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Non‑invasive laparoscopic 
detection of small tumors 
of the digestive tract using 
inductive sensors of proximity
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The precise location of gastric and colorectal tumors is of paramount importance for the oncological 
surgeon as it dictates the limits of resection and the extent of lymphadenectomy. However, this task 
proves sometimes to be very challenging, especially in the laparoscopic setting when the tumors 
are small, have a soft texture, and do not invade the serosa. In this view, our research team has 
developed a new instrument adapted to minimally‑invasive surgery, and manipulated solely by the 
operating surgeon which has the potential to locate precisely tumors of the digestive tract. It consists 
of an inductive proximity sensor and an electronic block encapsulated into an autoclavable stainless‑
steel cage that works in tandem with an endoscopic hemostatic clip whose structure was modified 
to increase detectability. By scanning the serosal side of the colon or stomach, the instrument is 
capable to accurately pinpoint the location of the clip placed previously during diagnostic endoscopy 
on the normal bowel mucosa, adjacent to the tumor. In the current in‑vivo experiments performed 
on large animals, the modified clips were transported without difficulties to the point of interest 
and attached to the mucosa of the bowel. Using a laparoscopic approach, the detection rate of this 
system reached 65% when the sensor scanned the bowel at a speed of 0.3 cm/s, and applying slight 
pressure on the serosa. This value increased to 95% when the sensor was guided directly on the point 
of clip attachment. The detection rate dropped sharply when the scanning speed exceeded 1 cm/s 
and when the sensor‑clip distance exceeded the cut‑off value of 3 mm. In conclusion, the proposed 
detection system demonstrated its potential to offer a swift and convenient solution for the digestive 
laparoscopic surgeons, however its detection range still needs to be improved to render it useful for 
the clinical setting.

Due to larger availability of endoscopic  diagnosis1,2 and implementation of screening programs for gastric and 
colorectal  cancer3,4, the incidence of small, early gastric, and colonic tumors that are referred for surgical treat-
ment has increased significantly. Although these tumors are the ones most suitable for a minimally-invasive 
surgical approach (MIS)5, precise intraoperative identification of their position is difficult in laparoscopy since 
they are not visible from the serosal side while the haptic feedback offered by the laparoscopic instruments is 
significantly less reliable than palpation is for open  surgery1,2,6.

Currently, location of the tumor is approximated by integrating the length measured endoscopically from 
the tumor to the anal verge or dental arcade with findings from imaging radiology (computed tomography-CT 
or magnetic resonance imaging -MRI)3,4. However, the endoscopic measurement of distances is fairly estimated 
because the colon is elongated and distended by insufflation during endoscopy, while small tumors are difficult 
to be visualized on CT or MRI.
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Endoscopic  tattooing7,8 and intraoperative  endoscopy9 are the techniques most commonly used to aid in intra-
operative location of these tumors. Both have their own disadvantages. The first requires compliance from the 
endoscopist, and has certain limitations related to the quality of the dye, depth of injection, or widespread stain-
ing of the surrounding tissues if injected  intraperitoneally10–12. The latter is largely dependent on the availability 
of an endoscopic device in the operative theatre and is mainly performed in modern hybrid operating  rooms13. 
Moreover it implies distension of the bowel with residual gas which impedes adequate visualisation during the 
subsequent stages of laparoscopic resection. Intraoperative ultrasound may be helpful in identifying the tumor, 
but it has limited sensibility, requires appropriate and expensive high-end devices, an experienced radiologist 
present into the operative theatre and, in MIS is furthermore restricted by the fixed position of the  trocars14.

Use of indocianin green as fluorescent marker attached to the jaws on standard endoscopic clips was also 
proposed in a clinical  trial15. The method allowed precise identification of the tumor in 6 of a total of 8 patients 
and looks quite promising. However it has the disadvantage of poor penetration of tissue, in the range of 2 mm, 
by the near infrared fluorescence especially with vertical illumination. It also requires an atypical near-infrared 
fluorescence imaging system to detect and display the image of the marked clips.

