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Abstract

Background: Obesity results from an imbalance between food intake and energy expenditure, which leads to an
excess of adipose tissue. The excess of adipose tissue and adipocyte dysfunction associated with obesity are linked
to the abnormal regulation of adipogenesis. The objective of this study was to analyze the expression profile of
cell-cycle- and lipid-metabolism-related genes of adipose tissue in morbid obesity.

Methods: We used a custom-made focused cDNA microarray to determine the adipose tissue mRNA expression
profile. Gene expression of subcutaneous abdominal fat samples from 15 morbidly obese women was compared
with subcutaneous fat samples from 10 nonobese control patients. The findings were validated in an independent
population of 31 obese women and 9 obese men and in an animal model of obesity (Lep®”°° mice) by real-time
RT-PCR.

Results: Microarray analysis revealed that transcription factors that regulate the first stages of adipocyte
differentiation, such as CCAAT/enhancer binding protein beta (C/EBPB) and JUN, were upregulated in the adipose
tissues of morbidly obese patients. The expression of peroxisome proliferator-activated receptor gamma (PPARy), a
transcription factor which controls lipid metabolism and the final steps of preadipocyte conversion into mature
adipocytes, was downregulated. The expression of three cyclin-dependent kinase inhibitors that regulate clonal
expansion and postmitotic growth arrest during adipocyte differentiation was also altered in obese subjects: p18
and p27 were downregulated, and p21 was upregulated. Angiopoietin-like 4 (ANGPTL4), which regulates
angiogenesis, lipid and glucose metabolism and it is know to increase dramatically in the early stages of adipocyte
differentiation, was upregulated. The expression of C/EBPB, p18, p21, JUN, and ANGPTL4 presented similar
alterations in subcutaneous adipose tissue of Lep®®°® mice.

Conclusions: Our microarray gene profiling study revealed that the expression of genes involved in adipogenesis
is profoundly altered in the subcutaneous adipose tissue of morbidly obese subjects. This expression pattern is
consistent with an immature adipocyte phenotype that could reflect the expansion of the adipose tissue during
obesity.

* Correspondence: javier.botas@hrc.es

Servicio de Bioquimica-Investigacion, Hospital Ramoén y Cajal, IRYCIS, Madrid,
Spain

Full list of author information is available at the end of the article

- © 2010 Rodriguez-Acebes et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( BiolMed Central  Commons Attribution License (httpy/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:javier.botas@hrc.es
http://creativecommons.org/licenses/by/2.0

Rodriguez-Acebes et al. BMIC Medical Genomics 2010, 3:61
http://www.biomedcentral.com/1755-8794/3/61

Background

Obesity is the most common nutritional disorder in
Western societies and is reaching epidemic proportions
[1]. Obesity results from an imbalance between food
intake and energy expenditure, which leads to an excess
of white adipose tissue. Adipocytes are highly active
endocrine cells that secrete many factors, including hor-
mones, cytokines, growth factors, acute phase reactants,
complement-related proteins, and extracellular matrix
proteins, which can have an important impact on other
organs and play a central role in the regulation of
energy balance and insulin sensitivity [2]. Consequently,
an excess of adipose tissue and adipocyte dysfunction
are associated with an increased risk of developing type
2 diabetes mellitus, hypertension, dyslipidemia, stroke,
cardiovascular disease, and a variety of cancers [3-5].
The metabolic risks associated with obesity correlate
strongly with central adiposity, and subcutaneous trun-
cal fat plays a major role in the pathophysiology of obe-
sity complications, especially insulin resistance [6-8].

Excess adipose tissue is linked to the abnormal regula-
tion of adipogenesis and adipocyte hypertrophy, and
also to cell hyperplasia in more severe forms of obesity
[9]. Adipocyte hyperplasia requires the recruitment and
proliferation of preadipocytes present in the vascular
stroma of adipose tissue [10]. Adipocyte differentiation
is a complex process regulated by a number of tran-
scriptional factors acting coordinately [11]. Most studies
investigating adipocyte differentiation have been per-
formed in murine preadipocyte cell lines and in animal
models. In these models, adipocyte differentiation begins
with a proliferative event known as clonal expansion, in
which the cells undergo one or two rounds of cell divi-
sion. They then exit the cell cycle and initiate terminal
differentiation. Two families of transcription factors are
the key regulators of this process and are responsible
for activating the adipogenic gene program: the
CCAAT/enhancer-binding proteins (C/EBPs) and per-
oxisome proliferator-activated receptors (PPARs) [12].
Clonal expansion and subsequent growth arrest are
associated with changes in the expression of cyclin-
dependent kinase inhibitors (CDKIs), which inhibit the
cyclin-CDK complexes and thus control cell-cycle pro-
gression [13,14].

