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Impairment of the arteries is a product of sustained exposure to various deleterious
factors and progresses with time; a phenomenon inherent to vascular aging. Oxidative
stress, inflammation, the accumulation of harmful agents in high cardiovascular risk
conditions, changes to the extracellular matrix, and/or alterations of the epigenetic
modification of molecules, are all vital pathophysiological processes proven to contribute
to vascular aging, and also lead to changes in levels of associated circulating
molecules. Many of these molecules are consequently recognized as markers of
vascular impairment and accelerated vascular aging in clinical and research settings,
however, for these molecules to be classified as biomarkers of vascular aging, further
criteria must be met. In this paper, we conducted a scoping literature review identifying
thirty of the most important, and eight less important, biomarkers of vascular aging.
Herein, we overview a selection of the most important molecules connected with
the above-mentioned pathological conditions and study their usefulness as circulating
biomarkers of vascular aging.
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INTRODUCTION

The process of aging is defined as ‘significant physiological
alterations which lead to increased susceptibility to disease
and risk of death.’ To assess the changes leading to biological
aging, molecular and cellular biomarkers, as well as non-invasive
imaging techniques, can be applied (Ferrucci et al., 2020). Aging
can be viewed as a cell-specific deterioration process mainly
caused by genomic instability, telomere shortening, epigenetic
changes, and a loss of proteostasis (Crimmins et al., 2008; Freitas-
Rodríguez et al., 2017). Moreover, many relevant age-related
changes occur at the intercellular level too, which call for a more
integrative approach of the aging process (Groenwagen et al.,
2016; Sena et al., 2018).

Vascular aging is a natural process, happening with advanced
age, and is associated with structural and functional changes in
the vascular wall. This is evident in the structural properties of
the blood vessels, in that for example, the larger elastic arteries
exhibit an increase in collagen content, covalent crosslinking of
the collagen, elastin fracture, and calcification and reduction in
the elastin content. Increased vascular smooth muscle growth is
also a hallmark, in addition to an increase in wall thickness (i.e.,
the media to lumen ratio). In terms of changes in the functional
properties, these are related mainly to aspects of endothelial
dysfunction and decreased nitric oxide (NO) production. Finally,
and perhaps the major consequence and observable change
associated with vascular aging is reduced compliance/increased
arterial stiffness of the arterial wall, which is recognized as the
hallmark of vascular dysfunction in healthy aging. Importantly,
the afore mentioned processes which are associated with vascular
aging are accelerated in cardiovascular, and other disease
states, and development or onset of these pathophysiological
states can result in vascular aging developing earlier in life as
compared to natural aging (Nilsson et al., 2008). In this way, as
aging is characterized as a chronic progressive proinflammatory
phenotype (Franceschi et al., 2000), indirectly controlled by
a network of cellular and molecular defense mechanisms, the
events which lead to the early development of vascular aging sees
many of these mechanisms activated and in turn influence aspects
of vascular tree. As such, inflammaging; the gradually adaptive
process of the body which leads to a proinflammatory status with
advancing age, is central to vascular aging (Kirkwood, 2018).

Another central hallmark and key driver of aging is
senescence. Cellular senescence is a state of a durable, irreversible
cell-cycle arrest of previously replication-competent cells, which
plays a dual role in physiology and disease (Gorgoulis et al., 2019).
In this regard, transient induction of senescence followed by
tissue remodeling has been recognized as a beneficial mechanism
to eliminate damaged or aged cells (He and Sharpless, 2017).
Conversely, persistent senescence and inability to eliminate
the excess damaged cells, has been linked with detrimental
effects leading to inflammation, which as mentioned, is an
essential pathophysiological mechanism inextricably linked to
tissue dysfunction which characterizes aging and the aging-
related diseases (Di Micco et al., 2021).

The term biomarker refers to a broad range of biological
measures that can be objectively measured and evaluated

as indicators of normal biological and pathogenic processes
or pharmacologic responses to a therapeutic intervention
(Biomarkers Definitions Working Group, 2001). Specific to
aging, or indeed vascular aging, there is currently no standard set
of biomarkers in clinical trials yet. The authors of this manuscript
were convened within the European Cooperation in Science
and Technology (COST) Action on vascular aging international
scientific network (CA18216 - Network for Research in Vascular
Aging, VascAgeNet1, action duration 4 years (November 5, 2019–
November 4, 2023) and a comprehensive literature review was
conducted specific to this.

In the following, we introduce a selection of identified
molecules/cellular aspect which demonstrate potential in
addressing the aforementioned deficit, and provide an overview
of their usefulness as circulating biomarkers of vascular aging.

METHODOLOGY

In order to identify all relevant studies a literature search was
conducted using PubMed. Research articles were also selected
manually from the reference lists of articles. The search strategy
used the terms “circulating biomarker,” “cardiovascular disease
(CVD),” “aging,” “vascular aging,” and the initial selection of
biomarkers was refined by those which appeared in most studies,
and importantly met the criteria introduced by Vlachopoulos
et al. (2015). As a result, Supplementary Table S1 contains the
list of extracellular biomarkers which meet these requisites, and
are proven to be involved in: inflammation (3), alterations to
the cellular matrix (5), aging of the kidney (1), stress response
and mitochondria (1), nutrient signaling (1) and epigenetics
(3). Supplementary Table S2 contains a subset of miRNA-based
biomarkers which have been shown to be involved in influencing
genetics (1), the cell matrix (1), inflammation (1), angiogenesis,
cell adhesion, and inflammation (1), mitochondria biogenesis
and metabolism (2), and metabolism (2). We then further refined
this list, ranking the biomarkers based on their influence on:
underlying mechanisms related to vascular aging, involvements
in disease, proof of concept, prospective validation, incremental
value, clinical utility, clinical outcomes, cost-effectiveness, ease
of use, methodological consensus and finally reference value
(Vlachopoulos et al., 2015). In doing so, we selected only
those which aligned closest with the aforementioned criteria.
Further refinement of biomarkers was then based on: (1) clinical
utility; (2) cost effectiveness; (3) ease of use; (4) methodological
consensus; and (5) reference values (cut-off values).

In conducting the literature search, duplicated studies were
identified and removed. The abstracts and titles of article
retrieved were screened to exclude the irrelevant studies. Full-text
articles were then examined to determine whether they met the
inclusion criteria. Inclusion criteria were: (1) studies investigating
the association of a biomarker with CVDs, and vascular aging;
(2) studies using blood serum or plasma for biomarker analysis;
and (3) peer-reviewed articles and all types of reviews published
in English between January 1989 and October 2021. Unpublished

1www.vascagenet.eu
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theses, reports, and conference proceedings were excluded. Data
were extracted using a standardized form by the reviewers and
verified by another reviewers.

We aim to address the vascular aging phenomenon of
different factors within the scope of COST 18216 “Network
for Research in Vascular Aging” action. For each selected
biomarker, we present the data according to four different
sections: pathophysiology, association with physiological aging
and vascular markers, association with CVD and measurement
method. This review describes important molecules associated
with pathological conditions and their implications for their
usefulness as biomarkers of circulating vascular aging and
showing relevant data on outcomes whenever available. Reviews,
guidelines, and consensus papers are also included.

RESULTS

Thirty of the most important and pertinent biomarkers related to
inflammation, matrix injury, stress response and mitochondria,
nutrient signaling, vascular senescence, thrombotic events
and epigenetic were identified; and eight of the less important
biomarkers related to genetics, matrix remodeling, angiogenesis,
cell inflammation, mitochondrial biogenesis, metabolism
(Supplementary Tables S1, S2).

Application of stated criteria to the available literature to the
identified 38 biomarkers resulted in a short list of circulating
biomarkers: oxidative stress based – superoxide dismutase
(SOD); inflammation based – high sensitivity C-reactive protein
(hsCRP) and interleukin-6 (IL-6); cellular matrix based – matrix
metalloproteinases (MMPs), growth differentiation factor-15
(GDF-15); epigenetic based – micro ribonucleic acids (miRNAs),
DNA methylation and telomere length (Figure 1).

