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In this decade, substantial progress in the fields of developmental biology

and stem cell biology has ushered in a new era for three-dimensional

organ regenerative therapy. The emergence of novel three-dimensional cell

manipulation technologies enables the effective mimicking of embryonic

organ germ formation using the fate-determined organ-inductive potential

of epithelial and mesenchymal stem cells. This advance shows great poten-

tial for the regeneration of functional organs with substitution of complete

original function in situ. Organoids generated from multipotent stem cells

or tissue stem cells via establishment of an organ-forming field can only par-

tially recover original organ function owing to the size limitation; they are

considered ‘mini-organs’. Nevertheless, they hold great promise to realize

regenerative medicine. In particular, regeneration of a functional salivary

gland and an integumentary organ system by orthotopic and heterotopic

implantation of organoids clearly points to the future direction of organ

regeneration research. In this review, we describe multiple strategies and

recent progress in regenerating functional three-dimensional organs, focus-

ing on ectodermal organs, and discuss their potential and future directions

to achieve organ replacement therapy as a next-generation regenerative

medicine.
1. Introduction
Numerous advances in various research fields, including developmental

biology, stem cell biology and tissue engineering technology, have facilitated

regenerative medicine [1–3]. The first generation of regenerative medicine is

stem cell transplantation therapy using tissue-derived stem cells, embryonic

stem (ES) cells or induced pluripotent stem (iPS) cells [4–7]. For example,

bone marrow transplantation has already become a common treatment for leu-

kaemia and hypoplastic anaemia. In addition, both ES cells and iPS cells are

entering clinical trials for many diseases and injuries, including leukaemia, Par-

kinson’s disease and Alzheimer’s disease, cardiac infarction, diabetes, liver

disease and various other conditions [8–11]. Tissue regeneration is positioned

as the second generation of regenerative medicine, and several products, includ-

ing skin and cartilage, are already on the market. Furthermore, the world’s first

tissue regeneration therapy using iPS cells derived from either the patient or an

anonymous donor is being investigated in a clinical trial to cure age-related

macular degeneration [12,13].

The next generation of regenerative therapy targets entire organs composed

of multiple cell types with a complex three-dimensional structure [14]. In this

decade, advances in the field of stem cell biology and developmental biology

have provided new opportunities to regenerate functional organs. During

embryonic development, organs arise from the respective organ germs,
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Figure 1. Schematic illustration of embryonic organogenesis and approaches
for organ regeneration. (a) Schematic diagram of organogenesis. A functional
organ is developed through the establishment of organ-forming fields, for-
mation of organ germs by reciprocal epithelial and mesenchymal
interactions, and morphogenesis. (b) Scheme of the fully functional regener-
ation of an ectodermal organ by mimicking organ germ formation using
embryonic fate-determined epithelial and mesenchymal stem cells with
organ-inductive potential. (c) Schematic illustration of organoid generation
by recapitulating the establishment of organ-forming fields in cell masses
generated from pluripotent stem cells.
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which are induced by reciprocal interactions between fate-

determined epithelial and mesenchymal stem cells, according

to individual organ-forming fields (figure 1a) [15]. Functional

organ regeneration was first achieved in 2007 by developing a

novel cell manipulation method to generate a bioengineered

organ germ with organ-inductive potential epithelial and

mesenchymal stem cells isolated from an embryonic organ

germ (figure 1b) [16]. This pioneering study and subsequent

studies reported the fully functional regeneration of multiple

types of ectodermal organs, providing evidence for the con-

cept of functional organ regeneration [17–21].

The next paradigm shift came in 2008 with the discovery

of organoids, which were generated by inducing an organ-

forming field in a cell aggregate arising from pluripotent

stem cells such as ES cells and iPS cells, as well as tissue

stem cells (figure 1c) [22]. Virtually all types of organoids

can be generated, including those of the central nervous

system (i.e. cerebral cortex, pituitary gland, optic cup and

inner ear) [23–29]. Although the emergence of the organoid

represents a technological breakthrough now serving as an

essential tool in many basic biology and clinical applications,

organoids still can only partially reproduce the structure and

function of the original organs. Therefore, the majority of

single organoids generated to date could substitute for lim-

ited and/or partial functions of a complete organ, and are

thus currently considered as mini-organs. Recently, salivary

gland organoids were successfully developed that demon-

strate fully functional organ regeneration with orthotopic

transplantation [30]. Because the principles of ectodermal

organ development are similar to those of other organs, it

is important to gain a deeper understanding of ectodermal

organ regeneration to achieve the complete functional regen-

eration of other organs (figure 1a). Furthermore, regeneration

of an integumentary organ system (IOS) using an in vivo
organoid method clearly demonstrated the possibility for

organ system regeneration [31].

