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ABSTRACT  The human pathology Wilson disease (WD) is characterized by 

toxic copper (Cu) accumulation in brain and liver, resulting in, among other 

indications, mitochondrial dysfunction and apoptosis of hepatocytes. In an 

effort to identify novel compounds that can alleviate Cu-induced toxicity, we 

screened the Pharmakon 1600 repositioning library using a Cu-toxicity yeast 

screen. We identified 2 members of the drug class of Angiotensin II Type 1 

receptor blockers (ARBs) that could increase yeast tolerance to Cu, namely 

Candesartan and Losartan. Subsequently, we show that specific ARBs can in-

crease yeast tolerance to Cu and/or the chemotherapeutic agent cisplatin 

(Cp). The latter also induces mitochondrial dysfunction and apoptosis in 

mammalian cells. We further demonstrate that specific ARBs can prevent the 

prevalence of Cu-induced apoptotic markers in yeast, with Candesartan Cilex-

etil being the ARB which demonstrated most pronounced reduction of apop-

tosis-related markers. Next, we tested the sensitivity of a selection of yeast 

knockout mutants affected in detoxification of reactive oxygen species (ROS) 

and Cu for Candesartan Cilexetil rescue in presence of Cu. These data indicate 

that Candesartan Cilexetil increases yeast tolerance to Cu irrespectively of 

major ROS-detoxifying proteins. Finally, we show that specific ARBs can in-

crease mammalian cell tolerance to Cu, as well as decrease the prevalence of 

Cu-induced apoptotic markers. All the above point to the potential of ARBs in 

preventing Cu-induced toxicity in yeast and mammalian cells.  
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INTRODUCTION 

The human pathology Wilson disease (WD) is characterized 

by excess copper (Cu) accumulation in the brain and liver, 

leading to liver failure or cirrhosis and neurodegeneration 

[1-3]. Cu toxicity is directly related to mitochondrial dys-

function and apoptosis in mammalian cells [4] as it induces 

oxidative stress [5, 6] and crosslinking of mitochondrial 

membrane proteins causing the membrane to contract [7]. 

In addition, Cu causes a malfunction of complex IV of the 

respiratory chain [8] and increases acid sphingomyelinase 

(aSMase) activity [9], the latter leading to an increased 

production of the apoptosis inducer ceramide [10]. Fur-

thermore, the chemotherapeutic agent cisplatin (Cp) also 

induces mitochondrial dysfunction in mammalian cells by 
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TABLE 1. Effect of the selected ARBs on Cu and Cp-induced toxicity 

in yeast. ‘+’ and ‘-‘ denotes effective and ineffective, respectively. 

 Toxicity 

ARB Cu Cp 

Candesartan - + 

Candesartan Cilexetil + + 

Eprosartan - - 

Irbesartan - + 

Losartan + + 

Olmesartan - - 

Olmesartan Medoxomil + + 

Telmisartan - - 

Trityl Candesartan Cilexetil - - 

Valsartan + - 

 

decreasing respiration [11], causing mitochondrial mem-

brane depolarization [12], inducing the production of reac-

tive oxygen species (ROS) [13], and affecting mitochondrial 

structure and function [14]. In addition, mitochondria gen-

erate ROS upon exposure to Cp in both yeast and mamma-

lians cells [13], indicating that Cp-induced toxicity shows 

similarity between yeast and mammalian cells. In yeast, 

there are several contradictory reports on Cu-induced tox-

icity and mitochondrial dysfunction. Some reports have 

demonstrated the negative impact of non-lethal Cu doses 

on the mitochondrial proteome and function in yeast, re-

sulting in decreased ATP production and activation of the 

oxidative stress response [15], and mitochondrial abnor-

malities [16]. In contrast, Cu-treatment of yeast has also 

been reported to increase the mitochondrial Cu content 

without causing respiratory deficits [17]. Apart from direct 

effects of Cu on mitochondrial function, Cu toxicity in S. 