CIRCULATING BIOMARKERS RELATED
TO VASCULAR AGING

Oxidative Stress-Based Circulating
Biomarkers
Reactive Oxygen and Nitrogen Species
Pathophysiology
Reactive oxygen and nitrogen species (RONS) are formed by
the use of molecular oxygen by aerobic organisms and play an
essential role in physiology and pathophysiology of aerobic life
(Li et al., 2016). RONS are a group of small reactive molecules,
including radicals and non-radicals, that are derived from oxygen
metabolism. RONS with unpaired electrons are considered as free
radicals. Free radicals such as superoxide ion (O•−2 ) and hydroxyl
radical (OH•−), are unstable in nature and subsequently have
short biological half-lives (Stevenson et al., 2020). Non-radicals in
comparison; such as hydrogen peroxide (H2O2), singlet oxygen
(1O2), peroxynitrite (ONOO−) and hypochlorous acid (HOCl),
are more stable in contrast and thus exhibit longer half-lives
as compared to their free radical counterparts. Mitochondrial
respiration is a major source of reactive oxygen species (ROS)
within most cells. As electrons are transferred between the

complexes of the electron transport chain, some of these electrons
can ‘leak’ out to react directly with oxygen to form superoxide
(Shields et al., 2021). A hallmark of aging is the progressive loss of
mitochondrial function and in turn reduction in mitochondrial-
derived ROS (Santos et al., 2018).

In that way, whilst aging sees a reduction in mitochondrial
levels of ROS, with respect to the vascular system, there
are several other sources of RONS which play a role in
promoting oxidative stress; most notably; the enzymatic sources
of RONS; which have been the subject of extensive investigation
the last number of years. Notably, NADPH oxidases (NOX);
which utilizes electrons donated from NADPH to convert
molecular oxygen to O•−2 , myeloperoxidases (MPO); which
converts H2O2 to HOCl, xanthine oxidase (XO); which
produces O•−2 anions during the breakdown of purines to
uric acid, SOD; which converts O•−2 anions to H2O2 and
oxygen, and monoamine oxidase; which decomposes dopamine
and produces H2O2 (Shields et al., 2021), are among the
most prominent sources of vascular ROS, closely followed by
lipoxygenase (LOX), cyclooxygenase (COX), angiotensin II, and
cytochrome P450 1B1.

According to numerous published data, RONS have a dual
role in an organism: RONS contribute to aging but they also
play a crucial role in cell signaling and development, thus serving
a beneficial role. In the vascular system, physiological levels
of RONS are essential for normal vascular functions including
endothelial homeostasis and smooth muscle cell contraction
(Salisbury and Bronas, 2015). For example, the free radical
nitric oxide (NO), which is produced by endothelial nitric
oxide synthase (eNOS) by the vascular endothelium, is very
important in the regulation of blood flow and vasodilation (Chen
et al., 2018). However, any imbalance between prooxidant and
antioxidant mechanisms, often called “redox potential,” can play
an important role in vascular aging (Ferrini et al., 2004). Excessive
levels of ROS have been shown to cause vascular remodeling by
inducing proliferation and migration of vascular smooth muscle
cells, vascular cell damage, the recruitment of inflammatory
cells, lipid peroxidation, activation of metalloproteinases and
deposition of extracellular matrix (Chen et al., 2018). The
initiation and progression of disease states such as hypertension,
atherosclerosis, restenosis and abdominal aortic aneurysm are
among the main vascular diseases in which oxidative stress has
been shown to play a key role (Tejero et al., 2019).

With respect to reactive nitrogen species (RNS), a large
proportion of their production stems from the activity of
eNOS. Under pathological conditions, eNOS can also produce
O•−2 which contributes directly to ROS levels. The O•−2 can
now react with the NO produced by the same enzyme to
produce peroxynitrite (ONOO−), which has been shown to
directly damage cellular components, or further react with other
molecules to create other types of RNS; nitric dioxide (NO2

•),
nitrate radical (NO3

•), nitrous acid (HNO2), nitrite (NO2
−),

nitrosyl cation (NO+), nitroxyl anion (NO−), peroxynitrous acid
(ONOOH), dinitrogen trioxide (N2O3). Similar to peroxynitrite,
these RNS have also been shown to cause similar nitrosative
damage to cellular component, but also have functional roles in
cell signaling and pathogen defense (Shields et al., 2021).
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FIGURE 1 | Several circulating biomarkers which are proposed to mirror the major pathophysiological mechanisms that contribute to vascular aging in the vascular
wall, namely inflammation/atherosclerosis, oxidative stress and genetics-epigenetics.

Excessive levels of RONS are mainly generated by and credited
to the NOX family of enzymes. The NOX family are the
only family of enzymes which produce RONS as its primary
function (Lassegue et al., 2012; Montezano and Touyz, 2014),
and in general NOX-derived ROS are important regulators of
endothelial function and vascular tone. However, the excessive
reduction of molecular oxygen to superoxide anion O•−2 by
members of this family has been linked to vascular disease and
biological aging, directly and indirectly, via several pathogenic
pathways (Blankenberg et al., 2003). For example, O•−2 from
NOX enzymes initiates the process of eNOS uncoupling which
promotes accelerated vascular aging in CVD. Moreover, SOD
dismutates the superoxide anion to H2O2 which is able to form
highly reactive hydroxyl ions (OH•) (Gong et al., 2014), that
are extremely reactive and cause damage to the cell membrane
phospholipids and proteins (Liguori et al., 2018). All seven family
members of the NOX family are major producers of RONS in
mammalian cells, yet NOX-1, -2. -3, -4, and -5 are variably
expressed in the vascular system by endothelial cells or vascular
smooth muscle cells, and are among those identified as having
a predominant role, through their specific generation of O•−2 or
H2O2, in progressing vascular disease (Ighodaro and Akinloye,
2018). Of note, the exact pathophysiological significance of NOX-
5 is still unclear, but according to the review of Touyz et al.
(2019), this enzyme is important in the physiological regulation
of sperm motility, lymphocyte differentiation and interestingly
vascular contraction. Emerging evidence has implicated its
hyperactivation in the onset and development of CVD, as well
as kidney injury and cancer.

Furthermore, in fully understanding the redox dynamics
central to pathophysiological disease states, attention has been
directed toward the inherent physiological defense mechanisms
which protect the body against oxidative stress. The most

important enzymatic systems include SOD, catalase (CAT),
glutathione peroxidase (GPx), glutaredoxin (Grx), thioredoxin
(Trx), peroxiredoxin (Prx) and glutathione S-transferase (GST).
These antioxidant enzymes catalytically remove ROS in their own
unique way; for example, SOD dismutases O•−2 into H2O2, which
is in turn degraded by CAT or GPx into water and molecular
oxygen. Grx and Trx act to protect thiol-containing proteins by
repairing damage caused by ROS by transferring electrons to
the disulfide bonds of the damaged proteins in order to repair
them and restore them back to its reduced form. Prx is a cysteine
containing enzyme that reduces the activity of peroxides, while
GSTs act synergistically with GPx to reduce lipid peroxidation.

Among the non-enzymatic antioxidants, the most pertinent
is glutathione (GSH); which is essential for the activity of GPx
and Grx in returning each to their active state. N-Acetyl cysteine
(NAC) is important in the formation of GSH acting as its
precursor molecule, whilst also participating in redox reactions
by donating electrons toward the detoxification of ROS which are
present in the vicinity. Finally, Vitamin C and E are important
water-soluble antioxidants which scavenge oxygen free radicals
in the environment and prevent the oxidation of cholesterol.
Vitamin E also acts as an inhibitor of lipid peroxidation (Nandi
et al., 2019; Shields et al., 2021).