Much less is known about adipocyte differentiation in
humans and its relation to development of obesity. The
adipogenic program in human seems to be similar to
that of murine cell lines [15], although in vitro human
preadipocytes do not require clonal expansion to differ-
entiate [16]. Genome-wide microarray analysis has been
previously used in adipose tissue of human obese sub-
jects to identify new candidate genes with abnormal
expression, to explore the differences between distinct
fat depots or to address the response to pharmaceutical
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or nutritional intervention [17-20]. In the present study,
we sought to investigate the relation between obesity
and adipocyte differentiation in vivo. For this purpose
we analyzed the gene expression profile of abdominal
subcutaneous adipose tissue in human morbid obesity
using a custom-made focused cDNA microarray com-
posed of 319 cDNA probes corresponding to genes
involved in cell cycle, adipocyte differentiation and lipid
metabolism [21]. We found that the expression of genes
involved in adipogenesis, such as C/EBPB, JUN, PPARy,
CDKN1A (p21), CDKN2C (p18) and ANGPTL4, is pro-
foundly altered in the subcutaneous adipose tissue of
morbidly obese subjects. This expression pattern could
reflect the expansion of the adipose tissue during
obesity.

Results

Patient characteristics

Subcutaneous fat samples from 15 morbidly obese
women undergoing bariatric surgery were compared with
subcutaneous fat samples from 10 nonobese control
women. The patient characteristics are shown in Table 1.
All the obese patients had BMI > 35 kg/m?, whereas the
control subjects had BMI < 25 kg/m?. Fasting glucose
levels were higher in morbidly obese patients, and two
had a clinical diagnosis of diabetes (fasting glucose > 125
mg/dL), whereas all the control subjects had normal fast-
ing glucose. Plasma triglyceride levels were significantly
higher in obese patients and no differences were observed
for cholesterol levels. As expected, systolic, diastolic, and
mean blood pressures were higher in the obese indivi-
duals than in the controls (Table 1).

Table 1 Clinical and biochemical characteristics of
women of the microarray study

Patients Controls P*

(n =15) (n =10)
Current smokers, n (%) 3 (20) 0 (0) 0.237
Age (years) 496 +87 470+ 174 0.770
Body mass index (Kg/m?) 481 +61 227 +34 <0001
Systolic blood pressure (mmHg)  137.7 + 151 1178 £ 9.7 0001
Diastolic blood pressure (mmHg) 823 +10.7 644 £ 110 0.002
Mean blood pressure (mmHg) 1008 + 105 822 + 103 < 0.001
Serum creatinine (mg/dL) 081 +£008 078 +0.10 0215
Aspartate aminotransferase (U/L) 211 +£88 177 £ 25 0174
Alanine aminotransferase (U/L) 279+ 172 150+ 54 0.007
Fasting glucose (mg/dL) 1060 £ 226 930 + 40 0.030
Total cholesterol (mg/dL) 2049 + 381 2069 + 368 0728
Triglycerides (mg/dL) 1500 £ 970 627 219 0001

Data are means + SD unless otherwise stated.

*P value after Mann-Whitney U test for continuous data and Chi-square test or
Fisher's exact test for categorical data as appropriate.
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Differential gene expression

Subcutaneous fat gene expression profile in each of the
obese patients was compared to a pool of nonobese con-
trol samples to minimize the influence of individual
variability in controls. Of the 319 probes on the micro-
array, 42 remain after filtering for detectable expression,
consistency of replicates and statistical significance (p <
0.001) (Figure 1A).

Of these, 9 were upregulated and 8 were downregu-
lated in obese patients compared to the controls using a
differential cut-off average log, ratio of 0.8 (Figure 1B).
Among these 17 genes, 4 were genes involved in cell-
cycle regulation. The expression of cyclin-dependent
kinase inhibitor 1A (CDKN1A/p21) and growth arrest
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and DNA-damage-inducible B (GADD45B) were upre-
gulated, whereas that of cyclin-dependent kinase inhibi-
tor 2C (CDKN2C/p18) and cyclin-dependent kinase
inhibitor 1B (CDKN1B/p27) were downregulated in
obese patients compared with control subjects (Figure
1). As regards genes involved in lipid metabolism, those
encoding fatty-acid-CoA ligase long-chain 4 (ACSL4),
leptin (LEP), and Niemann-Pick disease type C2 (NPC2)
were upregulated, whereas those encoding stearoyl-CoA
desaturase (SCD), lipoprotein lipase (LPL), and fatty-
acid-CoA ligase long-chain 1 (ACSL1) were downregu-
lated. The expression of transcription factors such as
JUN and CCAAT/enhancer binding protein B (CEBPp)
was increased, whereas that of PPARy was decreased.

A B
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NM_015675 GADD45B
NM_006227 PLTP
NM_006432 NPC2
NM_005252 V-FOS
NM_000271 NPC1
NM_001831 CLU
NM_002556 OSBP
NM_002046 GAPD
NM_003418 ZNFS
NM_001904 CTNNBL
NM_005506 SCARB2
NM_002228 V-JUN
NM_170707 LMNA
NM_139314 ANGPTLA4
NM_004458 ACSL4
NM_005194 CEBPB
NM_000230 LEPTIN
NM_000237 LPL
NM_005063 SCD
NM_002581 PCK1
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NM_018030 OSBPLIA
NM_018677 ACAS2
NM_004060 CCNG1
NM_002979 SCP2
NM_000183 HADHB
NM_012235 SCAP
NM_021213 PCTP
NM_004462 FDFT1
NM_001093 ACACB
NM_001645 APOCI
NM 017431 PRKAG3

below the cut-off log, ratio value of 0.8 or -0.8, respectively.