cerevisiae has been linked to perturbations in sphingolipid 

(SL) homeostasis [18], which are crucial membrane com-

ponents with regard to apoptosis [19] and mitochondrial 

function [20, 21]. In contrast, Lee and coworkers did not 

show any alterations in a subset of SL species in response 

to Cu treatment [22]. Hence, the question whether Cu in-

deed results in mitochondrial dysfunction in yeast remains 

under debate. Nonetheless, by using a Cu-induced toxicity 

screen in yeast, we previously identified an Arabidopsis 

thaliana-derived decapeptide termed OSIP108 [23] as a 

peptide that can increase yeast tolerance to Cu. More spe-

cifically, we showed that OSIP108 prevents Cu-induced 

apoptosis in yeast and human cells, and preserves mito-

chondrial ultrastructure in human cells [18]. Furthermore, 

we were able to link these observations to perturbations in 

SL homeostasis by OSIP108 [18]. In addition, we translated 

these data toward a novel zebrafish model for Cu toxicity 

and showed that OSIP108 injections into zebrafish larvae 

prevented Cu-induced hepatotoxicity and decreased oxida-

tive stress levels [24]. Thus, despite the contradictory re-

ports in literature, by using our Cu-toxicity yeast screen, we 

identified OSIP108, and were able to translate our yeast 

data to higher eukaryotic cell models, as well as to an in 

vivo model for Cu-intoxication, thereby validating our Cu-

toxicity screen in yeast in the context of apoptosis and 

mitochondrial dysfunction. 

In an effort to identify small molecules that can allevi-

ate Cu-induced toxicity in yeast, we screened the Pharma-

kon 1600 repositioning library consisting of 1600 drugs, 

which are marketed or have been tested in clinical trials. 

Drug repositioning is referred to as the identification and 

development of new uses of existing or abandoned drugs. 

It possesses several advantages over de novo drug discov-

ery such as known safety and pharmacokinetic profiles, as 

well as knowledge of manufacturing and toxicology of the 

compounds investigated [25, 26]. Current fields of interest 

for application of such repurposing strategy include the 

identification of novel antibiotics [27], the increase of ef-

fectiveness of existing antimycotics by potentiation [28], 

but also novel treatments for orphan diseases [29]. The 

Pharmakon library was screened in our Cu-based yeast-

toxicity screen [18]. Repurposed compounds that scored 

positive in this Cu-based yeast toxicity screen were further 

tested for their potential to increase yeast tolerance to Cp, 

another inducer of mitochondrial dysfunction. Subsequent-

ly, we translated these data to a mammalian cell setting. 

All our data point to the protective effect of ARBs against 

Cu-induced toxicity. 

 

RESULTS  

Screening for compounds that can increase yeast toler-

ance to Cu 

The Pharmakon 1600 repositioning library was screened 

for agents that can increase yeast tolerance to Cu as de-

scribed previously [18]. Briefly, WT yeast was inoculated in 

solid growth medium containing a lethal Cu concentration 

(100 µM) and the viability indicator dye MTT (0.1 mg/mL). 

All 1600 compounds (10 mM in DMSO) were spotted (5 µL) 

onto the solid agar. Following 24 h of incubation, the plates 

were checked for development of purple halos around the 

spotted compounds, resulting from the conversion of the 

viability dye MTT and thus indicative for viable cells. Given 

that Cu chelation or sequestration is one of the main cellu-

lar Cu detoxification mechanisms [30, 31], we identified 

several agents with known chelating activity such as 

Deferoxamine Mesylate [32] and Oxyquinoline Sulfate [33]. 

Hence, such agents were omitted to exclude aspecific Cu 

chelation. This resulted in the identification of seven com-

pounds (data not shown) that are not known to chelate Cu 

and can increase tolerance of yeast cells to Cu. Among 

them were two members of the drug class of Angiotensin II 

Type 1 receptor blockers (ARBs) [34], namely Candesartan 

and Losartan. 