Association With physiological Aging and Vascular Markers
One of the main features of aging is a progressive loss of tissue
and organ function over time. In accordance with the free radical
theory of aging; age-associated functional losses are due to the
accumulation of oxidative damage to macromolecules (lipids,
DNA, and proteins) caused by RONS. The exact mechanism of
aging caused by oxidative stress is still unclear, but oxidative stress
and aging are becoming increasingly recognized as intertwined
biological events as increased RONS production is observed with
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aging. A wealth of experimental data confirms oxidative stress
disrupts critical signaling pathways owing to the damage inflicted
to the aforementioned macromolecular molecules/structures
of cells and tissues. These changes in signaling pathways
are correlative to those associated with cellular aging; a
physiological mechanism that reduces/halts cell proliferation
in response to damage incurred during the replication cycle
(Papaconstantinou, 2019). Senescent cells acquire an irreversible
senescence-associated secretory phenotype (SASP) involving
secretion of soluble factors (interleukins, chemokines, and
growth factors), degradative enzymes like MMPs, and insoluble
proteins/extracellular matrix (ECM) components. For example,
adoption of a senescent phenotype in endothelial cells leads to
impaired endothelium-dependent vasodilation and upregulation
of inflammatory gene expression in aged vasculature (Donato
et al., 2015). This data and others, have implicated RONS as
inducers of cellular senescence in directly acting on various
components associated with SASP (Liguori et al., 2018).

Thereafter, RONS-mediated events are concurrent with
vascular inflammation and the development and progression of
atherosclerosis and accelerated atherosclerotic damage (Wu et al.,
2014; Kattoor et al., 2017). Recent experimental data have linked
RONS production with the development of aortic stiffening,
while conversely, indirect clinical evidence supports the beneficial
effect of antioxidant therapies in reducing arterial stiffness (Ashor
et al., 2014; Canugovi et al., 2019).

Association With Cardiovascular Disease
Substantial evidence clearly shows that oxidative stress,
through inflammation, endothelial dysfunction, and other
pro-atherosclerotic mechanisms, plays a pivotal role in the
pathophysiology of CVD and highly cardiovascular (CV) risk
disorders including hypertension, dyslipidemia, peripheral
artery disease, metabolic syndrome, and diabetes mellitus (DM)
(Loperena and Harrison, 2017; Touyz and Delles, 2019). Of note,
several studies have suggested that therapeutic interventions
using antioxidants have prevented CV progression. For example,
supplementation of Vitamin A, C, and E have demonstrated
positive effects in short-term secondary CV prevention, though
their exact role in vascular health remains divisive (Ashor
et al., 2016). Other trials aimed at addressing the redox balance
in individuals are perceived in much the same way; caloric
restriction (reduced CV aging and increased chronic disease
protection), nutraceuticals (reduction of blood pressure and
oxidative stress, with concomitant increases in NO release), and
dietary supplements such as fish oil and green tea (improvement
in endothelial function, reduction in inflammation and oxidative
stress). Moreover, endogenous forms of antioxidant enzymes
are now available (SOD, CAT, and Gpx), whilst efforts are
ongoing to produce other mimetics or scavenging molecules
of similar capabilities, though no molecule has conclusively
been successful, while others are still in trials (Izzo et al., 2021).
Similarly, direct evidence linking excessive RONS production
to CV mortality is currently lacking due to the complexity
in the pathophysiology of CVD, hence oxidative stress has
been rendered a key contributing factor but not the primary
pathogenetic mechanism. Despite these complexities, clinical

data from several trials investigating classical antioxidant
treatments, but not medications possessing indirect antioxidant
properties, have yet to present conclusive evidence of either no
benefit or even harm (Senoner and Dichtl, 2019).

It is worth to mention that many studies have suggested
the possible therapeutic application of antioxidants. Among
antioxidants, vitamin E and C have shown some effect in short
term secondary CV prevention, but their role in vascular health
remains controversial (Ashor et al., 2016; Izzo et al., 2016).
Even more controversial is the supplementation with vitamin
A, which even worsened all-cause mortality (Izzo et al., 2021).
In some trials antiaging and antioxidant strategies have been
documented. They include: caloric restriction (CV aging and
chronic disease protection) (Ashor et al., 2016); nutraceuticals
(reduction of blood pressure and oxidative stress, increase of
NO release; Ashor et al., 2016); dietary supplements such as:
fish oil, green tea, vitamin C and A (improvement of endothelial
function, reduction of inflammation and oxidative stress) (Ashor
et al., 2016). Until now it is impossible to use endogenous
antioxidant enzymes, SOD, catalase or GPx, or any synthetic
deriving molecule. Several attempts have been made to create
such molecules or scavenging enzymes, but so far, no elements
have been successful, and other molecules are still in trials
(Izzo et al., 2021).

One of the new molecules emerging as important mediators
regulating oxidation and inflammation in the vasculature and
heart is osteoprotegerin, which may act through reduction
in apoptosis and preservation of the matrix structure.
Although osteoprotegerin can affect vascular function, its
cardiac effects seem to be direct and independent of effects
on the vasculature (Guzik and Touyz, 2017). Finding new
molecules and new ways to address aging and oxidative stress is
fundamental to find new potential application for cardiovascular
prevention and treatment.

Measurement of Reactive and Nitrogen Oxygen Species
Owing to their extremely short half-lives, it is currently incredibly
difficult to accurately measure and assess RONS levels (Rice et al.,
2012). Markers of oxidative stress are either molecules modified
by interactions with ROS, or molecules of the antioxidant
system changed in response to increased redox stress (Tanguy
et al., 2000). In that way, targeting the molecules upstream
of RONS represents the current best way to assess RONS
levels indirectly, and the most commonly used markers in CV
research include isoprostanes (IsoPs), malondialdehyde (MDA),
nitrotyrosine, S-glutathionylation, MPO, oxidized LDL, ROS
induced changes to gene expression, glutathione peroxidase
(GPX), and isoforms of SOD (Zarzuelo et al., 2013). The
measurement of SOD is perhaps one of the most accepted means
of measuring RONS activity owing to their levels reflecting
their activity catalyzing the dismutation of the strong superoxide
radical (O−2 ) thus maintaining redox balance and preventing
accumulation of injurious ROS (He et al., 2009). There are
three distinct SOD isoforms which include the Cu/Zn superoxide
dismutase (SOD1), MnSOD (SOD2), and ECM superoxide
dismutase (ECM-SOD/SOD3), and as these isoforms remain
stable even when the erythrocytes of the samples are hemolyzed
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and stored frozen (Pierce et al., 2011), they are suggested
to be a suitable biomarker for estimation of oxidative stress
(Thangaswamy et al., 2012).

Inflammation-Based Circulating
Biomarkers
Nowadays, it is strongly believed that aging and age-associated
diseases share many common physiologic and pathophysiologic
pathways which seem to converge on inflammation. In fact, at the
cellular level, aging is characterized by a state of chronic, sterile,
low-grade inflammation (i.e., inflammaging), and it is considered
a pre-status mechanism for many age-associated diseases such as
cancer, diabetes mellitus (DM) and CVD (Franceschi et al., 2020).
Based on the study of Franceschi et al. (2000), inflammaging is
the expansion of the network theory of aging and the remodeling
theory of aging (Franceschi, 1989; Franceschi and Cossarizza,
1995). Based on the remodeling theory, inflammaging is the
gradual adaptive process of the body; the net result of which
is a regulation of malignant damage sustained by the body as
a result of a trade-off with the immune system. Despite the
lack of agreement on definitions and terminology surrounding
inflammaging, the prevailing consensus is that the primary
feature of such is an increase in the proinflammatory status with
advancing age (Kirkwood, 2018).

From an evolutionary perspective, inflammaging is primarily
driven by several endogenous signals including the accumulation
of misplaced and misfolded self-molecules from damaged or
senescent cells. Among the several inflammatory factors, the
key molecules associated with inflammaging and aging are
the elevated pro-inflammatory cytokines, especially interleukin
(IL)-6 and C-reactive protein (CRP) (Singh and Newman,
2011). Various studies have described production of IL-6
by endothelial cells. More specifically, it has been described
that human umbilical vein endothelial cells (HUVECs) can
produce IL-6 via a G-protein, calcium, and NF-kB-dependent
pathway upon stimulation of the protease-activated receptors
(PAR) PAR-1 or PAR-2. The effects of both PAR-1 and
PAR-2 agonists on the endothelial cells are greatly enhanced
by concomitant stimulation by endotoxin (lipopolysaccharide,
LPS) or tumor necrosis factor-a (TNF-a) (Chi et al., 2001).
In addition, in acute inflammation, it has been shown that
thrombin (a procoagulant and proinflammatory molecule) may
induce monocyte recruitment through endothelial activation by
inducing monocyte chemotactic protein-1 (MCP-1) secretion
indirectly through an autocrine loop involving endothelial
IL-6 secretion (Marin et al., 2001). Bacterial endotoxin or
inflammatory cytokines, such as IL-1 or TNF-alpha have also
been shown to stimulate IL-6 production in adult vascular
endothelial cells (Loppnow and Libby, 1989; Naka et al., 2002;
Puel and Casanova, 2019).