In this review, we describe recent progress in organ regen-

eration using various stem cell populations and strategies

based on developmental biology and stem cell biology and

discuss the future directions for organ replacement therapy

as the next generation of organ regenerative medicine.
2. Development of a three-dimensional cell
manipulation method, the organ germ
method, using embryonic cells

Researchers have attempted to regenerate organs for several

decades by combining functional cells, scaffold materials

and physiologically active substances using tissue engineer-

ing techniques [32,33]. Although these previous studies

made certain contributions towards organ regeneration, con-

siderable concerns exist regarding the findings from these

studies, such as the low efficiency of organ induction and

the uncontrollable direction and size of the regenerated

organ. With advances in stem cell and developmental

biology, the reproduction of organogenesis in the fetal stage

has progressed over the past 30 years. The developmental

process of organ regeneration starts with the induction of

the organ germ by epithelial–mesenchymal interactions in

the organ field that form after the establishment of the

body plan during early development. Cell manipulation
techniques designed to regenerate organ germs have been

developed over the years, but complete reproduction of the

development and regeneration of functional organs has not

been achieved [3,34].

We developed a bioengineering method, designated the

organ germ method, to recapitulate the induction of the

organ germ through epithelial and mesenchymal interactions

in early developmental stages [16]. We compartmentalized

epithelial and mesenchymal cells isolated from the mouse

embryo at a high cell density in a type I collagen gel to

achieve a precise replication of the processes occurring

during organogenesis. Using this novel method, we have

observed the functional regeneration of multiple types of

ectodermal organs, such as teeth, hair follicles and secretory

glands [17–21].
3. Fully functional bioengineered teeth
3.1. Tooth development
In tooth germ development, the dental lamina initially thick-

ens (lamina stage) (figure 2a). The tooth germ develops and

interacts with the oral mucosal epithelium and mesenchyme.

Subsequently, epithelial thickening at the future location of

the tooth and subsequent epithelial budding (bud stage) to

the underlying neural crest-derived mesenchyme are induced

by epithelial signals on embryonic days (EDs) 11–13 in mice.

At EDs 13–15, the enamel knot acts as a signalling centre

responsible for the formation and maintenance of the dental

papilla. The primary enamel knots are formed at the tooth

bud and appear during the transition from the bud to the

cap stage. At EDs 17–19, the epithelial and mesenchymal

cells in the tooth germ terminally differentiate [35–37]. The

mesenchyme also differentiates into dental pulp and
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Figure 2. Fully functional bioengineered teeth regeneration. (a) Scheme of tooth development. (b) Time course analysis of tooth eruption from transplanted bio-
engineered tooth germ (i) and regenerated tooth using GFP-transgenic mouse-derived cells (ii). Scale bar: 500 mm. (c) Histological analysis of regenerated tooth.
Note that the bioengineered tooth also formed a correct tooth structure, which comprised enamel, dentin, dental pulp and periodontal tissue. Scale bar: 200 mm.
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periodontal tissues, which will become the cementum, peri-

odontal ligament and alveolar bone. Tooth root formation

is initiated after tooth crown formation, and the mature

teeth erupt into the oral cavity.

3.2. Fully functional tooth regeneration
Tooth loss due to dental caries, periodontal disease or trauma

causes fundamental problems with proper oral function and

are associated with oral and general health issues [38]. Con-

ventional dental treatments designed to restore occlusal

functions after tooth loss are based on replacing teeth with

artificial materials, such as fixed or removable dentures and

bridge work. Although these artificial therapies are widely

applied to treat dental disorders, the recovery of an occlusion

is necessary because the teeth coordinate with the occlusal

force and orthodontic force of the surrounding muscles,

and integrity of the stomatognathic system is retained by

establishing the occlusal system during jaw growth in the

postnatal period [39–42]. Recent advances in tissue regener-

ation have enabled researchers to enhance the functions of

biological teeth by facilitating underlying tooth development

through bone remodelling and aiding the ability to perceive

noxious stimuli [43].