Another interesting solution is described by Wada et al.16 which attached a light emmiting diode to a coiled 
antenna creating a 9 × 2 × 2 mm device that could pass through the forceps aperture of a gastrointestinal endo-
scope and was deployed to the mucosa attached to a standard hemostatic clip. The system allowed detection of 
the clip in all 3 patients participating to the trial, however, there are still issues with transportation of the LED-
antena units and their long-term attachment on the mucosa of the colon.

Although the last reports are quite promising, the proposed methods are still in an experimental phase and 
require high-end devices. Given the actuality of the problem in our clinical practice and the lack of a conveni-
ent solution, we have tried to find an alternative approach to intraoperative tumor location during MIS, which 
avoids the disadvantages of the above-mentioned options. We also aimed to reduce the number of specialists 
and expensive devices required for detection, within the aim of increasing the utility of the technique in hospi-
tals which have less advanced equipment and staff. In this respect, we have designed and constructed a sensing 
instrument compatible with laparoscopic surgery, capable to detect metallic tags placed endoscopically on the 
mucosa of the digestive tract (colon, stomach) in the vicinity of the tumor within days or weeks before surgery, 
ideally at the time of the diagnostic endoscopy. By detecting these metallic tags, the surgeon is aware of the exact 
position of the tumor and thus can plan the resection accordingly.

The system was presented already in our recent  articles17,18, in which we have intensively tested its functional-
ity in ex-vivo dry and wet lab experiments, on synthetic materials, biologic tissues and human surgical specimens. 
In this work, the primary aim was to evaluate the feasibility of the proposed detection system in “in-vivo” experi-
ments, in conditions similar with the ones encountered in the operative theatres. The second aim of the study 
was to evaluate if the attachment to the deployment mechanism, and attachment of the clips on the mucosa, are 
influenced by the process of metal deposition.

Materials and methods
Tumor detection principle. The principles of tumor localization can be briefly described as follows: a 
modified endoscopic hemostatic clip serving as metallic tag is placed endoscopically on the mucosal side of the 
gastric or colonic wall in the vicinity of the tumor at the time of diagnostic endoscopy or later, ideally between 
two weeks and two days before surgery. Multiple clips can be applied around the periphery of the tumor if 
desired. During the laparoscopic operation, the sensing instrument scans the serosa of the bowel in the segment 
where the tumor is supposed to be located based on measurements recorded in the endoscopic report and on 
information provided by sectional imaging. When the instrument detects one clip an acoustic signal is produced 
and the tumor is precisely located (see Fig. 1).

In a particular manner, the inductive proximity sensors detect the presence of hemostatic metallic coated clips 
entering into their oscillating field, providing a target detection. The system contains an oscillator which creates 
a high frequency electromagnetic field that is radiated from the coil in the sensor front area.

When this field contacts the conducting coated clips, a small current is induced within the hemostatic clips, 
which further generate their own electromagnetic field that interferes with the field originating from the coil. 

Figure 1.  Principle of tumor detection by the complex formed from the sensing laparoscopic instrument and 
the endoscopically attached metallic tags—tumor markers.
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This causes a modification in the amplitude of the oscillations of the signals from the coil system. The output 
voltage should be calibrated to this modification.

Construction of the detecting laparoscopic instrument. The detection instrument has been used 
inductive proximity sensors that have the capability to identify presence of metallic tags. In an extensive previ-
ous research  work17, five types of instruments incorporating different inductive proximity  sensors19–23 were con-
structed and extensively tested and optimized, with the aim to develop, verify and adopt the most appropriate 
clinical protocols for tumor detection. The process of development and construction, from watertight encapsula-
tion of the inductive proximity sensor into stainless steel rods sheaths to fabrication of the electronic operation 
block module and elaboration of the swift connection between these two components is presented  elsewhere17,18. 
The instrument was designed using a modular platform that allows widely-available sterilisation by autoclava-
tion without damaging the electronic module.