Interleukin-6
Pathophysiology
Interleukin-6 is a small, 21 kDa glycoprotein produced by
numerous cell types, including but not limited to; dendritic
cells, macrophages, monocytes, T cells and vascular cells. IL-6
binds to its receptor (IL-6R), thus activating the Janus kinase

(JAK) tyrosine kinases and the downstream signal transducer and
activator of transcription (STAT). The net result is a pleiotropic
tissue activity predominantly directed toward the initiation
of inflammation and the elevation of acute phase reactants
including CRP (Hirano and Murakami, 2020).

Association With Physiological Aging and Vascular Markers
Based on current knowledge, IL-6 is a well-acknowledged
sensitive biomarker of low-grade inflammation and is among the
best candidates within the interleukin family as a representative
biomarker of vascular aging (Puzianowska-Kuźnicka et al., 2016).
IL-6 has been positively associated with vascular markers of aging
such as pulse wave velocity (PWV) in healthy men and patients
with chronic kidney disease (Nishida et al., 2007; Peyster et al.,
2017), and carotid intima-media thickness (cIMT) (Huang et al.,
2016). Additionally, IL-6 levels have been found to increase in
an age-dependent manner in two cohorts of older individuals
(Puzianowska-Kuźnicka et al., 2016; Stevenson et al., 2018).
Similarly, in a recent meta-analysis including 12421 values for
IL-6 in the blood of healthy adult male and female donors, it
was found that for every 1-year increase in age, there was a
significant increase of IL-6 values by 0.05 pg/ml (Said et al., 2021).
Moreover, there is substantial evidence that IL-6 contributes
to hypertension as levels of IL-6 have been correlated with
blood pressure in hypertensive subjects and are reduced by
treatment with angiotensin II-receptor blockade (Vázquez-Oliva
et al., 2005). A similar study corroborates this relationship in
demonstrating that angiotensin II-receptor inhibitor significantly
reduces IL-6 levels in hypertensive patients (Tsutamoto et al.,
2000; Manabe et al., 2005).

Hypertension and atherosclerosis are associated with
accumulation of cellular senescence biomarkers in the vascular
wall; a hallmark often associated with vascular dysfunction
(Kovacic et al., 2011). Additional risk factors for CVD; such
as smoking, hyperlipidemia, or DM, are also associated
with accelerated decline of vascular function (Cunha et al.,
2017). Hypertension is inherently associated with accelerated
vascular aging and, therefore, research on such has assisted in
understanding the vascular remodeling that occurs with age
(Lakatta, 2007; Huang et al., 2018). Early vascular aging—a term
introduced in the context of premature development of vascular
stiffness and remodeling by Nilsson et al. (2009) and Cunha
et al. (2017) is a key feature of hypertension (Lakatta, 2007;
Guzik and Touyz, 2017). In hypertensive patients, the vascular
wall activates monocytes, which increases the release of IL-6
(Guzik and Touyz, 2017; Loperena et al., 2018). Concurrently,
the existence of a chronic inflammatory state has been reported
in elderly age, and has been shown to be caused by an increase in
the levels of IL-6 and TNF-alpha (Derhovanessian et al., 2009).
In that way, recent advances in hypertension research have
unraveled novel inflammatory, and oxidative mechanisms, of
vascular dysfunction that underlie accelerated vascular aging in
hypertension and associated CVD (Passacquale et al., 2016).

Association With Cardiovascular Disease
A wealth of data exists confirming the association between
increased IL-6 levels and CV mortality and morbidity
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(Libby et al., 2002; Rao et al., 2005; Danesh et al., 2008; Compté
et al., 2013; Ridker et al., 2018; Batra et al., 2021).

More specifically, in the population-based Cardiovascular
Health Study, elevated plasma IL-6 levels were found to
significantly associate with death across multiple causes and
strongly predict future mortality (Walston et al., 2009). Similarly,
higher IL-6 levels were associated with increased mortality in
older adults in the Framingham Heart Study (Roubenoff, 2003).
More recently, it was demonstrated that for each SD increase in
log IL-6, there was a 25% increase in the risk of future CV events
(Kaptoge et al., 2014). Several studies described the association
of IL-6 and cardiovascular mortality and morbidity (Held et al.,
2017; Wainstein et al., 2017; Ridker et al., 2018).

Measurement of Interleukin-6
Kenis et al. (2002) examined the stability of IL-6 in human
serum using an accelerated stability testing protocol according
to the Arrhenius equation. In this study, the effect of time
delay between blood sampling and sample processing, clotting
temperature and repeated freeze-thaw cycles on serum levels of
these proteins were determined. It was concluded that serum
samples for the determination of IL-6 can be stored at −20◦C
for several years (Kenis et al., 2002). Graham et al. (2017) studied
the impact of initial and multiple subsequent freeze-thaw cycles
on pro-inflammatory including IL-6, anti-inflammatory, acute
phase proteins and other biomarkers. The authors found that the
examined biomarkers on their panel remained stable for analysis
despite multiple freeze-thaw cycles. Together, these data provide
the foundation and confidence for large scale analyses of panels
of inflammatory biomarkers to provide better understanding
of immunological mechanisms underlying health versus disease
(Graham et al., 2017).

The foremost way of measuring IL-6 levels in a biological
sample is by enzyme-linked immunosorbent assays (ELISA)
which are readily available from numerous companies today. For
this analysis, sample volumes as little as 50 µL are measurable,
with sample matrices including but not limited to serum,
plasma, cell culture supernatant. Most ELISA formats allow for
a measurable range of 1.56–100 pg/mL (Tecan manufacturer
of ELISA kits). Owing to the nature of ELISA-based methods,
results of the study Gong et al. (2019), highlighted a number
of variables which can affect levels of cytokine in a sample. It
was found that incorrect sample handling procedures played a
key role in the obtained results. For example, plasma and serum
sampling require their own individual protocols. With respect
to IL-6, unseparated EDTA plasma can keep IL-6 stable for up
to 24 h, whereas with unseparated serum it is recommended
to measure IL-6 as soon as possible. Despite these potential
obstacles, ELISAs have improved upon earlier methods which
utilized flow cytometry and determined the levels of IL-6 based
on the cellular response to the cytokine and the employment of a
dose-response curve. In comparison, levels of cytokines like IL-
6 and their respective activity can now be rapidly determined
in accordance with the World Health Organization (WHO)
cytokine standards; taking as little as a few hours to achieve, in
comparison to previous methods which took days in comparison
(Simard et al., 2014).

High Sensitivity-C-Reactive Protein
Pathophysiology
C-reactive protein or high sensitivity (hs)-CRP is an acute-
phase reactant and a nonspecific inflammatory biomarker whose
production is stimulated in response to inflammatory mediators
including IL-6 and IL-1. It is predominantly secreted by
hepatocytes in the form of pentameric molecules, although low-
level expression of CRP in other cells has also been observed.
Levels of CRP have been shown to increase rapidly up to
1,000-fold at sites of trauma, infection or inflammation, and
accordingly, rapidly decrease upon resolution of the causative
condition. Measurement of hs-CRP is therefore widely used to
monitor various inflammatory states.