Given the fact that several studies have documented 

beneficial effects of ARBs, such as Candesartan and Losar-

tan, on human pathologies linked to mitochondrial dys-

function and apoptosis, such as diabetes, Alzheimer dis-

ease and aging [35-42], we selected the drug class of ARBs 

for further characterization of their activity using the mod-

el yeast S. cerevisiae. 
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Angiotensin II Type 1 receptor blockers increase yeast 

survival in presence of toxic Cu and Cp 

We investigated the effect of a selection of commercially 

available ARBs, namely Eprosartan, Irbesartan, Losartan, 

Olmesartan, Olmesartan Medoxomil, Telmisartan, Trityl 

Candesartan Cilexetil and Valsartan (Table 1), on yeast 

survival in presence of toxic Cu and Cp. The prototype of 

the class of ARBs is Losartan [43], from which additional 

ARBs were derived based on modification of its chemical 

structure, such as Candesartan, Valsartan and Olmesartan 

[34]. We found that incubation of yeast cells with 2 mM Cu 

resulted in approx. 23% yeast survival, whereas treatment 

of Cu-stressed yeast with either 100 µM Candesartan 

Cilexetil, Losartan, Olmesartan Medoxomil or Valsartan 

significantly increased yeast survival. No significant in-

crease in survival of Cu-stressed yeast cells was observed 

upon incubation with 100 µM Candesartan, Eprosartan, 

Irbesartan, Olmesartan, Telmisartan or Trityl Candesartan 

(Fig. 1 a). These results indicate that particular ARBs can 

increase yeast tolerance to excess Cu. Note that while 

Candesartan was identified during our screen, it failed to 

significantly increase yeast survival in presence of Cu, as 

determined by plating colony-forming units (CFU). It is ex-

pected that the CFU-based assay is more stringent, result-

ing in the selection of the most potent ARBs with regard to 

increasing Cu tolerance.  

We further evaluated the effect of the ARBs against Cp-

induced toxicity in yeast. Incubation of yeast cells with 250 

µM Cp decreased yeast survival to about 5% whereas co-

treatment with either 100 µM Candesartan, Candesartan 

Cilexetil, Irbesartan, Losartan or Olmesartan Medoxomil 

significantly increased survival as compared to control 

treatment. No significant effect on survival of Cp-stressed 

yeast cells was observed with treatment of 100 µM Epro-

sartan, Olmesartan, Telmisartan, Trityl Candesartan Cilexe-

til or Valsartan (Fig. 1 b). These data indicate that particular 

ARBs can prevent Cp-induced toxicity in yeast.  

Interestingly, in our experiments only Candesartan 

Cilexetil, Losartan and Olmesartan Medoxomil increased 

yeast tolerance to both Cu and Cp (Table 1), suggesting 

that these three ARBs are the most interesting candidates. 

Structural classification of ARBs is based on the cycle re-

placing the imidazole ring in Losartan: in Candesartan 

Cilexetil, this imidazole group is replaced by a benzimidaz-

ole group, while in Olmesartan Cilexetil it is a imidazole 

derivate [34]. Since these three ARBs significantly in-

creased yeast tolerance to both Cu and Cp (Fig. 1 a, b) and 

Candesartan Cilexetil is the most structurally different from 

Losartan (Fig. 1 c), we selected the prototype ARB Losartan 

and Candesartan Cilexetil for further characterization. For a 

more detailed description on the chemical structure of 

ARBs the reader is referred to [34, 44].  

