts with strict col-
onization requirements and entry mechanisms, like bobtail squid
which select specific strains of Vibrio fischeri from diverse microbes
in seawater, contain multiple symbiont genotypes (Wollenberg and
Ruby, 2009).

Competition in a polyclonal symbiont population can result in
decreased growth for one species or genotype (Elliott et al., 2009;
Baker et al., 2013; Engelmoer et al., 2014) or lower symbiont titers
(Mouton et al., 2004). Mycorrhizal fungi, for instance, have lower
abundance in plant roots when co-inoculated relative to single
inoculations. Furthermore, competition between these fungi is
stronger within the host compared to the rhizosphere (Engelmoer
et al., 2014). Coexistence with other symbionts, however, can be
beneficial. Double or triple infections of Wolbachia in the wasp
Asobara tabida, for example, increase the abundance of a specific

Wolbachia genotype relative to single infections with that genotype
only (Mouton et al., 2004). Co-infections, therefore, are a nec-
essary but not sufficient condition for competition and there is
no a general framework for predicting the conditions in which
co-infections will promote or hinder a symbiont’s fitness. Future
research on within-host competition is needed, and should be
considered in the context of mechanisms, such as partner choice
and sanctioning, that may reduce or prevent polyclonal infections
and competition (Bull and Rice, 1991).

PREDATION AND THE HOST IMMUNE SYSTEM
In non-host environments, microbes are attacked by pathogens
and preyed upon by predators such as nematodes, zooplankton,
and filter-feeding invertebrates. In hosts, symbionts still face pres-
sures akin to predation. Hosts have potent immune defenses with
which both horizontal (Dunn and Weis, 2009) and vertical (Wang
et al., 2009; Laughton et al., 2011) symbionts must sometimes con-
tend. These defenses are analogous to predators as they suppress
population growth and can eliminate organisms from an environ-
ment (Sachs and Wilcox, 2006; Kim et al., 2013). In some cases, a
multitude of bacteria enter a host but cannot pass increasingly
specific checkpoints to establish within the host (Nyholm and
McFall-Ngai, 2004; Kim et al., 2013). Microbes are killed by a range
of host immune responses, including phagocytosis, antimicrobial
peptides, and reactive oxygen species (Davidson et al., 2004; Login
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and Heddi, 2013). Hosts can also suppress or regulate established
symbiont populations. Carpenter ants reduce bacterial symbiont
populations through modulation of an immune response during
development (Ratzka et al., 2013). Similarly, tsetse flies express
antimicrobial peptides in symbiont-housing cells to regulate sym-
biont populations (Login et al., 2011). Although it is not known if
host control of symbiont growth via immune system “predation”
is universal, it is clear that symbionts do not grow unfettered in
hosts.

Symbiont growth may also be controlled using mechanisms
unconnected to the immune system. Rhizobia root nodule bacteria
(Udvardi and Poole, 2013), algal symbionts of corals (Wooldridge,
2010), insect bacterial symbionts (Login and Heddi, 2013), and
lichen photobionts (Ahmadjian, 1993) can have lower growth
rates relative to their free-living counterparts. The growth of
Symbiodinium algae is suppressed in corals relative to free-living
Symbiodinium, but the rate of photosynthesis is comparable in
both populations (Muscatine et al., 1984; Falkowski et al., 1993),
suggesting algal energy is directed toward producing photo-
synthate for the host rather than self-growth. In other hosts,
proliferating Symbiodinium cells are preferentially expelled over
non-proliferating cells (Baghdasarian and Muscatine, 2000). How-
ever, growth suppression of certain symbiont cells in the host does
not single-handedly indicate a deleterious effect on symbionts.
The real indicator of a beneficial association is an increased capac-
ity to reproduce in the host relative to the non-host niche, which
has not been sufficiently addressed.

HOST-PROVIDED NUTRITION
There are clear examples in which symbionts receive nutrients
like amino acids (Graf and Ruby, 1998; Macdonald et al., 2012)
from hosts. Rhizobia bacteria receive numerous compounds from
their plant hosts, including amino acids, sugars, and trace ions
(Prell et al., 2009; Udvardi and Poole, 2013). However, it is unclear
whether any of these nutrients are beneficial to the symbiont. In the
case of amino acids, free-living and cultured rhizobia can synthe-
size branched chain amino acids on their own, but the synthesis of
these amino acids is significantly down-regulated in root nodules,
and rhizobia in the host rely solely on the plant for these amino
acids (Prell et al., 2009). In this state, “symbiotic auxotrophy,” bac-
teria seem to function more as ammonia-producing organelles
rather than organisms seeking to increase their fitness. Similarly,
V. fischeri, bobtail squid symbionts, receive amino acids, fatty
acids and chitin from their hosts (Graf and Ruby, 1998; Jones
and Nishiguchi, 2006; Wier et al., 2010). However, there is evi-
dence that V. fischeri benefit from these host-derived nutrients or
another aspect of host association, as environmental populations
are larger in habitats with squid hosts compared to those without
squid (Lee and Ruby, 1994; Jones et al., 2007). Ultimately measures
of microbial growth along with direct tests of the fate of microbes
inside and outside hosts are crucial for understanding the effect of
host-derived nutrients.