Association With Physiological Aging and Vascular Markers
Increasing evidence shows that hs-CRP is not only an
inflammatory biomarker but also an important risk factor
associated with aging and aging-related diseases (Tang et al.,
2017). Pertinent to this, it has been demonstrated that hs-CRP
levels increase in an age-dependent manner across aging elderly
populations without evident CVD. Relatively, hs-CRP levels are
significantly lower in healthy aging adults compared to those
with aging-related diseases (Puzianowska-Kuźnicka et al., 2016).
Moreover, high hs-CRP levels are associated with decreased
physical and cognitive performance which are strongly related
to the natural aging process (Puzianowska-Kuźnicka et al., 2016;
Tegeler et al., 2016), and, additionally, with several aging diseases
like sarcopenia (Lee et al., 2020), deep white matter lesions,
ischemic stroke, and heart failure (van Wezenbeek et al., 2018).

Concerning the association of hs-CRP with vascular disease,
a connection between hs-CRP and atherosclerosis has long
been established since hs-CRP directly binds oxidized low-
density lipoprotein cholesterol (LDL-C) and has been shown
to be present within atherosclerotic plaques. As a result, hs-
CRP contributes to plaque instability and exerts a highly
proatherogenic effect (Singh et al., 2008; Conte E. et al.,
2020). Moreover, hs-CRP has been associated with indices of
vascular stiffness. Relatively, hs-CRP has been found to positively
correlate and, additionally, predict elevated PWV over and above
traditional CV risk factors and in various diseased populations
(Nakhai-Pour et al., 2007; Mozos et al., 2019). In addition,
hs-CRP has been positively correlated with markers of carotid
stiffness including cIMT (Liao et al., 2014).

Association With Cardiovascular Disease
The association between elevated hs-CRP levels and CVD is well
established since most large-scale clinical trials have used a hs-
CRP cut off point of 2 mg/l for determining increased CV risk,
and a handful of studies have shown a consistent association of
hs-CRP levels above 3 mg/l with CV events (Möhlenkamp et al.,
2011). Additionally, it has been demonstrated that hs-CRP levels
are able to predict future CV events. In a large meta-analysis of
160,309 individuals without a history of vascular disease, among
a total of 27,769 patients who suffered fatal or nonfatal events,
hs-CRP was associated with a significantly increased risk for
coronary heart disease (CHD), stroke, and vascular mortality
(Kaptoge et al., 2009). Similarly, ample studies have confirmed
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that elevated hs-CRP concentrations can independently predict
the risk of all-cause and CV mortality in different populations
including the general population and patients with CHD (Li et al.,
2017; Stumpf et al., 2017).

Due to its strong association with CVD, many mathematical
models have tried to incorporate hs-CRP in order to improve
CV risk prediction owing to the high correlation of hs-CRP with
multiple risk factors. Subsequently, hs-CRP has been included in
the position paper of the European Society of Cardiology and
the Artery Society (Vlachopoulos et al., 2015), and it has been
integrated into numerous guidelines in different pathological
CV conditions (for primary and secondary CVD prevention).
However, the class of recommendations for hs-CRP as circulating
biomarker related to vascular wall biology may be measured as
part of refined risk assessment only in patients with an unusual
or moderate risk, whose profile is mostly class IIb with a level
of evidence B, but not in asymptomatic low-risk or high-risk
individuals (class III and level of evidence B recommendation)
(Perk et al., 2012; Vlachopoulos et al., 2015). Therefore, there
seems to be a modest support of the incremental value of hs-
CRP, and it is debatable whether its measurement can provide a
consistent and clinically meaningful incremental predictive value
in risk prediction and reclassification (Yousuf et al., 2013).

Measurement of High Sensitivity-C-Reactive Protein
The standard CRP turbidimetric immunoassay measures
markedly high levels of the protein in the range from 10 to
1000 mg/L. On the contrary, the hs-CRP assay accurately detects
even lower, basal levels of CRP in the range from 0.5 to 10 mg/L
which belongs to the currently accepted CV risk assessment
range of 0.20–10.0 mg/l.

Cell Matrix Based Circulating Biomarkers
Matrix Metalloproteinases
Pathophysiology
Proteases degrade proteins by hydrolyzing their peptide bonds,
and in their action control and influence many key physiological
and pathological processes (López-Otín and Hunter, 2010).
An essential part of each cell; the ECM can be modified
during aging by protease dysfunction. Imbalances or altered
activity of certain proteases can ultimately affect the structure
and composition of the ECM, thus altering its ability to
perform its biological functions; differentiation, proliferation,
migration and survival (Freitas-Rodríguez et al., 2017). Matrix
MMPs are a family of multidomain calcium-dependent, zinc-
containing endopeptidases, activated by inflammatory signaling.
They are able to degrade ECM molecules, have been shown
to have a crucial role in aspects of aging, hypertension and
atherosclerosis within the arterial wall (Wang et al., 2014).
Activated MMPs influence arterial remodeling by promoting
endothelial inflammation, intimal-medial thickening, elastin
fiber network destruction, arterial fibrosis, calcification and
adventitial expansion. Importantly, it was shown that aging
enhances MMP-2/-7/-9/-14 activity in the aortic wall, namely via
increases in Ang II-mediated signaling, proinflammation, fibrosis
and elastin fragmentation (Wang et al., 2015). Conversely, human
tissue inhibitors of matrix metalloproteinases (TIMPs) are four

glycoproteins responsible for the inhibition of MMPs and thereby
are also involved in and influence degradation of ECM.

Association With Physiological Aging and Vascular Markers
There is significant discordance between current and previous
studies regarding the association of MMPs with age. For example,
in a study including 93 healthy adults of different ethnic
origins, no associations were found between MMP-2 and MMP-
9 with age (Tayebjee et al., 2005), nor any gender influence.
Similarly, in 699 adults of the Framingham study, MMP-9
was not associated with age (Sundström et al., 2004). In a
subsequent study including 77 subjects with no evidence of CVD,
significant positive correlations between MMP-2 and MMP-7,
and a significant negative correlation between MMP-9 and age
were found (Bonnema et al., 2007). Recently, Basisty et al. (2020),
in using proteomic technology, identified increased levels of
MMP-1, MMP-2 and their regulators TIMP1 and TIMP2 as
secreted by senescent cells in human plasma (Basisty et al., 2020).
Interestingly, age-related changes in the cardiac proteome have
been also shown to be MMP-9 dependent (Iyer et al., 2016),
while age-related MMP-2 upregulation occurs in the human aorta
(McNulty et al., 2005).

Taking into account the crucial role of MMPs into vascular
pathophysiology, a certain link with vascular function markers is
anticipated. Indeed, it has been shown that plasma MMP-1 levels
display a positive correlation with both PWV and augmentation
index (AIx) after adjustment for age and mean arterial pressure in
a cohort of normotensive and hypertensive individuals (McNulty
et al., 2005). Similarly, MMP-9 levels have been positively
correlated with aortic and brachial PWV in patients with
hypertension including isolated systolic hypertension (Yasmin
et al., 2005; Tan et al., 2007; Gkaliagkousi et al., 2012), whereas
MMP-2 and MMP-3 have been associated with central arterial
stiffness parameters in patients with DM type I (Peeters et al.,
2017). In the most recent study so far including 206 healthy
young adults, MMP-3 levels were significantly associated and
independently predicted PWV (Iannarelli et al., 2021).

Association With Cardiovascular Disease
Subsequently, sample data confirm that several MMPs are closely
associated with CVD and can predict both CV events and all-
cause mortality in various populations including patients with
DM, atherosclerosis and the general population (Table 1).

Measurement of Matrix Metalloproteinases
Determination of MMPs in biological samples (primarily serum
or plasma) can be performed by several analytical methods:
ELISA, zymography; optical methods such as near-infrared (IR)
optical imaging, fluorescence, and surface plasmon resonance
spectroscopy; the use of active-site probes followed by enzymatic
digestion of the captured MMPs, and in the last two decades
liquid chromatography-mass spectroscopy (LC-MS/MS) (Lopez-
Avila et al., 2008). Gelatin zymography is widely used for the
detection of the gelatinases MMP-2 and MMP-9 at a level of
10 pg (Kleiner and Stetler-Stevenson, 1994). Casein-, collagen-,
and heparin-enhanced substrate- zymography are suitable for
the higher quantities of other members of MMPs, while reverse
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TABLE 1 | Extracellular matrix biomarkers as predictors of risk in CVD.