In order to gain insight into the efficacy of Candesartan 

Cilexetil and Losartan against Cu or Cp-induced toxicity in S. 

cerevisiae, we evaluated different doses (25 µM – 100 µM) 

of either ARB on yeast survival in presence of toxic Cu (2 

mM) or Cp (250 µM). We found that all tested doses of 

Candesartan Cilexetil and Losartan significantly increased 

yeast tolerance to Cu (Fig. 1 d). Conversely, we observed 

that only 100 µM Candesartan Cilexetil and 100 µM Losar-

tan significantly increased yeast survival in presence of Cp 

(Fig. 1 e). These data indicate that ARBs can protect yeast 

against Cu-induced toxicity in a broad concentration range, 

while only high doses of ARBs confer protection against Cp-

induced toxicity.  

In order to exclude a general stress-protectant effect of 

ARBs, we also evaluated the effect of ARBs against a panel 

of noxious insults such as tunicamycin, the anti-convulsant 

valproic acid, acetic acid and CCCP. To this end we moni-

tored yeast growth in presence of either insult in absence 

(control) or presence of 100 µM Candesartan Cilexetil 

and/or Losartan. In contrast to the effect of ARBs on yeast 

growth in presence of Cp, we did not observe an effect of 

the tested ARBs against either insult (Supplemental Fig 1 a-

e). These results suggest that ARBs cannot rescue general 

yeast growth defects induced by toxic triggers including 

tunicamycin, valproic acid, acetic acid or CCCP and hence, 

that the ARB-protecting action against noxious insults 

seems toxin-specific. 

 

ARBs affect Cu-induced apoptotic markers in yeast  

As excess Cu is known to induce apoptosis [18, 45], we 

investigated the effect of Losartan and Candesartan Cilexe-

til on Cu-induced ROS production and DNA fragmentation, 

both markers of apoptosis [46]. In line with our previous 

results [18], we observed that 2 mM Cu significantly in-

creased the amount of cells stained positive with dihy-

droethidium (DHE) (Fig. 2 a), indicating the induction of 

ROS and more specifically superoxide by Cu. Co-incubation 

with 100 µM Candesartan Cilexetil significantly decreased 

the levels of DHE positive cells in presence of 2 mM Cu (Fig. 

2 a). By using the Terminal dUTP Nick End Labeling (TUNEL) 

assay, we observed that 2 mM Cu significantly induced 

DNA fragmentation in yeast, while treatment with either 

100 µM Candesartan Cilexetil or Losartan significantly de-

creased the amount of Cu-induced TUNEL positive cells (Fig 

2 b). These data suggest that specific ARBs may differen-

tially affect Cu-induced markers of apoptosis, and that 

Candesartan Cilexetil is the most potent in decreasing the-

se markers. 

In order to increase our understanding of Cu-induced 

cell death in yeast, which occurs presumably via apoptosis 

[18, 45], we evaluated the Cu-tolerance and the rescuing 

effect of ARBs of wild type yeast (BY4741) and a selection 

of yeast mutants defective in components of the apoptotic 

machinery such as Δaif1, Δnuc1 or Δyca1 mutants. To this 

end, we spotted serial dilutions of these yeast cultures 

onto Cu-containing (1.25 mM – 1.5 mM) solid growth me-

dia in the presence of control (0.5% DMSO) or Candesartan 

Cilexetil (100 µM). This selection of mutants was also re-

cently tested to characterize cell death induced by Mentha 

piperita essential oil in S. cerevisiae [47]. Aif1p and Nuc1p 

are mitochondrial cell death effectors that translocate to 

the nucleus in response to apoptotic stimuli such as  hydro- 
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FIGURE 1: ARBs prevent Cu and Cp-induced killing of yeast cells. Yeast cells were incubated with 2 mM Cu for 4 h (a, d) or 250 µM Cp for 

16 h (b, e) in presence of vehicle control (V.c, 2.5% DMSO) or 100 µM Candesartan (1), Candesartan Cilexetil (2), Eprosartan (3), Irbesartan 

(4), Losartan (5), Olmesartan (6), Olmesartan Medoxomil (7), Telmisartan (8), Trityl Candesartan Cilexetil (9) or Valsartan (10). (c) Chemical 

structure of the prototype Losartan, of which Candesartan Cilexetil and Olmesartan Medoxomil are derived. The benzimidazole group in 