In summary, the inductive proximity sensor is hermetically mounted on the distal end of a stainless-steel 
rod which resembles a laparoscopic instrument by having an outer diameter of 12 mm and a length of 45 cm. 
The 12 mm diameter was chosen to accommodate larger, 10 mm diameter sensors, which have more potent 
detection capabilities but it also has the disadvantage that it requires the larger, 12.5 mm laparoscopic trocars 
for introduction into the abdominal cavity. The junction between the sensor and the stainless-steel rod is her-
metically sealed with a resin to withstand multiple sterilisations. The proximal end of the detection instrument 
has a length of 18.5 cm, is composed of a stainless-steel case which serves as handle for the instrument and was 
designed to comply with the ergonomics and manipulation properties required by the surgical team. It incorpo-
rates the electronic functional block and is hermetically closed with a metallic lid to ensure proper sterility. The 
electronic functional block was dimensionally scaled-down to fit into the stainless-steel case while the instrument 
was constructed using a modular platform that allows disconnection of the electronic block and sterilization of 
the sensor-case unit by autoclavation (45 min at 121 °C and 1.2 bar pressure) followed by swift plugging of the 
electronic block just before surgery in a sterile-controlled environment.

The updated version of our instrument is shown in Fig. 2 right. The Teflon connection head (incorporating 
gold electrical connectors) was replaced with a titanium alloy connection head in an attempt to avoid any risk 
of microbial retention (Fig. 2—middle left). The electronic block can be now easily removed by opening the 
metallic lid (Fig. 2—left), and the equipment (Fig. 2—right) can be sent for sterilisation following the standard 
autoclaving protocol.

Based on our previous research  work17 performed in gaseous (air) and liquid (0.9% NaCl, 5% Glucose solu-
tions, etc.) environments, and continued on ex-vivo surgical specimens (animals and human)18, we have con-
cluded that the 12 mm laparoscopic detecting system that incorporates a 10 mm diameter proximity sensor 
(IFS290 and E59M12C110C02-D1), offers the longest detection range and will be used in the “in-vivo” experi-
ments. Both sensors, use a built-in microprocessor to provide smallest detection and errors that can be modified 
from the microprocessor software to intelligently detect and maximize sensor performance depending on the 
environment used. They are capable to perform these actions with accurate monitoring of very small changes 
in field saturation when the target moves in the detection field, then compares these changes to specific user-
programmed values.

Construction of custom‑made metallic clips. The conventional endoscopic hemostatic clips (Olympus 
HX-610-9090L and Olympus HX-610-135L) were chosen as metallic tags that should be detected by the sensing 
instrument, due to their large availability and possibility to be deployed anywhere along the digestive tract using 
standard endoscopic instruments and techniques. In order to increase the detectability of these clips, they were 
further engineered by surface depositions of nanometric layers of cooper (Cu), zinc (Zn) and gold (Au) in vari-

Metallic lid 

Upper stainless steel case

Titanium alloys  

Incorporated 
sensor IFS290

Stainless steel rod 
36 cm

47 cm

18,5 cm

Figure 2.  The modular laparoscopic detection instrument composed from a proximal handle that hosts the 
electronic block covered by a lid to preserve an sterile environment on the surface (corner left), the titanium 
alloy at the junction between the case and the rod (middle left), the inductive sensor present at the distal tip of 
the instrument, encapsulated in a watertight junction (middle right). Overview of the whole instrument (right).
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ous layer thicknesses from 10 nm, 20 nm and 30 nm, and then increasing every 100 nm up to a maximum of 1 
micron. The plastic side of the clip was protected by a custom-made shield.

Deposition of thin layers of Cu, Zn and Au was done through Physical Vapor Deposition (PVD) technique. 
In this process, the material passes from a condensed phase to a vapor phase, and then back to a condensed thin 
film form. The targets used had a purity of 99.998%. Cu and Zn were chosen in an attempt to improve the detec-
tion range while Au was coated at the end of each deposition proccess (deposition thickness values of 50 nm) 
to ensure biocompatibility of the modified clip. Although their thicknesses have been intensively tested up to 1 
micron, the detection randament decreases exponentially after 300 nm thickness with about 0.2 mm per 100 nm 
added thickness, regardless of the environment in which the first measurements were performed.

Previous experiments performed by our research team on a multitude of clip combinations coated with vari-
ous concentrations of Cu, Zn and Au, showed that the longest detection range was associated with the followig 
combinations: (1) Cu 200 nm + Au 10 nm; (2) Cu 300 nm + 48 Zn + Au 10 nm and (3) Cu 500 nm + 20 nm Au. 
Therefore, in the following in-vivo experiments, only these modified clip variants were used.