Biomarker Tissue Clinical context No. of subjects/type of
the study/length of
follow-up

Main findings References

MMP-1 Serum Atherosclerosis 260/cross-sectional study/– Serum levels associated with plaque
burden

Lehrke et al., 2009

MMP-2 Plasma Type 1 diabetes 337/cohort/12.3 Association with CVD Peeters et al., 2017

MMP-8 Serum CAD, MI 7928/cohort/13 Predictor of mortality Kormi et al., 2017

MMP-9 Plasma
Serum
Serum

CVD
MI, Stroke
CVD

1127/cohort/4.1
1082/cohort/18.1
922/Framingham/9.9

Predictor of cardiovascular mortality
Relevant marker of CV mortality
Association with mortality

Blakenberg et al., 2003
Hansson et al., 2011
Velagaleti et al., 2010

MMP-10 Serum PAD 187/cohort/2 Increased levels associated with
mortality

Martinez-Aguilar et al.,
2015

MMP-12 Plasma Atherosclerosis,
CAD, T2DM

1500/proximity extension
assay technology/–

Plaque development Goncalves et al., 2015

TIMP-1 Plasma CVD 389/prospective/2 Predictive of all-cause death, MI and
cardiac mortality

Cavusoglu et al., 2006

CAD, coronary artery disease; CVD, cardiovascular disease; PAD, peripheral artery disease; MI, myocardial infarction; T2DM, type 2 diabetes mellitus; –, no data.

zymography can be used for the detection of TIMPs (Tunon et al.,
2010; Hoefer et al., 2015).

Most of the aforementioned assays for MMPs rely on the
biological activity of the enzyme to degrade natural substrates,
and are so-called “bioassays.” A basic problem in utilizing
bioassays in general is that they lack specificity against different
substrates, however, they are very sensitive in their level of
detection [MMP-9 – 12.5 ng (1.0 nM), MMP-2 – 20 ng
(2 nM)]. Given there are a multitude of ways to measure
MMPs, each approach presents with its own distinct advantages
and disadvantages. For example, zymography as mentioned
is perhaps the most routine approach for the detection of
particular MMPs based on their activity relative to a relevant
substrate, however, a disadvantage of the technique lies in the
influence different anticoagulants can have as pre-analytical
determinants of plasma MMP activities (this approach should
only be used on plasma samples collected in heparin-free
collection tubes). In comparison, in situ zymography utilizes
an antibody raised to target specific MMP species, which
upon interaction is captured and immobilized in areas where
MMPs are present before subsequently being utilized for
detection and quantification processes. This method is quick,
and demonstrates good sensitivity for each subtype of MMP
as compared to zymography and collagenolysis. However, this
mode of analysis has been shown to possibly influence physical
tissue parameters of samples. Western blotting (protein blotting
or immunoblotting) is a powerful and important procedure for
the immunodetection of MMPs post-electrophoresis. Presenting
some unique advantages; in that the resultant membranes
are pliable and easy to handle, and the proteins which are
immobilized on the membrane are readily and equally accessible
to different ligands, Western blotting is utilizes antibodies in
much the same way as in situ zymography does, in being specific
to the MMP of interest but is perhaps more versatile in its
approach. However, Western Blotting does require knowledge
of the MMPs native substrate and the availability of anti-MMPs
antibodies. In this way, this approach can be expensive and
time-consuming. Owing to these respective limitations, ELISAs

have emerged as a popular approach for measuring the
abundance of MMPs in a sample, and currently ELISAs are
available for a number of MMPs species; MMP-9 and MMP-2
and their specific tissue inhibitors: TIMP-1 and TIMP-2 ELISA
kits are commercially available and have a good sensitivity
(Cheng et al., 2008).

Growth Differentiation Factor 15
Pathophysiology
Growth differentiation factor 15 is a member of the transforming
growth factor-β (TGF-β) cytokine superfamily. Also known as
macrophage inhibitory cytokine 1 (MIC-1), under physiological
conditions it is found in abundance only in placenta (Fairlie
et al., 1999). However, as an autocrine regulator of macrophage
activation, its levels increase upon macrophage activation and it
is produced under conditions of inflammation, vascular injury,
and oxidative stress from human endothelial and vascular
smooth muscle cells (Bootcov et al., 1997). Its role in vascular
biology is divergent as evidence suggests it can exert either
pro- or anti- inflammatory, angiogenetic and apoptotic effects
(Unsicker et al., 2013). In this context, GDF-15 is released by
macrophages during acute phase responses, and its level is thus
influenced by pro-inflammatory cytokines such as IL-1, TNFα,
TGF-β and CRP.

Association With Physiological Aging and Vascular
Markers
Growth differentiation factor 15 is a molecule directly linked
to inflammaging. Recently, in a study investigating the
plasma proteomic signature of aging in healthy humans,
it was demonstrated that GDF-15 levels rise with aging,
and exhibit the strongest positive association with age.
Interestingly, in the same study, GDF-15 levels were not
associated with other CV risk factors indicating that GDF-
15 may specifically represent a biomarker of aging (Tanaka
et al., 2018). In addition, it has been shown that GDF-
15 is produced by senescent endothelial cells (Ha et al.,
2019), and is a constituent of the SASP, which as previously
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described is a powerful driver of age-related dysfunction
influencing important mediators of inflammaging (Coppé
et al., 2010; Fujita et al., 2016). As various SASP circulating
components have been shown to be strongly associated with
advanced chronological age, the behavior of biomarkers
such as GDF-15 thus support the hypothesis that the
SASP could become an informative candidate biomarker of
biological age, meaning its respective biological levels could
be leveraged to predict risk for adverse health outcomes
(Schafer et al., 2020).

Relevant to the age-related vascular dysfunction, it has
been demonstrated that GDF-15 may play an important
role in the initiation and progress of atherosclerosis exerting
proinflammatory effects induced by the macrophage-produced
monokines. Indeed, evidence has shown that GDF-15 has been
identified in human carotid atherosclerotic plaques, and also co-
localized in macrophages (Wiklund et al., 2010). In addition,
early studies have indicated the association of GDF-15 with
endothelial and myocardial dysfunction and atherosclerotic
burden in the elderly after adjustment for conventional CV risk
factors (Lind et al., 2009).

Association With Cardiovascular Disease
In addition, GDF-15 has shown a strong predictive ability of
clinical outcomes across different CV risk populations. More
specifically, GDF-15 has shown to predict all-cause and CV
mortality in healthy populations free from CVD (Wiklund et al.,
2010; Eggers et al., 2013), while in women, (but not men), with
carotid atherosclerosis it has been shown to predict secondary
CVD events (Gohar et al., 2017). Importantly, GDF-15 holds an
established role as a predictor of future CV events and mortality
in populations with CHD while it is a predictor of all-cause
mortality and major CV events in patients with acute coronary
syndromes (Hagström et al., 2016), and chronic heart failure
(Kempf et al., 2007).

Measurement of Growth Differentiation Factor 15
Several biochemical approaches such as ELISA which allow
for the measurement of plasma levels of GDF-15 in cost-
effective ways which are easy to perform positions GDF-
15 as a strong potential biomarker for the aging process
and many age-related diseases (Barma et al., 2017; Conte
M. et al., 2020) though considerations should be made with
respect to the analyses obtained. According to a recently
published study by Doerstling et al. (2018), a selected group
of apparently healthy participants (n = 268), were analyzed
for circulating GDF-15 using the generalized additive models
for location scale and shape (GAMLSS) in order to develop
age-dependent centile values. Unadjusted and adjusted COX
proportional hazards models were used to assess the association
between the derived GDF-15 reference values (expressed as
centiles) and all-cause mortality. Smoothed centile curves
showed increasing GDF-15 with age in the apparently healthy
participants, while age-dependent GDF-15 centiles remained a
significant predictor of all-cause mortality in all subsequent
adjusted models.