Candesartan Cilexetil and the imidazole ring in Losartan and Olmesartan Medoxomil are circled. Taken and adapted from [44]. Yeast sur-

vival in presence of different doses of Candesartan Cilexetil or Losartan upon treatment with 2 mM Cu (d) or 250 µM Cp (e). Survival was 

calculated by determining CFU/ml as compared to untreated control cells (no Cu or Cp). Experiment performed in quadruplicate, with at 

least two biological repeats. (*P < 0.05; **P < 0.01; ***P < 0.001; ANOVA test using Tukey correction). 
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gen peroxide [48, 49]. Yca1p is the yeast metacaspase and 

is implicated as a crucial cell death effector during H2O2- or 

acetic acid-induced apoptosis [50, 51]. We observed that 

the Δyca1 mutant did not display altered susceptibility to 

toxic Cu as compared to wild type yeast, which is in line 

with literature [18, 45, 52], nor did Δaif1 or Δnuc1 mutants 

(Supplemental Fig. 2, middle and right panel). Candesartan 

Cilexetil supplementation, however, increased viability of 

all yeast mutants (Supplemental Fig. 2, middle and right 

panels). Taken together, these data suggest that Cu-

induced apoptosis in yeast is independent of Aif1p, Nuc1p 

and Yca1p, and that Candesartan Cilexetil increases yeast 

tolerance to Cu independently of the latter three proteins. 

 

Exogenous addition of the plant decapeptide OSIP108 

does not affect the protective effect of Candesartan 

Cilexetil against Cu-induced toxicity in yeast 

As we previously identified the A. thaliana-derived 

decapeptide OSIP108 [23] as a potent rescuer from Cu 

toxicity of yeast and human cells [18], we evaluated 

whether OSIP108 can influence the effect of Candesartan 

Cilexetil on Cu-induced cell death in yeast. Thus, we inves-

tigated a putative synergy between Candesartan Cilexetil 

and OSIP108.  

To this end, we first identified an OSIP108 dose that did 

not affect yeast Cu-tolerance, being 12.5 µM or 25 µM 

OSIP108 (Fig. 2 c). Subsequently, we found that these 

OSIP108 doses neither increased nor decreased the protec-

tive effect of Candesartan Cilexetil (100 µM) against Cu-

induced toxicity in yeast (Fig. 2 c), suggesting that the 

structurally unrelated OSIP108 and Candesartan Cilexetil 

affect yeast tolerance to Cu via distinct pathways. 

 

Candesartan Cilexetil increases yeast mutant tolerance to 

Cu 

To get preliminary insights into the role of ROS during Cu-

induced toxicity in yeast, we evaluated the Cu tolerance of 

a panel of yeast deletion mutants defective in ROS detoxi-

fication (Δcta1, Δctt1, Δgrx5, Δsod1, Δsod2), at least partly 

defective in cytoplasmic ROS production (Δyno1) or Cu 

sequestration (Δcrs5, Δcup2). The catalases Cta1p and 

Ctt1p detoxify the ROS H2O2 in the peroxisomes and cytosol, 

respectively [53, 54]. During respiratory growth conditions 

Cta1p also resides in the mitochondria [54]. In addition, the 

superoxide dismutases Sod1p and Sod2p detoxify superox-

ide, thereby generating oxygen and H2O2, mainly in the 

cytosol and mitochondria, respectively [55, 56]. Further-

more, we included yeast mutants defective in Grx5p, a 

mitochondrial glutathione-dependent oxidoreductase that 

plays a crucial role in defense against oxidative stress [57], 

and Yno1p, a NADPH oxidase in the endoplasmic reticulum 

that is responsible for extra-mitochondrial superoxide pro-

duction [58]. In addition, given that Cu sequestration is one 

of the major Cu-detoxification mechanisms, we included 

the Cu-binding metallothionein Crs5p [59] and the Cu-

binding transcription factor Cup2p, which initiates tran-

scription of the genes encoding the metallothioneins CUP1-

1 and CUP1-2 [60, 61]. Serial dilutions of wild type 

(BY4741) and these mutants were spotted onto control (0 

 