Figure 1 Microarray gene expression profile of subcutaneous adipose tissues. A) Hierarchical clustering analysis of the gene expression
profiles of the subcutaneous adipose tissues of 15 morbidly obese patients. The results are represented as log, ratios. Increasing red intensity
denotes increased gene expression and increasing green intensity denotes decreased gene expression according to the scale bar at the top of
the figure. The genes are grouped according to the similarity of their expression patterns using Euclidean distances and the average linkage
clustering method. B) Upregulated and downregulated gene expression in the adipose tissues of morbidly obese subjects. The bars represent
the mean gene expression + SE determined with the microarray (n = 15). Grey areas represent the genes with average gene expression over or
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FOS expression tended to be upregulated, although did
not meet the log, cut-off ratio of 0.8 (Figure 1B). Phos-
phoenolpyruvate carboxykinase 1 (PCK1), a key enzyme
of gluconeogenesis, was downregulated. Moreover, he
expression of the cytoskeleton gene lamin A/C (LMNA)
and the angiogenesis-related gene angiopoietin-like 4
(ANGPTL4) was also upregulated. Finally, the expres-
sion of the activating transcription factor 6 (ATF6),
which is involved in the unfolded protein response, was
lower than in control subjects.

To validate the microarray results quantitatively, we
selected 15 genes on the basis of their ratio ranking or
their biological interest and we analyzed their expression
by real-time RT-PCR in the same samples previously
analyzed by the microarray. In all cases, a strong corre-
spondence between the real-time RT-PCR results and
the microarray data was observed (Figures 1B and 2A).
Linear regression analysis of the log, ratios obtained by
microarray analysis and the log, of the relative mRNA
expression determined by real-time RT-PCR showed a
highly statistically significant correlation (r = 0.934, P <
0.001, n = 167) (Figure 2B).

Confirmation of the results in an independent set of
morbidly obese patients

To confirm the differential gene expression profiles pre-
viously observed, we analyzed gene expression by real-
time RT-PCR in an independent set of morbidly obese
patients. First, we chose 31 morbidly obese women, all
with a BMI > 35 kg/m?, and 10 nonobese controls (BMI
< 25 kg/m?). The patient characteristics are shown in
Table 2. We measured the mRNA levels for CDKN1A,
GADD45B, LMNA, JUN, ANGPTL4, CEBPB, CDKN2C,
PCK1, SCD, and LPL in their subcutaneous abdominal
adipose tissue as before (Figure 3).

In agreement with the previous results, the expression
of CDKN1A, GADD45B, JUN, ANGPTL4, and CEBPB
was significantly higher and that of CDKN2C, PCK1,
and LPL was significantly lower in the obese subjects
than in the control women. Moreover, the LMNA and
SCD mRNA levels showed similar trends to those
obtained by microarray analysis, but the differences
were not statistically significant (Figure 3).

PPARy encodes two protein isoforms, PPARy1l and
PPARy2 [22]. Both isoforms have identical sequences except
for an additional 30 amino acids at the N-terminus of
PPARy2. Four major transcripts are produced from the
same gene. PPARG mRNA variants 1, 3, and 4 differ
only in the 5" untranslated region and encode the PPARy1
isoform. PPARG mRNA variant 2 encodes the PPARY2 iso-
form [23]. The PPARG cDNA probe used in the microarray
does not distinguish the different PPARG mRNA isoforms,
and the primers used to validate these results by real-time
RT-PCR are located in the common transcript region of
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both PPARYy isoforms. Therefore, the data obtained pre-
viously (Figures 1 and 2) correspond to total PPARG
expression. Because both isoforms are differentially regu-
lated [23-25], we next used a specific set of primers for
PPARy1 and PPARy2. As shown in Figure 3, PPARy1
mRNA was significantly downregulated in morbidly obese
women compared with the controls, whereas PPARy2
mRNA levels did not differ between the two groups.

Next, we asked whether the changes observed in the
adipose tissues of obese women also occur in obese
men. Therefore, we studied 9 morbidly obese men and
8 nonobese men as controls, whose characteristics are
shown in Table 2. As shown in Figure 4, the expression
of CDKN1A, LMNA, ANGPTL4, and CEBPB was signif-
icantly upregulated, whereas that of CDKN2C, PCK1,
and PPARy1 was significantly downregulated in the adi-
pose tissue of male obese subjects. JUN and GADD45B
mRNA levels in male patients showed similar trends to
those observed in female patients, but the differences
were not statistically significant. Unlike obese women,
obese men had SCD mRNA expression significantly
upregulated, whereas LPL expression did not differ
between obese men and control men (Figure 4).

Gene expression analysis in a mouse model of obesity
Finally, we wanted to confirm these results in a mouse
model of obesity, such as the Lep°®°® mouse, first,
because the sample collection procedure and the homo-
geneity of experimental groups can be better controlled
in mice and, second, because some differences have
been described in the adipocyte differentiation process
between human and mouse. For this, we analyzed the
subcutaneous adipose tissue from 4 female Lep®/°P
mice and 4 female C57BL/6] control mice.