Deployment of custom‑made metallic clips during “in‑vivo” experiments. The Karl Storz™ flexi-
ble endoscope with a 2.8 mm diameter working channel was used for the transport and deployment of the clip to 
the point of interest. The modified clip was placed into the standard cover of the usual Olympus HX-610-9090L 
or Olympus HX-610-135L hemostatic clips. The attachment tip of the clip, which is made of plastic, was not 
modified by the vapour deposition process and was supposed to fit easily into the hook of the operation wire. The 
clip was thus attached to the wire and carefully withdrawn into the working channel of the endoscope. Observa-
tions were made if the modified clip fitted inside the working channel and was able to be transported to the site of 
interest on the mucosa. Once the location of clip deployment was chosen, the slider was moved distally and the 
clip was deployed using a procedure similar with deployment of a standard hemostatic clip. The process is sche-
matically drawn in Fig. 3. The success rate of clip deployment and attachment on the mucosa was also recorded.

“In‑vivo” preparation and testing set‑up of the detection system. The functionality and sensi-
tivity of the detection system system was evaluated in “in-vivo” experiments performed on large animals. For 
these experiments were used two pigs with weights of 60 and 65 kg, respectively, operated laparoscopically in 
deep anaesthesia (Fig. 4). After premedication with azaperone (1–2 mg/kg, intramuscular [IM]) and midazolam 
(0.5–0.7 mg/kg, IM), narcosis was induced with midazolam (1–1.5 mg/kg, intravenous [IV]), ketamine (10 mg/
kg, IV), and atropine sulfate (0.05 mg/kg IV). Animals were intubated and anaesthesia was maintained using 
an isoflurane enriched  O2/air mixture and  N2O. Fentanyl (500 µg/h, IV) was used for analgesia and pancuro-
nium (0.25 mg/kg/h) for muscle relaxation. The common carotid artery and internal jugular vein were surgically 
catheterized and connected to membranous pressure transducers for continuous measurement of mean arterial 
pressure and central venous pressure, respectively. Ringer lactate solution was infused continuously during the 
operation at a rate of 20 Ml/kg/h. Heart rate and rhythm were monitored by a surface electrocardiogram.

Experiments were carried out respecting the European conventions and ARRIVE guidelines for animal wel-
fare and were authorized by the decision of the Ethical Committee of the University of Medicine Cluj-Napoca 
No 156/02.04.2018. We also attest to informed consent for publication of identifying information/images in 
online open-access publication.

Figure 3.  System for endoscopic deployment of modified clip at the point of interest into the gastrointestinal 
tract.
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In order to prepare the colon mechanically to create adequate conditions for intraoperative colonoscopy, 
animals were fed with 2 L of diluted polyethylene glycol solution (Fortrans) in the last 24 h before surgery and 
4 h preoperatively with trans rectal instillation of one packet of Clismalax solution.

Surgical access to the peritoneal cavity was obtained through a laparoscopic approach (Karl Storz, Tutlin-
gen, Germany) using three trocars, one 10 mm trocar for the optics, one 5 mm trocar for an atraumatic bowel 
grasper and a 12 mm trocar for the 12 mm detection instrument. Concomitantly, the endoscopy team loaded the 
modified clip into the applicator of the flexible Karl Storz™ endoscope using the instrumentation and technique 
described in the previous chapter (Fig. 4A). The endoscope and the attached clip were advanced trans-anal into 
the upper rectum and the sigmoid where the clip was deployed on the mucosa of the colon. Both  standard24 
and modified hemostatic clips were used for the experiment, the former ones acting as the control group. The 
clips were spaced at a distance of at least 5 cm from each other, the location of the clips being determined by 
the endoscopist. In one experiment the clip was placed through a trans-oral route into the duodenum using the 
same approach (Fig. 4B).