RECOMMENDATIONS FOR INVESTIGATING SYMBIONT
FITNESS
The effect of microbes on hosts has been quantified in many
systems by measuring fitness in symbiotic and aposymbiotic

hosts, but the effect of host-association on symbionts has been
tested far less frequently (Figure 1A). One experiment in the
squid-Vibrio system serves as a model for symbiont exper-
iments using the comparative fitness approach (Figure 1B).
Wollenberg and Ruby (2012) inoculated bobtail squid, filtered
seawater, and unfiltered seawater with V. fischeri strains that
were either highly prevalent or rare symbionts in squid hosts.
The common symbionts grew as well as the rare symbionts
in the squid host and in filtered water, but displayed a dis-
tinct population decline in unfiltered seawater (Wollenberg and
Ruby, 2012), likely due to predation or competition from other
seawater inhabitants. This is one of the only experiments demon-
strating that symbionts have an increased reproductive capacity
and higher fitness within-hosts relative to non-host environ-
ments. It is important to note that this experiment found an
effect because it utilized natural environments (ocean water with
diverse microorganisms and nutrients) rather than culture based
conditions.

Population growth is an appropriate measure of fitness for
many microbes because growth and offspring production are
usually the same, i.e., binary fission. There are many easy and
reliable methods for measuring microbial population growth,
including counting by culturing (CFUs or OD600), counting
labeled cells with a microscope or flow cytometer, and count-
ing gene copies with quantitative polymerase chain reaction
(qPCR). However, there are alternative measures of fitness, that
include future reproduction (Ratcliff et al., 2012), reproductive
structures, e.g., fruiting bodies (Huang et al., 2006), sporu-
lation (Pringle and Taylor, 2002), transmission (Huang et al.,
2006), and virulence (Bryner and Rigling, 2012), that can also
be employed. These measures are routinely used to measure
pathogen fitness; for instance, measuring virulence as a per-
centage of hosts killed as a proxy for microbial fitness (Parker
et al., 2014). These alternative fitness measures may be more
appropriate for many symbionts, especially those with complex
lifecycles such as fungi (Pringle and Taylor, 2002) and pro-
tists (Devreotes, 1989). Certain nodulated rhizobia, for example,
undergo multiple rounds of endoreplication, each time doubling
the chromosome without completing cell division (Udvardi and
Poole, 2013). Therefore, comparing population sizes of rhizobial
bacteria in and outside the host using a gene counting method
like qPCR would provide an inflated count of population size
and an alternative measure would be more appropriate. Addition-
ally, alternative fitness measure may detect a benefit to symbionts
even when their relative growth rate is lower in hosts than other
niches.

One challenge of comparative fitness assays is duplicating an
appropriate non-host environment. For example, gene expres-
sion differences between symbiotic and free-living rhizobia have
been investigated in many studies, but they have almost exclu-
sively used cell culture as the “free-living” environment (Barnett
et al., 2004; Djordjevic, 2004; Capela et al., 2006; Karunakaran
et al., 2009; Tatsukami et al., 2013; Peng et al., 2014). Comparison
between host-associated and cultured symbionts can provide
insight into responses to ecologically relevant conditions, such
as low-oxygen and nutrient-limitation, but they cannot duplicate
the complexity and heterogeneity of natural conditions. Ideally,
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fitness experiments would be done in substrate taken directly
from the environment, as was the seawater for the V. fischeri
experiment above. Semi-natural substrates like potting soil or
aquarium sea salt mixtures are somewhat more informative than
cell culture. In other cases, it may not be known if there is a
non-host habitat or what the symbiont’s full habitat range is and
coupling symbiosis research with more traditional microbial ecol-
ogy can inform these experiments (Zahran, 2001; Garcia et al.,
2014).

Advances in “omics” technologies (genomics, transcriptomics,
etc.) have provided new approaches to investigate symbiont fit-
ness. Although omics approaches do not directly test symbiont
fitness, they can illuminate the “terms” of the relationship and
hint at benefits. For instance, up-regulation of vitamin produc-
tion in the host could suggest a nutritional benefit for symbionts,
while overexpression of anti-phage proteins may indicate pro-
tection of symbionts from pathogens. Omics data can be used
to direct and refine comparative fitness assays. For example,
simultaneous transcriptome sequencing of Porites (a coral) and
Symbiodinium (its symbiont), revealed that neither partner could
synthesize a complete repertoire of amino acids. This, coupled
with up-regulation of transport proteins, suggests amino acids are
transported between host and symbiont, including amino acids
that may be a limiting resource for Symbiodinium outside the host
(Shinzato et al., 2014). Targeted experiments could test the fit-
ness effect of nitrogen-limitation or removal of specific amino
acids on Symbiodinium growth in the host and seawater. Omics
studies may be especially useful when laboratory fitness assays do
not reveal any difference between host-associated and free-living
microbes (because the benefit depends on a factor not present in
the lab).