As observed in the female and male obese patients,
Cdknla, Lmna, Jun, Angptl4, and Cebpb were highly
overexpressed, whereas Cdkn2c mRNA expression was
highly downregulated in Lep°™°® mice as compared
with control mice (Figure 5). Interestingly, and in con-
trast to the obese humans, the expression of Pparyl was
significantly higher in Lep°®°" mice than in control
mice, and the expression of Ppary2 also tended to be
higher in the former. Also unlike what was found in
human subjects, Gadd45b, Pckl, and Lpl mRNA expres-
sion did not differ between obese and control
mice. Finally, Scdl mRNA levels were slightly higher in
Lepo"/Ob mice than in control mice, but the difference
was not statistically significant.

Discussion

Obesity is defined as an enlargement of adipose tissue
mass due to both hypertrophy and hyperplasia of adipo-
cytes [9]. The aim of this study was to determine the
gene expression profile of adipose tissue during obesity
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Figure 2 Validation of the mRNA expression levels determined with the microarray by quantitative real-time RT-PCR and correlation
of the data. A) Individual values for MRNA expression by quantitative real-time RT-PCR. The real-time RT-PCR data are expressed as the log,
ratio of the fold change in the expression of each target gene using the relative quantification method by comparison with the expression of
the housekeeping gene RPLPO (Pfaffl, 2001). Each circle represents the mean of two replicates of the fold change between of each the obese
sample and the pool of nonobese control samples (n = 12). B). Linear regression analysis of the results determined by microarray and real-time
RT-PCR analyses. The x-axis represents the log, ratios of the relative mRNA expression determined by real-time RT-PCR and the y-axis represents

the log, ratio obtained by microarray for each sample and gene analyzed (n = 167).
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Table 2 Clinical and biochemical characteristics of an independent set of male and female subjects

Females (n = 41) Males (n = 17)
Patients (n = 31) Controls (n = 10) Patients (n = 9) Controls (n = 8)

Current smokers, n (%) 13 (41.9) 0 (0)* 4 (44.4) 1 (12.5)%

Age (years) 364 + 103 496 + 14.9% 370+ 126 513 + 124
Body mass index (kg/m?) 495+ 73 234 + 3.1* 493+ 72 239 + 16*
Systolic blood pressure (mmHg) 1281 + 136 1211 + 117 1313+ 113 1280 + 82
Diastolic blood pressure (mmHg) 767 £ 97 66.7 = 9.7* 83.1 £ 133 620 + 3.8*
Mean blood pressure (mmHg) 84.7 + 29.7 848 + 9.7 88.1 + 348 735 + 30.1*
Serum creatinine (mg/dL) 0.79 + 0.10t 0.76 + 0.10t 1.15 £ 0.38 102 £0.13
Aspartate aminotransferase (U/L) 227 £99 171 +£20 340 + 280 19.2 £ 3.1

Alanine aminotransferase (U/L) 366 + 328 146 + 55*% 613 £ 544 16.5 + 2.8*
Fasting glucose (mg/dL) 99.5 + 295 96.7 £ 89 1206 = 89.6 983 £ 10.7
Cholesterol (mg/dL) 190.8 + 36.8 204.8 + 399 199.6 + 34.1 1950 + 193
Triglycerides (mg/dL) 118.1 £ 528 66.0 + 20.9% 1758 + 993 1041 £ 623

Data are means * SD unless otherwise stated.

*P < 0.05 between patients and controls analyzed by Mann-Whitney U test for pair analysis after significant Kruskal Wallis test.
1P < 0.05 between females and males analyzed by Mann-Whitney U test for pair analysis after significant Kruskal Wallis test.

by using a focused microarray especially designed to
study cell-cycle- and lipid-metabolism-related genes. We
analyzed subcutaneous adipose tissue, which is the lar-
gest adipose depot in the body, accounting for approxi-
mately 80% of the total body fat. The metabolic
complications associated with obesity correlate strongly
with central obesity [26]. Subcutaneous abdominal fat,
as a component of central adiposity, has a strong asso-
ciation with insulin resistance and plays an important
role in the pathophysiology of obesity [6-8].

Present microarray analysis revealed that in the subcu-
taneous adipose tissues of morbidly obese patients the
expression of genes known to be involved in adipocyte
differentiation and cell-cycle control is profoundly
altered. We found that the expression of C/EBPB and
JUN, which are transcription factors that regulate the
first stages of adipocyte differentiation, was increased in
the adipose tissue of morbidly obese patients. Conversely,
the expression of PPARYy1, a transcription factor that
controls the final steps of preadipocyte conversion into
mature adipocytes, was reduced. C/EBP is not only an
important regulator of adipocyte terminal differentiation
since, in addition, it is a critical regulator of body weight,
adiposity and tumour growth [27]. C/EBPp deletion in
Lepr®®“® mice reduces obesity, fatty liver, and diabetes
[28]. Leptin levels are also modulated by C/EBPB, and
mice lacking C/EBPp have severely reduced leptin levels
[27]. Consistently with this, we found an increase in both
C/EBPB and leptin mRNA levels in obese patients.