As shown in our previous study, a bioengineered tooth

germ develops into the correct tooth structure and success-

fully erupts into the oral cavity after transplantation into

the region of the lost tooth (figure 2b) [17]. In the case of a

transplanted bioengineered mature tooth unit comprising a

mature tooth, periodontal ligament and alveolar bone can

be engrafted into the tooth loss region through bone inte-

gration in the recipient (figure 2c) [18]. The bioengineered

tooth maintains interactions with the periodontal ligament

and alveolar bone originating from the bioengineered tooth

unit through successful bone integration. The hardness of
the enamel and dentin of the bioengineered tooth com-

ponents were within the normal range when analysed

using the Knoop hardness test [17,18]. As a future direction,

control of the tooth form is considered to be important. Teeth

are generated by guiding the mesenchyme according to the

body plan during the development process. Regarding

tooth morphological control, the tooth width is controlled

by the area of contacts between epithelial and mesenchymal

cell layers, and the number of cusps is controlled by the

expression of Shh in the inner enamel epithelium [44]. This

bioengineered tooth technology contributes to the realization

of whole-tooth replacement regenerative therapy as a

next-generation therapy.
4. Fully functional bioengineered hair
follicle

4.1. Hair follicle development
Mice have four different types of hair on their backs, classi-

fied as guard, awl, auchene and zigzag hairs. Hair follicle

development in the mouse back skin begins with the fate

determination of mesenchymal cells at approximately ED

10.5, resulting in the formation of a dermal condensate. Reci-

procal interactions between the dermal condensate and

overlying epidermis lead to the induction of the hair placode

(figure 3a). Once the hair placode is established, hair follicle

development occurs in three waves, starting with the devel-

opment of the guard hair at ED 14.5, followed by awl and

auchene hair at ED 17 and zigzag hair at birth [45,46]. The

lower end of the hair peg epithelium that wraps around a

condensed dermal cell forms the germ of the hair matrix.

The condensed dermal cell forms a dermal papilla, which is

considered a niche for hair follicle mesenchymal stem cells,
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Figure 3. Fully functional bioengineered hair follicle regeneration. (a) Scheme of hair follicle development. (b) Representative bioengineered organ germ generated
from bulge epithelial cells (green) and dermal papilla sells (red). (c) Macro-morphological observations of the bioengineered hairs (arrowhead). (d ) Analysis of the
piloerection capability by acetylcholine (ACh) administration. White arrowhead, before ACh injection; black arrowhead, after ACh injection. Scale bar: 1 mm.
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and induces the differentiation of the hair matrix and forms

the inner root sheath of the hair follicle and the hair shaft.

The bulge region also forms an epithelium stem cell niche

and simultaneously connect with nerve fibres and the arrec-

tor pili muscle (figure 3a) [47,48].
4.2. Fully functional hair follicle regeneration
The hair organ has the biological functions of thermoregula-

tion, physical insulation from UV radiation, waterproofing,

tactile sensation, protection from noxious stimuli, camou-

flage and social communication [49,50]. Hair loss

disorders, such as congenital hair follicle dysplasia and

androgenetic alopecia, are psychologically distressing

and have negative effects on the quality of life of both

sexes [51]. Current pharmacological treatments are insuffi-

cient in achieving ideal control of hair loss, such as

congenital hair follicle dysplasia or alopecia areata [51].

The demand for the development of bioengineering tech-

nologies that enable regenerative therapy for hair loss

has increased.