One disadvantage of growth as a fitness measure is its emphasis
on short-term, immediate benefits at the expense of long-term,
rare benefits, which could include access to novel genetic diver-
sity or dispersal. HGT is an important source of novel DNA
in prokaryotes, and there is considerable evidence that HGT
is important in symbiosis (Marchetti et al., 2010; Husnik et al.,
2013; McFall-Ngai et al., 2013). HGT is impeded by separation
between appropriate donor-recipients pairs, which could be over-
come when closely-related prokaryotes, which are more likely to
be compatible (Popa and Dagan, 2011), come together in a host.
HGT is particularly prevalent in proteobacteria (Nielsen et al.,
2014), phyla rife with insect (Kikuchi et al., 2011), marine inver-
tebrate (Dubilier et al., 2008; Bright and Bulgheresi, 2010), and
leguminous plant symbionts (Zahran, 2001). Genomic analysis
indicates genes that control host specificity and colonization in the
proteobacteria Xenorhabdus nematophila (Cowles and Goodrich-
Blair, 2008) and V. fischeri (Mandel et al., 2009) have likely been
acquired via HGT. Although some proteobacterial endosymbionts
have lower rates of HGT than their close relatives (Kloesges et al.,
2011), this is not true for proteobacteria in mammalian guts
(McFall-Ngai et al., 2013). Additionally, HGT may be especially
adaptive for horizontal symbionts as they could access novel DNA
within-hosts, even if host association was detrimental to short-
term fitness. Dispersal may be a similarly rare but beneficial
event. Mobile hosts such as flying insects or pelagically dispersed
coral larvae (Wirshing et al., 2013) may transport symbionts to

novel environments or hosts that better support symbiont growth.
Dispersal would be of particular benefit in systems where local
extinction is possible. These rare benefits may provide small or
hard-to-measure fitness gains to symbionts that outweigh other
short-terms costs associated with inhabiting a host or another
niche.

Finally, in order to persist, horizontal symbionts must out-
live their host by dispersing to a new host or free-living habitat.
In some systems, there is clear release of viable symbionts
back into the environment. Bobtail squid expel ∼95% of their
symbionts in a daily cycle (Lee and Ruby, 1994) and gene
expression studies indicate symbionts prepare for life outside
the host before expulsion by up-regulating flagellar genes and
making metabolic changes (Jones and Nishiguchi, 2006; Wier
et al., 2010). Some legumes (Bright and Bulgheresi, 2010) and
marine invertebrate hosts (Sachs and Wilcox, 2006), including
coral (Baghdasarian and Muscatine, 2000), also release viable
symbionts, though this has primarily been considered a way
to rid themselves of poor symbionts (Douglas, 2008). In con-
trast, some hosts can kill, digest, or otherwise prevent viable
symbionts from cycling back into the environment. Some rhi-
zobia have undergone such extreme physiological changes that
they are no longer viable outside the host, though they do
remain metabolically active (Mergaert et al., 2006). In many sys-
tems, it is unknown whether symbionts can leave the host much
less whether they are viable in the environment. Determining
whether a symbiont can leave the symbiosis and proliferate is
important as transmission dynamics, the cornerstone of pathogen
fitness and evolution (de Roode et al., 2008), undoubtedly play
a role in the ecology and evolution of beneficial symbionts as
well.

Symbiosis is an important and intensely studied topic in
evolution and ecology. However, core concepts including how
beneficial symbioses are formed and maintained over evolution-
ary time are not well developed. The most common hypothesis
is that these associations are maintained through mutual benefit.
However, in cases where there is no evidence of a symbiont ben-
efit, symbionts may instead be more akin to prisoners or farmed
crops than equal partners. Even if symbionts do exhibit increased
reproductive ability in hosts, this could ultimately be of little
evolutionary benefit, in much the same way cattle populations
increase through ranching but, as most cattle are sacrificed prior
to reproduction, they do not receive a fitness benefit. Therefore, it
is important to determine whether hosts imprison symbionts and
whether symbionts have adaptations to evade capture in addi-
tion to measuring costs and benefits of presumed mutualisms
(Douglas, 2008). Even in this warden-prisoner model of host–
microbe association, it is important to recognize there may be
both costs and benefits to associating with a host and to iden-
tify the short- and long-term fitness consequences for microbes
in a variety of contexts. Ultimately, it is clear that progress in
symbiosis research requires inclusion of the symbiont side of
symbiosis.
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