In the different study subsets performed in the present
work, the expression of PPARy1 in adipose tissue was
reduced in obese subjects as compared to controls,
whereas no statistically significant differences were
observed for PPARy2. In Lep°”°® mice, however, both

PPARyl and PPARYy2 were overexpressed. Although
PPARy is a well-characterized regulator of energy meta-
bolism, the relationship between PPARYy expression and
obesity is not clear. In fact, previous studies by others
have produced conflicting results regarding the associa-
tion between PPARy and obesity in both humans and
animals. Some studies have shown changes in PPARy1,
PPARy2, or total PPARy expression in subcutaneous adi-
pose tissue [29-33], whereas others have reported no
changes [30,34,35]. The different characteristics of the
populations and the different methodologies used to
determine PPARy expression in these studies could
explain these discrepancies. Addressing this issue, Sew-
ter et al. also found a decrease in PPARyl mRNA
expression in subcutaneous adipocytes from morbid
obese compared with lean subjects, and a strong inverse
correlation between BMI and PPARyl mRNA levels. In
contrast, they found a significant increase in PPARy2
mRNA expression in the morbid obese group [33]. The
reduction in PPARy1 expression in obese patients found
in our study is consistent with the increase in Leptin
mRNA expression also found herein, since it has been
described that Leptin suppress the expression of PPARy
in adipocytes [36].

Cyclin-dependent kinase inhibitors (CDKIs) play an
important role in cell cycle regulation and some of them
are especially involved in adipocyte differentiation. In
the present work we describe for the first time that the
expression of three CDKIs is altered in human adipose
tissue from morbid obese patients: CDKN1A (p21) was
increased whereas CDKN2C (p18) and CDKN1B (p27)
were decreased. Morrinson et al. were the first to demon-
strate that these CDKIs are highly regulated in 3T3-L1
preadipocytes differentiation. Thus, p18 mRNA is
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Figure 3 Gene expression in the subcutaneous adipose tissues from an independent set of morbidly obese female patients analyzed
by quantitative real-time RT-PCR. The real-time RT-PCR data were calculated using the relative quantification method by comparison with the
expression of the housekeeping gene RPLPO (Pfaffl, 2001). The boxes represent the medians and interquartile ranges. Whiskers represent the 10"
and 90™ percentiles. Comparisons of the groups were made with the Mann-Whitney test. Control n = 10; morbidly obese (MO) n = 31. *P <
0.05, **P < 0.01, and ***P < 0.001. Control n = 10.

expressed only during terminal differentiation, p27 mRNA
is highly expressed during the whole differentiation pro-
cess except in S phase, and p21 mRNA is expressed in G1
phase, decreases in S phase, and increases again at postmi-
totic growth arrest [14]. The importance of these CDKIs

has been underscored recently in knockout mice lacking
p21 and p27. Loss of one or both CDKIs, results in adipo-
cyte hyperplasia, obesity and insulin resistance [37]. These
results suggest that theses CDKIs are major regulators of
adipocyte number in vivo and can have an important role
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Figure 4 Gene expression in the subcutaneous adipose tissues from an independent set of morbidly obese male patients analyzed by
quantitative real-time RT-PCR. The real-time RT-PCR data were calculated using the relative quantification method by comparison with the
expression of the housekeeping gene RPLPO (Pfaffl, 2001). The boxes represent the medians and interquartile ranges. Whiskers represent the 10"
and 90" percentiles. Comparisons of the groups were made with the Mann-Whitney test. Control n = 8; morbidly obese (MO) n = 9. *P < 0.5,
**P < 001, and ***P < 0.001.

in the development of adipose tissue hyperplasia during
obesity. Moreover, p21 has been involved in adipocyte
hypertrophy since it protected the hypertrophied adipo-
cytes against apoptosis [38]. However, the precise contri-
bution of these CDKIs to obesity development in humans

is unclear. In this context, it is worth to note that
GADD45B, a member of the growth arrest and DNA-
damage-inducible gene family, also was overexpressed in
the adipose tissues of morbidly obese subjects. This gene
is involved in terminal myeloid differentiation and growth
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Figure 5 Gene expression assessed in Lep®®°P mice by quantitative real-time RT-PCR. The real-time RT-PCR data were calculated using
the relative quantification method by comparison with the expression of the housekeeping gene CypB (Pfaffl, 2001). The boxes represent the
medians and interquartile ranges. Comparisons of the groups were made with the Mann-Whitney test. Control n = 4; Lep®®°P n = 4. *P < 0.01.

suppression [39], but its relationship to adipocyte differen-
tiation has not been established. It appears, thus, that the
expression of CDKIs and GADD45B, all of which regulate
cell cycle and differentiation, is altered in human adipose
tissue from morbid obese patients, which may reflect the

relative abundance of a characteristic adipocyte subtype in
fat depots from obese.