In the hair cycle, hair follicle germs are reconstituted

periodically, and epithelial and mesenchymal stem cells

capable of regenerating hair follicles are present, even in

adults. Therefore, this organ is the only organ for which

reconstituting germs can be regenerated from adult-derived

cells. Autologous hair follicle transplantation in which a

single hair follicle is isolated from the healthy scalp region

and transplanted into patients with male pattern alopecia

has been reported, and the transplanted hair follicles retain

their characteristics [52]. According to many researchers,

the replacement of dermal cells in skin using mesenchymal

cells, which are collected from adult hair bulbs in a hair

follicle, induces new hair follicle formation [53,54]. How-

ever, the regeneration of hair follicles that function in

cooperation with the surrounding tissue is difficult. Our

group reconstituted a bioengineered hair follicle germ,

which contains mesenchymal stem cells, using bulge-

derived epithelial cells and dermal papilla cells isolated

not only from embryos, but also from adult mice
(figure 3b) [19]. After orthotopic transplantation, the bioen-

gineered hair follicle germs develop into mature hair

follicles with proper structures and produce hair through-

out their life (figure 3c). Moreover, the regenerated hair

follicles connected efficiently with the surrounding

host tissue and showed pilomotor reflex in response to

acetylcholine administration (figure 3d ). This study

demonstrated the potential of tissue stem cells isolated

from adult hair follicles to develop into human hair

follicles in the field of regenerative medicine.
5. Fully functional bioengineered secretory
glands

5.1. Salivary and lacrimal gland development
Secretory glands, including salivary glands and lacrimal

glands, are vital for the protection and the maintenance of

physiological functions in the microenvironment of the oral

and ocular surfaces. Secretory glands develop via reciprocal

epithelial–mesenchymal interactions [55,56]. Salivary

glands are classified into three major types: the parotid

gland (PG), submandibular gland (SMG) and sublingual

gland (SLG). The SMG develops through the invagination

of the epithelium into the mesenchymal region on ED 11.

The invaginated epithelial tissue proliferates to form an

epithelial stalk (figure 4a) [57,58]. A terminal bud forms a

branched structure by developing a cleft and by repeating

the elongation and branching process from EDs 12.5–14.5

[59–61]. The terminal bulbs differentiate into acinar cells

and mature to synthesize secretary proteins on ED 15 [62].

By contrast, the lacrimal gland also develops through the

invagination of the epithelium into a mesenchymal sac at a

temporal region of the eye on ED 12.5. The rounded epithelial

buds condense into the superior conjunctival fornix, which

then invaginate into the surrounding mesenchyme [63]. The

lacrimal gland germ forms branches via stalk elongation

and cleft formation morphogenesis. The fundamental

structure of the lacrimal gland is achieved by ED 19 [64].



ED11
prebud

organ germ parotid gland duct

bioengineered salivary
gland

na
tu

ra
l

bi
o

w
at

er

ci
tr

ic
 a

ci
d

sa
liv

a 
fl

ow
(m

l m
g–1

 o
f 

sa
liv

al
y 

gl
an

d
w

ei
gh

t, 
5

m
in

)

am
ou

nt
 o

f 
sa

liv
a 

(m
g) p = 0.034

connectionnylon
thread

ED12
early initial

bud

ED12.5
late initial

bud

ED14–15
canalicular

stage

adult
salivary
gland

ED13
pseudo-
glanduar

0.8

0.6

0.4

0.2

0

10.0

15.0

5.0

0

(b)

(a)

(c) (d) (e) (f)

Figure 4. Fully functional bioengineered salivary gland regeneration from bioengineered organ germ and organoid. (a) Schematic of salivary gland development.
(b) Schematic of the transplantation of the bioengineered SMG. The bioengineered germ was transplanted with a nylon thread to promote the connection to the
duct at the location of the PG. Scale bar: 200 mm. (c) Photograph of a bioengineered SMG on day 30 after transplantation in a mouse with salivary gland defects.
(d ) Assessment of the amount of saliva secreted by normal mice (light bars) and bioengineered SMG-engrafted mice (dark bars) after gustatory stimulation with
citrate. The data are presented as means+ s.e.m. Scale bar: 200 mm. (e) Photograph of GFP-labelled salivary gland-derived from mouse ES cells on day 30 after
transplantation in a mouse with salivary gland defects. Scale bar: 200 mm. ( f ) Assessment of the amount of saliva secreted in combined salivary gland organoid-
engrafted mice after stimulation by water (right bars) or citric acid (left bars). The data are presented as the means+ s.e.m.
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5.2. Salivary and lachrymal gland regeneration
The dry mouth and dry eye are common symptoms. Salivary

gland diseases include salivary tumours, obstructive dis-

orders, infections and the symptoms of systemic diseases,

such as Sjögren’s syndrome, lymphoma and metabolic dis-

eases [65–67]. These conditions also affect the lacrimal

glands, resulting in dry eye [68–71]. Dysfunction and dis-

orders associated with these exocrine glands result in a

general reduction in the quality of life. However, current

therapies for diseases characterized by dry mouth and eye

only treat the symptoms [72,73]. These therapies only exert

temporary effects and do not reverse exocrine gland

dysfunction.