The main investigator from the surgical team was blind to the exact location of the clip, he was only informed 
that the clip was either into the rectum or into the sigmoid, mimicking the information provided to the surgeon 
by the preoperative endoscopic measurements from the anal verge to the tumor. After each deployment of a 
clip, he attempted to discover its exact location by scanning the serosal side of the bowel (Fig. 5). Scanning was 
performed with the laparoscopic detector applying slight pressure on the bowel wall, initially with a speed of 
1 cm/s followed by following attempts at a speed of 0.3 cm/s. In total, 10 detection attempts were performed 
for each clip at a speed of 0.3 cm/s speeds. In every case, at the end of those mandatory 10 detection attempts, 
a concomitant endoscopic/laparoscopic exploration of the bowel segment was performed to confirm that the 
detection signal recorded was given by the specific metallic clip searched for (Fig. 5). Furthermore, after detec-
tion, the location of the clip was marked on the serosa and the detector was again directed on that point for 10 
times to record the reproducibility of the detection signal.

Results
Attachment and deployment of the clips. Clips were attached to the mucosa of intraperitoneal bowel 
segments which had a maximum wall thickness of 2.5 mm. The stomach, which has a wall thickness exceeding 
3 mm, was thus excluded and so were the colon from the ileocolic junction to the sigmoid which, in the swine, is 
spiral and has reduced peritoneal lining. Endoscopic access to the duodenum proved to be quite difficult due to 
the lenght and shape of the stomach and was abandoned after the first succesful attempt. Finally, the sigmoid and 
upper rectum were the segments which provided easy endoscopic access and had a wall thickness in the range of 
2 mm considered adequate for the scope of the research.

A total of 8 modified and 2 standard titanium clips were tested in two animals. In the first animal, 1 modified 
clip was introduced into the duodenum while 1 standard clip and 2 other modified clips were inserted into the 
rectum and sigmoid colon respectively.

In the second animal were introduced 1 standard and 4 modified clips into the rectum and the sigmoid 
colon, up to a distance of 30 cm from the anal verge. The minimum distance between the clips was at least 5 cm.

All modified clips coated with Cu 300 nm + Au 10 nm could be retracted into the working channel of the 
endoscope. They were also transported to the point of interest, released, deployed and attached to the mucosa 
of the intestine without significant problems. The endoscopic team did not experience differences regarding 
docking or deployment of the clip between the standard and the modified clips. It was thus demonstrated that 
covering the metallic part of the clips with nanometric layers of Cu and Au did not alter their spring mechanism 
or their functionality.

Detection of the clips by the laparoscopic sensing instrument. The two unmodified titanium clips, 
one placed on the mucosa of the duodenum and the other on the mucosa of the rectum were not detected in any 

Figure 4.  (A) Laparoscopic surgical access to the peritoneal cavity; (B) trans-oral insertion of the clip and 
deployment into the duodenum.
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of the 10 scans for each clip. The detection signal was not obtained even when the endoscopist pinpointed the 
surgeon the exact position of the clip and the detector applied strong pressure on the serosa exactly above it. In 
conclusion, the detection rate of the standard titanium hemostatic clip was 0%.

The modified clips did trigger a detection signal. The signal was present when the detector was above the 
clip and applied slight pressure on the serosa. If the detector was not in contact with the serosa, there was no 
detection signal. The overall detection rate of the modified clips, defined as number of passages over the clip that 
have produced a detection signal while the detector was moving along the serosa divided to the total number of 
attempts, was 65%. Localization of the clip by the surgeon into the indicated area was confirmed to be correct by 
the endoscopist in all cases. In light of these data, the sensibility and specificity of the detection system for the 
upper rectum and sigmoid with a wall thickness of 2–2.5 mm were 65% and 100% respectively.

The speed of movement of the detector along the serosa of the bowel played also an important part since 
scanning with a speed of 1 cm/s was too fast for detection of the modified clips and needed to be reduced to 
0.3 cm/s in all cases. Therefore, scanning a segment of the upper rectum and sigmoid 20 cm in length and 4 cm 
in width with a wall thickness of 2.5 mm had a 65% chance of precisely identifying the position of the clip within 
a maximum period of 132 s.

Once the exact position of the clip was detected by the surgical team after those 10 detection attempts, placing 
the sensor exactly on the clip and applying slight pressure produced a detection signal in 95% of the cases. This 
experiment confirmed thus the reliability of the detection system in the “in-vivo” setting.