Most of our knowledge of adipogenesis is based on stu-
dies in murine-derived embryonic 3T3-L1 cells and
much less in known about adipocyte differentiation in
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humans [40,41]. It has been established that most of the
adipogenic program is similar in murine and human
cells, since the expression pattern of the adipocyte differ-
entiation-specific transcription factors C/EBPj3, C/EBPS,
PPARy, and C/EBPa was similar in both species [15,42].
However, in contrast to murine preadipocytes, human
preadipocytes do not require clonal expansion to enter
the differentiation process in vitro, and they differentiate
directly in response to stimulus [16]. It has been sug-
gested that this phenomenon could reflect that adipocyte
precursor cells from human adipose tissue have already
undergone critical cell divisions and may be in a late
stage of adipocyte differentiation [16]. In agreement with
this hypothesis, it has recently been established that in
humans the number of adipocytes is set during childhood
and adolescence and it stays constant in adulthood [43].
However, the gene expression pattern found herein could
reflect an increase in undifferentiated adipocytes as a
consequence of the increased renewal rate in obese indi-
viduals. Consistently with this, Spalding et al demon-
strated that obese individuals generate significantly more
adipocytes per year than lean individuals [43]. Based on
the relationship between adipocyte size and total body
fat, they also developed a method to quantitatively esti-
mate adipose morphology [44]. They describe that sub-
jects can be categorized as having different degrees of
either adipose hypertrophy or hyperplasia, and demon-
strate that low generation rates of adipocytes are asso-
ciated with adipose tissue hypertrophy whereas high
generation rates are associated with adipose hyperplasia
[44]. In morbid obese individuals, such as those studied
herein (BMI > 35 kg/m?), coexist both hypertrophy and
hyperplasia, however in these severe forms of obesity
hyperplasia became most predominant [9,45]. It is impor-
tant also to keep in mind that although the principal cel-
lular component of the adipose tissue are the adipocytes
other cellular components are also present, such as
smooth muscle cells, endothelial cells, fibroblasts, and
blood cells [46-48] and, thus, a contribution of these cells
to this expression pattern cannot be ruled out.

Strong similarities in the expression pattern of adipo-
genic genes such as Jun, C/EBPB, p21, and p18 were
observed in subcutaneous adipose tissue from obese
Lep®®°® mice as compared to human obese subjects.
However, a major difference between both species
occurs in PPARy1 expression. Given that PPARy1 is one
of the master regulators of the adipocyte differentiation,
differences in this gene may be involved in the differ-
ences observed between human and mouse adipogenesis
and could be characteristic of adipocyte precursors of
hypertrophic and hyperplasic adipose tissue of each spe-
cies. The possibility exists, however, that the increase in
PPARy1 in Lep®™°P mice is just a consequence of the
absence of leptin in this mouse model, given the role of
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this hormone in the regulation of PPARy expression in
adipocytes [36].

A notable finding of this work is the up regulation of
ANGPTL4 expression in the adipose tissue from obese
subjects, which was also found in obese mouse. This
protein is a member of the angiopoietin-like family of
proteins, which regulate angiogenesis [49] and may have
a role in the stimulation of endothelial cell growth
necessary for adipose tissue expansion [50]. ANGPTL4
is predominately expressed in adipose tissue and liver
and its mRNA expression increases dramatically in the
early stages of adipocyte differentiation and in the adi-
pose tissue of diabetic (Lepr?® ") and obese (Lep®®°P)
mice [51]. More recently, ANGPTL4 has been shown to
be involved in the regulation of lipid and glucose meta-
bolism, independently of its angiogenic effects. Thus,
Angptl4-deficient mice are hypolipidemic and have
increased lipoprotein lipase activity [52], whereas
Angptl4 adenovirus-mediated overexpression potently
increases plasma triglycerides, decreases blood glucose,
and improves glucose tolerance [53,54]. Hence, our
results indicate that ANGPTL4 may be relevant to
human obesity and, together with previous findings,
point to this protein as a potential therapeutic target for
obesity and obesity-related complications [54,55].

Although not consistently found in every group of
obese patients of this study, the expression of LMNA is
also upregulated in obesity. LMNA encodes the nuclear
structural proteins lamin A and C produced by alterna-
tive splicing, which are members of the intermediate
filament family of the nuclear lamina. Mutations in
LMNA have been associated with a number of disor-
ders, including familial partial lipodystrophy (OMIM
151660). Sequence variations in LMNA are also asso-
ciated with greater susceptibility to the development of
metabolic syndrome, dyslipidemia, insulin resistance,
diabetes, and obesity [56,57]. The significance of its ele-
vated expression in obesity remains to be established.

PCK1 gene was found to be significantly downregulated
in human obese adipose tissue, whereas its expression
was normal in obese mice. PCK1 encodes the cytosolic
isozyme of phosphoenolpyruvate carboxykinase, which is
the main enzyme controlling gluconeogenesis in the liver
and kidney [58]. However, the major role of PCKI1 in
white adipose tissue seems to be glyceroneogenesis for
reesterification of free fatty acids [59,60]. The reduction
of PCK1 expression in obesity could be the consequence
of the excess of triglyceride storage and the adaptation of
adipocytes to get rid of some of these triglycerides
throught lipolysis, perhaps mediated by glucocorticoids,
which downregulate PCK1 in adipose tissue [61].

We have found sex differences in the expression of
two genes involved in fatty acid utilization, such as LPL
and SCD. While LPL was downregulated in female
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obese patients there were no differences in male obese
patients. Sex differences in mRNA LPL expression and
activity have been previously reported [62]. The differ-
ences between sexes were more pronounced in SCD:
while SCD expression in obese female was lower than in
control females, in obese males it was clearly upregu-
lated. SCD expression is regulated by many dietary, hor-
monal and environmental factors that could explain the
sex differences observed in our study [63]. Though, we
cannot exclude the possibility that some of the sex dif-
ferences were influenced by differences in the glucidic
and triglyceride metabolism (Table 2).