Our group aimed to develop better treatments by reconsti-

tuting a bioengineered salivary gland germ from epithelial and

mesenchymal cells derived from ED 13.5–14.5 mouse embryo-

nic salivary gland germs using our developed organ germ

method (figure 4b) [20]. After orthotopical transplantation

following the removal of native salivary glands, the bioengi-

neered salivary gland germ developed into a mature salivary

gland, and a proper connection was formed between the

host salivary duct and the bioengineered salivary duct

(figure 4b). This procedure led to the development of a
connected salivary gland duct in the recipient mouse with

acinar tissue structures that were similar to the natural salivary

gland (figure 4c). The bioengineered SMG regenerated serous

acinar cells and exhibited a natural organ structure. Nerve

entry into these bioengineered salivary glands was also

noted, and saliva secretion was induced in the salivary

gland by taste bud stimulation using citric acid (figure 4d).

We also reconstituted a bioengineered lacrimal gland germ

from epithelial and mesenchymal cells derived from the

lacrimal gland germs of ED 16.5 mouse embryo [21]. The

bioengineered lacrimal gland germ, which was generated

using the organ germ method, successfully underwent

branching morphogenesis. After transplantation, these

glands developed into mature secretory gland structures

in vivo. These results confirmed the possibility of regenerat-

ing a bioengineered secretory gland using organ germ

transplantation.

6. Generation of organoids as mini-organs
from pluripotent stem cells

Organoids, which reproduce the partial structure and func-

tion of organs, were generated from multipotent stem cells
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based on the concept of recapitulating the induction process

of an organ-forming field with subsequent self-organization

during embryonic organogenesis. This induction was

achieved by using various combinations of cytokines,

which mimic the patterning and positioning of signalling

in the embryo. This concept was first proven by the successful

generation of an optic cup organoid from ES cells [22].

Subsequently, various organoids were induced in each

organ-forming field, such as the retina [24], pituitary gland

[26], cerebrum [27,28], inner ear [29] and hair follicle [74] in

the head field; thyroid [75] and lung [76,77] in the thorax

field; and small intestine [78], stomach [79] and kidney

[80,81] in the abdomen field [82].

Adult tissue stem cells, such as intestinal [83], pulmonary

[84], gastric [85,86] and pancreatic stem cells [87], are also

capable of generating organoids through self-organization

of their niche, which can partially reproduce the original

tissue structure. Although the definition of an organoid is

slightly different depending on its origin (i.e. pluripotent

stem cells or tissue stem cells), organoids partially recapitu-

late the organ or tissue structure and can grow to a limited

small size, and are thus considered mini-organs. Therefore,

unlike a bioengineered organ germ, an organoid is incapable

of completely substituting the functions of its original organs

following orthotopic transplantation on its own; however,

orthotopic and heterotopic transplantation of multiple

organoids can partially recover organ function [6,77,88,89].

Recently, we successfully regenerated a fully functional

salivary gland from mouse ES cells in vivo (figure 4e,f ) [30].

Using the general method for organoid formation, we gener-

ated the salivary gland primordium as an organoid through

the induction of an organ-forming field (i.e. the oral ecto-

derm), which was then transplanted orthotopically. The

transplanted organoid developed into a mature salivary

gland with the correct tissue structure such as acinar tissue,

and formed appropriate connections with surrounding tis-

sues, including the PG duct and nerves. Moreover, the

regenerated salivary gland secreted saliva in response to

taste stimulation using citric acid, demonstrating the full

functional recovery of the original salivary gland following

orthotopic transplantation of the organoid (figure 4f ). These

studies clearly demonstrate the feasibility of functional

organ regeneration using organoids, generated by inducing

organ-forming field in multipotent stem cell, not embryonic

organ-inductive potential stem cells. Development of the

novel in vitro culture system enabling organoids of large

organs, such as liver and kidney, to grow to an appropriate

size should be the next topic of research to achieve organ

regeneration.
7. Regeneration of a three-dimensional IOS
from iPS cells

The coordinated function of multiple organs, collectively

referred to as an organ system such as the central nervous

system, circulatory system, digestive system and IOS, is

vital to sustaining homeostasis in an organism [90]. There-

fore, regeneration of the entire organ system is the next

challenge in the field of regenerative medicine. The IOS is

the largest organ system in the body. This system contains

several organs, such as hair follicles, sebaceous gland and

sweat gland, in addition to the skin tissue that is composed
of the epidermis, dermis and subcutaneous fat. The skin