When the colon was insufflated with air to confirm endoscopically that the searched clip was found, the detec-
tion signal became weaker or even disappeared if the clip was on the opposite wall of the rectum/sigmoid. The 
signal regained in intensity after exsufflation, highlighting that the presence of endolumenal air prevented the 
detector to press efficiently against the clip through the bowel wall and thus had an impact on the detection range.

Discussion
Precise intraoperative localization of endolumenal digestive tumors is the prerequisite for a successful operation. 
Nowadays, we experience a large enthusiasm to increase the rate of laparoscopic colorectal and gastric procedures 
while screening programs diagnose an increasing number of patients in the early stages of the disease. Therefore 
the proportion of patients with small tumors referred for surgery increases, and the surgeons might face a real 
challenge localizing the lesion especially when a minimally-invasive approach is used.

The modern surgeon should ideally have a multidisciplinary training  background25 and be provided with all 
necessary devices in a high-tech hybrid operating  room13. However, the reality is that many surgeons still work 
in suboptimally equipped hospitals, have limited competences and often limited support from the endoscopist 

Figure 5.  Combined laparoscopic and endoscopic approach to identify the position of the clip with zoom on 
instruments scanning clip position.
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colleagues and, in these real-life circumstances, they still need to find the precise position of a small colorectal 
tumor to perform an adequate operation.

In this regard, we have designed and constructed a detection instrument adapted to minimally-invasive 
surgery. Its tubular shape with a diameter of 12 mm allows introduction through laparoscopic trocars and 
its length is similar with that of laparoscopic instruments. The device is constructed in a modular fashion to 
allow sterilisation of the stainless-steel case without destruction of the electronic block, the latter being swiftly 
attached in the OR in a sterile environment. The instrument is easy to activate and use while the entire system 
it quite inexpensive, does not require presence of specialized personnel or expensive devices into the OR and is 
completely surgeon dependant.

The detection instrument works in tandem with a metallic tag whom it detects. The principle of detection 
relays on the capacity of the inductive proximity sensors to detect variations into electromagnetic fields. The sen-
sor contains an oscillator which creates a high frequency electromagnetic field. When a metallic tag is within this 
field, a small current is induced within it which further generates its own electromagnetic field that interferes with 
the field originating from the sensor. This causes a modification in the amplitude of the oscillations generatingan 
an output voltage can be calibrated and detected by the sensor. The sensors differ in their detection sensitivity. The 
ones chosen for our detection system, namely IFS290 and E59M12C110C02-D1, use a built-in microprocessor to 
provide the widest range of detection, even for the smallest signals. Moreover, the microprocessor software can 
be manipulated to intelligently detect and maximize sensor performance by developing detection capabilities 
depending on the environment used. One such unique feature offers the possibility to detect metal objects at a 
certain distance or band, while ignoring the targets which are located closer or further from the scanned area. 
The sensors are able to perform these actions with accurate monitoring of very small changes in field saturation 
when the target moves in the detection field, then compares these changes to specific user-programmed values.

The standard endoscopic hemostatic clip was chosen as the ideal metallic tag because it can be deployed any-
where in the long digestive tract of the humans using the standard endoscopic instrumentation. Data from our 
previous  research14,15 showed that the standard titanium clip has weak detection properties for a sensor with an 
outer diameter of 10 mm, which is the maximum diameter that can be considered for a laparoscopic instrument.

The clips were modified by nanoscale metal depositions of Cu and Zn using PVD (Physical Vapor Deposi-
tion) technology which complies with the modern requirements of purity for surgical and medical implants. An 
outer layer of gold (Au) was ultimatelly added to ensure biocompatibility of the coated clip. The PVD coating 
process is also environmentally friendly, greatly reducing the amount of toxic substances produced compared 
to other types of conventional coating involving liquid precursors or complex chemical reactions. In addition, 
the resulting metallic coatings have superior hardness, durability and wear resistance. The most frequently clip 
used in the present experiment was the Cu 300 nm + Au 10 nm. Previous  work17 showed that increasing the 
thickness of Cu deposition layers is associated with increased detection range up to a certain point followed by 
a paradoxal behaviour and a reduction of the detection range. By testing Cu layer thicknesses up to 1 micron, we 
have demonstrated that the detection range decreases exponentially after 300 nm thickness with about 0.2 mm 
per 100 nm added thickness, regardless of the environment in which the first measurements were performed.