We also found differences in other genes involved in
lipid metabolism such as NPC2, ACSL1 and ACSL4,
although we have not confirmed these results in an inde-
pendent population of obese patients. Acyl-CoA synthe-
tase (ACS) enzymes are essential for de novo lipid
synthesis and fatty acid catabolism. This complex family
of proteins catalyzes the activation of fatty acids neces-
sary for their metabolism. Among these, the long-chain
acyl-CoA synthetases (ACSL) activate fatty acids with
chain lengths of 12 to 20 carbon atoms [64]. ACSLI is
the major form in adipocytes and it has been proposed
that it mediates free fatty acid reesterification, efflux and
lipid-mediated signal transduction [65]. ACSL4 is also
expressed in adipocytes and it has been described that
associates with lipid droplets after the lipolytic stimula-
tion of 3T3-L1 adipocytes in vitro [66]. Interestingly,
these two isoforms of ACLS presented a different pattern
of expression in obese patients: ACLS1 was downregu-
lated whereas ACLS4 was found to be overexpressed.

NPC2 is a small secreted glycoprotein that binds cho-
lesterol and plays an important role in intracellular cho-
lesterol trafficking [67]. The upregulation of NPC2 in
obese subjects as found herein may relate with the novel
role of NPC2 in adipocyte differentiation and the main-
tenance of the metabolic state of mature adipocytes
[68]. These novel roles of NPC2 open a new perspective
in the study of the adipocyte dysfunction associated
with obesity that needs to be studied in more detail.

Conclusions

Our study revealed that the subcutaneous adipose tissue
of morbidly obese subjects exhibits a gene expression
pattern consistent with an immature adipocyte pheno-
type, with augmented mRNA levels of genes involved in
the early stages of adipocyte differentiation and reduced
mRNA levels of genes involved in the final stages of dif-
ferentiation. These findings may help to extend our
understanding of the mechanisms regulating the hyper-
trophy and hyperplasia that occurs in obesity, and their
relationship with increased adipose mass. Finally, the
upregulation of ANGPTL4, found consistently in the
adipose tissue of morbidly obese women and men, and
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of Lep®°® mice, supports the notion that this adipokine

plays a crucial role in lipid and glucose metabolism in
obesity. Further investigation is required to determine
the role of ANGPTL4 in obesity and obesity-related
metabolic abnormalities, such as diabetes.

Methods

Subjects

The subjects were recruited from morbidly obese patients
undergoing bariatric surgery at the Hospital Ramén y Cajal
from Madrid (Spain). Extensive clinical and laboratory data
were collected on each patient after his/her informed con-
sent had been given. Patients were excluded if they pre-
sented with severe renal or hepatic failure, recent acute
cardiac failure or coronary heart disease, any known malig-
nancy, or any other condition that made them ineligible for
bariatric surgery. Subcutaneous fat specimens were
obtained from each subject at the time of the laparoscopic
gastric bypass surgery from the peri-umbilical area. All
patients were operated on by the same surgeon (R.P.) and
the procedure was standardized as follows. First, the skin
was cleaned and covered with special surgical drapes. After
abdominal incision with cold scalpel, about 1-2 cm® (corre-
sponding approximately to 1-2 g) of adipose tissue were
removed, washed in physiologic serum, immediately snap
frozen, and stored at -80°C until analysis. Control samples
of subcutaneous fat were obtained from nonobese patients
(BMI < 25 kg/m?) undergoing inguinal hernia repair sur-
gery at the Hospital Ramén y Cajal. The study protocol
was in compliance with the Helsinki Declaration and
approved by the Ethics Committee for Clinical Investiga-
tion of the Hospital Ramoén y Cajal (reference number:
065/03). Written informed consent was obtained.

Mice

Eight-week-old female B6.V-Lepob mice and C57BL/6]
control mice were obtained from Harlan Interfauna
Ibérica (Barcelona, Spain). After two weeks of adapta-
tion, the animals were killed, and their subcutaneous
adipose tissue from the abdominal region was removed,
immediately snap frozen, and stored at -80°C until the
RNA was extracted. All experimental procedures were
performed in accordance with the guidelines for the
care and use of laboratory animals of the Animal Ethics
Committee of the Hospital Ramén y Cajal.

Microarrays

Human cDNA expression microarrays containing cDNA
probes for 319 genes were produced using a SpotArray
72 spotter (PerkinElmer, Massachusetts) with TeleChem
Stealth SMP3 split pins. The full-length cDNA probes
were selected from the I.M.A.G.E. Consortium database
and obtained from Open Biosystems. The insert cDNAs
of all clones were amplified using universal primers
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(M13 universal forward [-21] 5-TGTAAAACGACGGC-
CAGT-3" and M13/pUC reverse 5-CAGGAAACAGC-
TATGACC-3’) and the quality of the PCR products was
routinely checked by agarose gel electrophoresis with
ethidium bromide staining (E-Gel® 96, Invitrogen, Cali-
fornia) and sequencing before spotting. Each PCR sam-
ple was purified with the MinElute 96 UF PCR
Purification Kit (Qiagen, Valencia, California), resus-
pended in Pronto!™ Universal Slide Spotting Solution
(Corning, NY), and spotted three times onto two differ-
ent locations on Superchip I aminopropylsilane glass
slides (PerkinElmer). We checked the quality of the
spotting by staining one microarray with SYBR Green
and one with M13-Cy5 universal primer for each batch
of microarrays produced. The Lucidea Universal Score-
Card probes (Amersham-GE, Buckinghamshire, UK)
were spotted three times at the beginning and end of
each subarray and were used to validate the quality
of the hybridizations. The microarray contained a total
of 2600 spots distributed in four subarrays.