Epigenetic Based Circulating Biomarkers
Epigenetic regulation refers to modifications influencing gene
expression independently of gene sequence. These changes
mainly include DNA methylation, histone modifications,
chromatin remodeling and non-coding RNA based gene
regulation (López-Otín et al., 2013); all of which participate in
the process of vascular aging and are closely relate to several CV
risk factors including older age, high-salt and fat diet, smoking
and sedentariness (Ding et al., 2018). Among all epigenetic
mechanisms, DNA methylation is the most extensively studied.

Micro-Ribonucleic Acids
Pathophysiology
Micro-ribonucleic acids (miRNAs) are small, highly conserved
non-coding RNA molecules involved in the regulation of gene
expression (Table 2; Ambros, 2004). More than 2000 miRNAs
have been discovered in humans that can regulate one third of
the genes in the genome (Hammond, 2015).

Association With Physiological Aging and Vascular Markers
There is growing evidence that vascular aging is associated
with a dysregulation in the expression of different microRNAs,
which are involved in crucial pathogenetic mechanisms leading
to impairment of angiogenic processes (Ungvari et al., 2013),
decreased cellular stress resilience (Csiszar et al., 2014) and
plaque formation, destabilization and rupture (Menghini et al.,
2014; Ungvari et al., 2018). Hence, it has been observed that
miRNA expression is decreased during cellular senescence, a
hallmark of vascular aging, in human tissue culture cells grown
in vitro (Brosh et al., 2008). Additionally, it has been shown
that several miRNAs have similar expression patterns in both
senescent cells and in aging human mononuclear cells and, most
importantly, that there is an age-dependent decrease in miRNA
expression in peripheral blood mononuclear cells (Hooten et al.,
2013). However, existing evidence from larger population studies
shows that the expression of particular miRNAs distinctly differs
in relation to chronological age, with certain miRNAs showing
a positive correlation with age while the majority of them
being significantly downregulated in older compared to younger
individuals (Meder et al., 2014; Ameling et al., 2015; Huan et al.,
2018). Interestingly, while age clearly contributes to expression
changes in miRNAs, gender seems to have a rather modest effect.
In fact, most miRNAs show a similar behavior over the lifespan
in males and females (Fehlmann et al., 2020).

TABLE 2 | Significance of several microRNAs (miRs) in vascular aging process
(based on a systematic review by Navickas et al., 2016).

Process Type of microRNAs

Endothelial function and angiogenesis miR-1, miR-133

Vascular smooth muscle cell differentiation miR-133, miR-145

Communication between vascular smooth muscle
and endothelial cell to stabilize plaques

miR-145

Apoptosis miR-1, miR-133, miR-499

Cardiac myocyte differentiation miR-1, miR-133, miR-145,
miR-208, miR-499

Repression of cardiac hypertrophy miR-133
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There is increasing evidence confirming that miRNAs are
highly influential in various physiological and pathological
processes which mediate vascular function. For example, it
has been demonstrated that miR-126 and miR-21 can mediate
a significantly pro-inflammatory vascular phenotype including
but not limited to endothelial cell specific inflammation, in
addition to vascular smooth muscle cell proliferation and fibrosis
(Lin et al., 2016). Similarly, certain miRNAs are recognized as
active contributors to the pathogenesis of vascular calcification
(Leopold, 2014) and the progression of atherosclerosis (Toyama
et al., 2018). Finally, miRNAs such as miR-34a/b/c, miR-21, and
miR-501-3p have been independently associated with established
vascular markers of aging including PWV (Parthenakis et al.,
2017; Toyama et al., 2018; Gatsiou et al., 2021) whereas miR-
132 and miR-1 have been shown to predict carotid artery stiffness
(Šatrauskienė et al., 2021).

Association With Cardiovascular Disease
So far, there is currently insufficient evidence to conclusively
determine the incremental value and the significance of
microRNAs as predictors of clinical outcomes related to vascular
aging. However, there are a select number of studies in humans
highlighting the significance of several distinct microRNA types
in this context. For example, microRNA-208b appears to be an
important predictor of mortality, even after adjustment for age
and gender, microRNA-133a is related to all-cause mortality,
and microRNA-133a, microRNA-499, and microRNA-208a/b are
significant diagnostic and/or prognostic markers across different
CVD progression stages (Navickas et al., 2016). Moreover,
microRNA-199a-3p is a predictor of worsening renal function in
acute heart failure patients (Bruno et al., 2016), the complex of
five microRNAs (microRNA-106a-5p, -424-5p, let-7g-5p, -144-
3p, and -660-5p) is associated with the risk of future myocardial
infarction (Bye et al., 2016), and a set of seven microRNAs
was recently identified to reliably predict CV death in patients
with CHD (Karakas et al., 2017). It is possible that the levels,
and respective activities of these particular microRNAs may be
dysregulated at different stages of the progression of coronary
artery disease (CAD).

According to Šatrauskienė et al. (2021), circulating levels of
miR-1 and miR-133 correlated with arterial markers of subclinical
atherosclerosis (cardio-ankle vascular index, augmentation index
normalized to a heart rate of 75 bpm, aortic pulse wave velocity
and carotid artery stiffness).

According to Kumar et al. (2020), circulating miR-21 (as
well as miR-133b) were dysregulated in patients with CAD,
but without MI. Both of these miRs showed association with
CAD severity from subclinical atherosclerosis to acute coronary
syndrome. Another study by Cengiz et al. (2015) showed that
miR-21 was related to subclinical atherosclerosis in carotid
arteries in hypertensive patients.

Moreover, Wang et al. (2019) demonstrated that higher
plasma levels of circulating miR-208b and miR-499 were
positively associated with the severity of CAD.

Different miRs may be dysregulated in patients without CV
risk (at the same time it could be dysregulated in other conditions
for example multiple sclerosis, oncological diseases). Considering

that CVD are multifactorial diseases, analyses of the profile
of miRNA panels may have a more substantial diagnostic or
prognostic value than any single miRNA.

Measurements of Micro-Ribonucleic Acids
Plasma and serum miRNAs are the most suitable source for
reproducible measurements in everyday clinical practice (Chen
et al., 2009; Sato et al., 2009; Wang et al., 2011). MiRNAs are
extremely stable and long-term storage or freeze-thaw cycles
do not significantly affect them (de Lucia et al., 2017). Reverse
transcription quantitative real-time polymerase chain reaction
(PCR) is the most widely sensitive method for microRNA
profiling (Pritchard et al., 2012), however, it is still unclear which
is the best strategy for data normalization (Meyer et al., 2010; Kok
et al., 2015; Marabita et al., 2016). Another issue is that cut-off
values for miRNAs have not been established yet for almost all
miRNAs, except miRNA-133a (Wang et al., 2013).

Human studies on circulating miRNAs represent an active
research field, and examples exist in the literature showing
their potential use as diagnostic biomarkers. Though several
normalization strategies are proposed (Marabita et al., 2016),
the provision of uniform procedural guidelines - more than
a universal set of normalizers, may assist in obtaining
reliable quantifications and comparisons of circulating miRNAs
(Schwarzenbach et al., 2015).

DNA Methylation
Pathophysiology
DNA methylation is characterized by the transfer of a methyl
group from S-adenyl methionine to the 5th carbon atom of
cytosine by a DNA methyltransferase (DNMT), resulting in the
formation of 5-methylcytosine (5mC). In human DNA, 5mC is
found in approximately 1.5% of genomic DNA. The majority of
DNA methylation occurs on cytosines that precede a guanine
nucleotide or CpG regions that are short, interspersed GC-
rich DNA sequences (Jeltsch and Gowher, 2019). Those CpG
sites occur with high frequency in genomic regions called CpG
islands which contain the majority of promoters located near the
transcription start site of a gene. In normal cells, CpG islands
are usually unmethylated regardless of their level of expression,
however, the presence of multiple methylated CpG sites inside
them causes stable silencing of genes, thus influencing gene
expression (Schübeler, 2015).