The most important achievement of this research is that the laparoscopic detection system has proven its 
efficacy into living tissue real-life situation. In our previous  works14,15, we have demonstrated that the system is 
viable and detects the metallic tag in the dry and wet laboratory experiments, both on ex-vivo animal tissue and 
on human surgical specimens. However, the questions remained if the modified clip can actually be hooked to 
the transport system and deployed by attachent to the colonic/duodenal mucosa on the point of interest using 
the standard endoscopic instrumentation. The present study demonstrated that the proposed system is working. 
Adding nanometer layers of Cu on the metallic part of the clip and covering it with other nanometes layers of Au 
for biocompatibility did not change the spring-lock mechanism of the plastic part of the clip and did not increase 
the size of the clip to the extent of not entering the 2.8 mm diameter working channel of the flexible endoscope. 
The modified clip was attached to the endoscope and deployed on the mucosa in 100% of the attempts.

The second important question referred to the ability of clip detection in an “in-vivo” setting. In this respect, 
our study has a clear answer: modification of the hemostatic clip by deposition of nanometric layers of Cu and Zn 
rendered it visible to the detector. None of the total 20 attempts to detect the standard titanium hemostatic clip 
in the in-vivo setting was successful. This inability to detect repeated even when the endoscopic team directed 
the surgical team to place the detector on the exact spot where the clip is located. The modified clip however 
was detected in 65% of the cases when the serosa was scanned with a speed of 0.3 cm/s and slight pressure was 
applied on the serosa by the detector. This figure increased to 95% of the cases when the surgeon was guided 
on the exact spot where the clip was attached. These results prove the reliability of detection and suggests that 
this system has the potential to be useful in the clinical practice. However, the detection range is still far from 
satisfactory. Slight pressure on the serosa is still necessary for detection. In this regard, insufflation of the colon 
with  CO2 reduced the detection signal either by increasing the distance from the detector to the clip, if the clip 
was attached on the oposite wall, or by interfering with the possibility to press on the clip against a more rigid 
structure like the retroperitoneum. The actual thickness of the duodenal, rectal or sigmoidian wall is roughly 
2 mm. Therefore, we can state that the “in-vivo” real life situation detection range for the proposed system is 
actually around the value of 2 mm. If this cut-off value is exceeded, when fat pads or thickened intestinal wall 
is interposed between the clip and the detector for instance, the detection rate is expected to drop significantly.

One last observation from the present experiments is that detection is discriminative; the clips are selectively 
identified only when the sensor is placed above them. That allows detection of individual clips and adds precision 
to the detection process. This property is inversely proportional with the detection range. Since the detection 
range is still low, around 2 mm, the discriminative capacity of detection is high. Is it expected to decrease as the 
detection range improve.
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In conclusion, this study demonstrates that a modified endoscopic hemostatic clip can serve as a viable 
marker for tumor localization not only in an “ex-vivo” laboratory setting, as was demonstrated in our previous 
publications, but also in “in-vivo” real-life conditions. By changing its chemical structure, the clip became visible 
to the inductive proximity sensor and could be localized by the laparoscopic surgeon from the serosal side of the 
bowel during a minimally-invasive exploration, a process impossible when a standard endoscopic clip was used. 
However, the current detection range though viable biologic tissue of 2–2.5 mm is far from satisfactory for the 
clinical practice and that currently represents the major drawback of the proposed method.

An important achievement of this work though was to establish a proof of concept which will be used in the 
future in our quest to develop a more efficient detection system. Our aim is to increase the detection range to at 
least 10 mm, value considered necessary to cover the thickness of the bowel and of the adjacent fatty tissue. One 
solution that we are evaluating in this respect is to attach a miniaturized radiofrequency identifier  tag26 to the 
modified endoscopic clip that will be detected by an antenna included in the custom-made sensing instrument 
in a similar fashion with the method exposed in the present work.

The success of this quest will move the field of laparoscopic surgical oncology toward an era of effective, 
personalized tumor detection, allowing precise identification of tumor location and its margins solely by the 
surgeon, during all steps of the surgical procedure and without compromising exposure of the operative field and 
thus coming one step closer to the final goal which is to offer a better perspective for the outcome of our patients.
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