RNA extraction

Total RNA from the subcutaneous adipose tissues was
extracted using TriReagent (Sigma, St. Louis, MO,
USA), according to the manufacturer’s protocol. Poly
(A)" RNA was purified using a GenElute mRNA Miniprep
Kit (Sigma), according to the manufacturer’s protocol.

mRNA labeling and microarray analysis

The mRNA was labeled using the MICROMAX™ ASAP
RNA Labeling Kit (PerkinElmer), according to the man-
ufacturer’s instructions. Typically, 500 ng of mRNA was
labeled with cyanine 3 or cyanine 5 chemical-labeling
reagents at 85°C for 15 min in a thermal cycler (M]
Research). Lucidea™ Universal ScoreCard™ (Amersham-
GE) mRNA spike mixes were added to the labeling reac-
tions of both the control and test samples. The com-
bined cyanine 3 and cyanine 5 reactions were purified
using CyScribe™ GFX™ purification columns (Amer-
sham-GE) and dried in a vacuum centrifuge. The mix-
ture was resuspended in 20 pL of hybridization buffer
containing 0.4 pg/pL poly(dA) (Sigma) and 0.08 pg/pL
human Cot-1 DNA® (Invitrogen) and pipetted onto the
microarrays. The arrays were incubated at 55°C for 16 h
and then washed with Arraylt® Microarray Wash Buffers
A, B, and C. The microarrays were scanned using the
PerkinElmer ScanArray Express instrument with the
adaptive circle method. The background-corrected data
were normalized using the Gene Expression Pattern
Analysis Suite v3.1 (GEPAS, http://www.gepas.org) and
the global loess method [69]. Each of the six replicate
spots were filtered for inconsistent replicates, merged,
and log, transformed with the GEPAS Preprocessing
tool. The resulting data were clustered and visualized
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using the Mev v3.1 software. For considering a gene as
differentially expressed we used a differential cut-off
average log, ratio value of 0.8. Pathway analysis was per-
formed using the Ingenuity Pathway Analysis software
(Ingenuity Systems, Redwood City, California, USA).

Real-time quantitative reverse transcription (RT)-PCR

To validate microarray data, 50 ng of poly(A)” RNA was
reverse transcribed using M-MLV reverse transcriptase
enzyme (Promega, Wisconsin, USA) in the presence of
the ribonuclease inhibitor RNAsin (2 U/uL) (Promega).
Real-time PCR amplification was performed with the
SYBR Premix Ex Taq kit (Takara, Kyoto, Japan) on a
LightCycler 2 (Roche Applied Science, Indianapolis,
USA). The initial denaturation step was at 95°C for 10 s,
followed by 40 cycles of amplification at 95°C for 3 s
and 60°C for 40 s. To confirm the results in an indepen-
dent set of obese patients and in mice, 2 pg of total
RNA was reverse transcribed as described above and
real-time PCR amplification was performed on a Light-
Cycler 480 using the SYBR Green I Master kit (Roche
Applied Science). The initial denaturation step was at
95°C for 5 min, followed by 45 cycles of amplification at
95°C for 10 s, 60°C for 10 s, and 72°C for 10 s.

The melting curves were evaluated for each gene and
the PCR reaction products were separated on a 2% agar-
ose gel and stained with ethidium bromide to confirm
the presence of a single product. The efficiency of the
reaction was evaluated by amplifying serial dilutions of
c¢DNA (1:10, 1:100, 1:1000, and 1:10,000). We ensured
that the relationship between the threshold cycle (Ct)
and the log(RNA) was linear (-3.6 < slope < 3.2). All
analyses were performed in triplicate, and the relative
amounts of target genes were normalized against the
expression of the housekeeping gene RPLPO (encoding
ribosomal protein large P0O) for human samples and
against CypB (encoding cyclophilin B) for mouse sam-
ples. The primers used in the real-time PCRs are shown
inAdditional file 1: Table S1.

Statistical methods
The results are expressed as means + SD unless other-
wise stated. Clinical phenotypes were analyzed using
SPSS software version 11.0 (SPSS Inc., Chicago, Illinois).
The Kolmogorov-Smirnov statistical test was used for
continuous variables. Logarithmic or square root trans-
formations were applied as needed to ensure the normal
distributions of the variables. The groups were com-
pared at baseline using an unpaired ¢ test or the Mann-
Whitney U test, as appropriate for continuous variables,
and the ? test or Fisher’s exact test for discontinuous
variables.

For the statistical significance of the microarray gene
expression t-test analysis was performed with TIGR
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MultiExperiment Viewer (Mev v3.1) software [70] and
statistical significance was set-up at the p < 0.01 level.

Statistical analysis of real time RT-PCR gene expres-
sion was performed using Mann-Whitney test with Sig-
maStat software (SPSS Inc.).

Additional material

Additional file 1: Table S1. Real-time PCR primers Description:
Sequence of PCR primers used in quantitative real-time PCR.
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