Association With Physiological Aging and Vascular Markers
DNA methylation changes and age seem to be inextricably linked
and a rich body of literature confirms that aging has a profound
effect on genome-wide DNA methylation levels with almost
∼2% of the CpG sites showing changes in DNA methylation
(Unnikrishnan et al., 2019). More specifically, it has been
demonstrated that the global DNA methylation levels increase
over the first few years of life and then decrease beginning in
late adulthood. However, at specific loci a significant increase
in variability of DNA methylation levels with age has been
reported; either toward hypomethylation or hypermethylation,
with a predisposition for the second (Jones et al., 2015).
Most importantly, certain changes in the methylation of a few
hundred CpG sites which are consistent across individuals, have
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been strongly associated with age to the extent that multiple
prediction models have been invented to accurately predict the
chronological age in humans, commonly termed as epigenetic
clocks (Hannum et al., 2013; Horvath, 2013). These models
can be nowadays applied across a broad spectrum of tissues
and cells although the age prediction accuracy varies depending
on the tissue type. Even so, epigenetic clocks represent certain
functional age-related epigenetic changes that are common across
individuals and are currently considered the best biomarkers for
predicting mortality in humans. In addition, epigenetic clocks
could help explain why some age-related phenotypes occur. In
a prospective study of healthy individuals, it was shown that sites
of age-associated-DNA methylation display a greater variability
across women who developed cervical cancer within 3 years
compared to those who remained healthy (Teschendorff et al.,
2012). However, it is uncertain as to how well epigenetic clocks
can predict biological age.

So far, no human data regarding the association of DNA
methylation with markers of vascular stiffness exist.

Association With Cardiovascular Disease
Evidence of differential DNA methylation patterns has been
already observed in various CVD states. For example, enhanced
DNMT1 activity has been observed in patients with severe
atherosclerotic disease and it correlates with increased levels of
inflammatory cytokines (Yu et al., 2016). Similarly, a broad trend
toward DNA hypermethylation associated with atherosclerotic
plaque progression has been observed (Valencia-Morales et al.,
2015; Gallego-Fabrega et al., 2020). In addition, increased
DNA methylation levels have been documented in elderly
patients with myocardial infarction and CHD and have shown
a positive correlation with the degree of coronary atherosclerosis
(Jiang et al., 2019).

Finally, DNA methylation changes are claimed to be an
independent predictor of mortality similarly to other risk factors,
such as hypertension and DM (Martella and Fisher, 2021). In a
10-year follow-up study of 832 participants at the age of 70 years,
a strong correlation was observed between DNA methylation
status and the incidence of CVD (Lind and Lind, 2018). In
addition, in a large meta-analysis including 13,089 individuals,
DNA methylation-based measures were found to predict all-
cause mortality over and above chronological age and traditional
risk factors (Chen et al., 2016).

Measurement of DNAMethylation
DNA methylation is predominantly measured in DNA extracted
from peripheral blood cells/whole blood cells samples. In terms of
technology, the Illumina 450K array is the current gold standard
for DNA methylation measurement, but its genomic coverage
may be limited especially concerning regions that may be crucial
to aging such as repetitive elements and long non-coding RNAs.

Telomere Length
Pathophysiology
Telomere length has steadily garnered interest as a potential
marker of measuring and quantifying vascular aging in recent
years. Telomeres are defined as non-coding, repetitive DNA
sequences (hexanucleotide TTAGGG) which are found at each

end of the chromosomes of eukaryotic cells (Blackburn, 1991),
are highly conserved and, in total, amount to an estimated
11 to 15 kilobases (Moyzis et al., 1988; Blasco, 2005, 2007).
Functionally, telomeres preserve the genomic integrity by acting
as protective caps to the genetic material and preventing attrition
(Blackburn, 2001; Blasco, 2005).

Association With Physiological Aging and Vascular
Markers
Telomere shortening is a well-known hallmark of organismal
aging, and an accelerated rate of telomere attrition is also a
common feature of age-related diseases. That said, telomere
length is currently recognized as a ‘biological clock’ of sorts,
with a significant number of studies in the literature clearly
documenting an inverse correlation with human chronological
age (Willeit et al., 2010; Müezzinler et al., 2013).

In addition, short telomere length has been significantly
associated with vascular markers of arterial stiffness and aging
such as PWV, although these findings are not consistent across
different sexes and aging groups (Benetos et al., 2001; Strazhesko
et al., 2015). Although not in all (De Meyer et al., 2009), there
are quite a few studies demonstrating a significant relationship
between carotid atherosclerosis, as a robust marker of subclinical
atherosclerosis, and short telomere length (Benetos et al., 2004;
Panayiotou et al., 2010; Toupance et al., 2017).

Association With Cardiovascular Disease
Data have shown that short telomere length not only precedes
the development of atherosclerotic CVD but may even play a
pathogenetic role in the development of the disease later in
life (Benetos et al., 2018; Huang et al., 2020). Recent meta-
analyses have demonstrated that short telomere length is also
significantly and independently associated with the risk of CHD
(Haycock et al., 2014), and the presence of stroke and DM type
2 (D’Mello et al., 2014). Importantly, there is evidence that short
telomere length is an independent predictor of future CV events
namely myocardial infarction and stroke (Willeit et al., 2010).
Furthermore, in a meta-analysis including 121,749 individuals,
short telomere length was associated with increased all-cause
mortality risk in the general population (Wang et al., 2018).

Measurement of Telomeres
Telomere length is predominantly measured in DNA extracted
from peripheral blood leukocytes. Currently, there are three
main methods for measuring telomere length in said DNA: (a)
Southern blot (Lin and Yan, 2005), (b) quantitative polymerase
chain reaction (Lin and Yan, 2005), and (c) fluorescent in situ
hybridization-based methods (Lansdorp et al., 1996; Saldanha
et al., 2003). Each method presents its own unique advantages
and disadvantages, depending on the type of analyses required,
and the scale of study being devised. Overall, the Southern
blot remains the gold standard for measuring telomere length.
Despite being the first and oldest of the three methods, it remains
the most accurate, and thus, it is utilized by those interested
in precise measurement of telomere length. However, it is the
most time-consuming method of the three, and also does not
allow for the analysis of individual chromosomes or even cells
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(Saldanha et al., 2003; Aviv et al., 2011). qPCR on the other
hand, while less accurate, does allow for single cell/chromosome
analyses owing to its sensitivity and dynamic range enabling it to
work with minute amounts of material. As such, qPCR is often
the most employed method for large population-based studies
owing to the nature of analyses available, and the efficiency in
doing such (Cawthon, 2002; Saldanha et al., 2003).

CONCLUSION

The term biological marker or biomarker refers to any substance,
structure or process that can be measured in the human
body, and influences or predicts the incidence of outcomes
or diseases (The World Health Organization definition).
Many candidate biomarkers have been put forward as viable
indicators or vascular aging based on current understanding of
vascular pathophysiology, and have been scrutinized accordingly,
however, none to date have satisfied all necessary criteria to be
translated effectively into clinical practice. While genetic and
imaging biomarkers represent some of the current practices,
identifying an appropriate circulating biomarker/s, that is/are
easily measured in blood or in urine, could be an incredibly
useful and direct means of determining different phases of the
vascular aging and in turn CV disease susceptibility/progression.
While technology and approaches allow for the quick and easy
measurement of circulating biomarkers, the acquisition and
handling of the body fluids containing them present many
limitations; such as sensitivity to temperature, rapid blood
coagulation and unstability of urine proteins that are the result
of renal filtration.

Our choice of circulating biomarkers which are understood
and recognized to see their levels change with respect to
indices of vascular aging, was derived from the long list
of most frequently mentioned in current literature data
(Supplementary Tables S1, S2), and includes those associated
with oxidative stress, inflammation, the extracellular cell matrix,
and epigenetics, amongst others. Based on the data presented
in this review, it is unlikely that a single molecule will ever be

considered adequate for most conditions. In that regard, the new
paradigm is the development of diagnostic panels of biomarkers.
In this process, we must progress our understanding of existing
biomarkers, in addition to identifying new biomarkers, and
evaluate their real clinical relevance in addition to embracing new
technologies in the fields of proteomics, genomics, metabolomics,
lipidomics and bioinformatics to achieve this.
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