organ system plays important roles in homeostasis, such as

secretion of moisture and sebum, and protection from ultra-

violet light and external stimulation by hair shafts. Skin

injury by severe burns is life threatening. Congenital defects

and loss of skin appendages significantly affect the quality

of life, although partial regenerative medical treatment with

epidermal sheets is possible. The creation of artificial skin

that comprises the epidermis and dermis, and regeneration

of hair follicle organs through cell manipulation, have been

reported. Nevertheless, no skin organ system has been

regenerated.

Recently, we successfully regenerated the IOS by inducing

an organ-forming field in embryoid bodies (EBs) derived from

mouse iPS cells (figure 5a) [31]. After transplantation of EBs

into the subrenal capsule, generation of skin appendages

including hair follicles, sebaceous glands and subcutaneous

adipose tissue was confirmed in the bioengineered IOS with

no tumorigenesis (figure 5b,c). Furthermore, the number and

density of regenerated hairs in the bioengineered IOS were

the same as those found in natural hair, suggesting that orga-

nogenesis in the IOS occurred in a similar manner as in normal

development. The bioengineered IOS generated in the subre-

nal capsule was fully functional after transplantation to the

back skin of nude mice, as evidenced by the repetitive hair

cycle (figure 5d). This study proved the concept of organ

system regeneration in vivo. From a practical application per-

spective, a novel strategy to generate an organ system

in vitro is desired. One such strategy could be to assemble

the multiple types of organoids as parts. Research to control

the configuration of organoids and grow them in vitro will

be the next trend in the field of regenerative medicine.
8. Conclusion and future perspectives
In this decade, studies of organ regeneration starting from

bioengineering technology have made large strides towards

the realization of organ regenerative therapy by incorporating

the concepts from stem cell biology and developmental

biology. Based on the findings from organoid studies, vir-

tually all mini-organs can be generated from either

pluripotent stem cells or tissue stem cells, dispelling the con-

cerns about the cell source for organ regenerative therapy.

Functional regeneration of ectodermal organs using cells iso-

lated from embryonic organ germ, organ-inductive potential

stem cells and pluripotent stem cells prove the concept of

organ replacement therapy.

The development of an in vitro three-dimensional culture

system with the ability to grow organoids and organ germs to

an appropriate size is essential to achieve the functional

regeneration of multiple organs and organ systems. Current

in vitro culture systems do not enable the appropriate

growth or maintenance of organoids or organ germs due to

the appearance of necrosis inside these tissues, mainly due

to the lack of a nutrient supply. In vivo, the blood circulation

system is essential to maintain organ functions through

oxygen transport, nutrient supply and waste removal.

Recent progress in tissue engineering has shown that the vas-

cular network administers biological substances to the

interior of the cell spheroid [91]. Moreover, we previously

developed an organ perfusion culture system using a vascu-

lar network that maintained the rat liver in a healthy
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condition for an extended period [92], providing clues for the

development of a novel three-dimensional culture system.

Because hair follicle stem cells are the only adult stem

cells possessing organ-inductive potential that can be

transplanted autogenously, the first human clinical trial of

organ regenerative therapy will undoubtedly investigate

hair follicle regeneration. The regeneration of hair follicles

using our organ germ method is now being investigated in

a pre-clinical study to cure patients suffering from androgenic

alopecia, with an aim of conducting clinical trials in 2020.

This hair follicle regenerative therapy will be a milestone in

organ regenerative therapies and will lead to the develop-

ment of material and responsive infrastructure to realize

organ regenerative medicine. Applying knowledge of hair

follicle regeneration and expertise obtained from clinical

trials to other organ germs or organoids will enable the
regeneration of other organs from pluripotent and tissue

stem cells in combination with organoid technologies in the

next few decades.
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