FIGURE: 2. ARBs reduce levels of Cu induced apoptotic markers 

in yeast. Yeast cells were incubated with 2 mM Cu for 4 h with 

control treatment (black bars), Losartan (white bars) or Candesar-

tan Cilexetil (gray bars). Following treatment, cells were stained 

with DHE (a) or TUNEL assay (b) and subsequently analyzed by 

flow cytometry or counted manually after fluorescence microsco-

py, respectively. Three biological repeats were used. (*P < 0.05; 

**P < 0.01; ***P < 0.001; ANOVA test using Tukey correction). (c) 

OSIP108 does not affect the rescue effect of Candesartan Cilexe-

til. Yeast cells were incubated with 2 mM Cu for 4 h with control 

treatment, Candesartan Cilexetil (100 µM) in absence (2% DMSO) 

or presence of OSIP108 (12.5 µM – 25 µM). Following incubation, 

cells were plated on YPD agar plates and survival was calculated 

as compared to CFU/ml of cells receiving no Cu. Experiments per-

formed in quadruplicate with three biological repeats. (*P < 0.05; 

**P < 0.01; ***P < 0.001; ANOVA test using Tukey correction). 
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mM Cu) or Cu-containing (1.25 mM – 1.5 mM) solid growth 

media supplemented with either control (0.5% DMSO) or 

Candesartan Cilexetil (100 µM). 

We found that while loss of Sod1p, Cup2p or Crs5p se-

verely increased yeast sensitivity to Cu, loss of Sod2p or 

Yno1p moderately increased yeast tolerance to Cu (Fig. 3, 

middle and right panels). Loss of Sod2p was already previ-

ously shown to increase yeast tolerance to copper nitrate 

[62] while loss of Yno1p is documented to increase yeast 

tolerance to apoptotic stimuli [58]. In contrast, supplemen-

tation with Candesartan Cilexetil increased the Cu toler-

ance of all yeast mutants, except Δcrs5 and Δcup2 mutants. 

Given the evident increased susceptibility to Cu of the lat-

ter two mutants, this suggests that both proteins are cru-

cial in conferring Cu tolerance in yeast and their loss is det-

rimental for yeast viability in presence of Cu to an extent 

 

FIGURE 3: Effect of Candesartan Cilexetil on Cu tolerance of yeast mutants. Serial dilutions of wild type (WT), Δcta1, Δctt1, Δgrx5, Δsod1, 

Δsod2, Δyno1, Δcup2 and Δcrs5 were spotted onto control (0 mM Cu) or Cu-containing (1.25 mM – 1.5 mM) solid SC media in presence of 

control (0.5% DMSO; top panels) or 100 µM Candesartan Cilexetil (bottom panels). Growth was evaluated following 48 h incubation at 30°C. 

Data representative for two biological repeats. 
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that Candesartan Cilexetil is unable to counteract this tox-

icity. However, additional experiments are required to de-

termine whether Candesartan Cilexetil directly acts on 

metallothionein levels/activity. Surprisingly, given the in-

creased and decreased susceptibility of Δsod1 and Δyno1 

mutants to Cu, respectively, this points to deleterious cy-

toplasmic, rather than mitochondrial, ROS production dur-

ing Cu-induced toxicity in yeast. However, this does not 

exclude mitochondrial ROS production upon Cu treatment 

in yeast. Note that Cu is an essential cofactor for Sod1p, 

and loss of this protein may trigger defective Cu storage. 

Taken together, further research is needed to pinpoint the 

cellular targets of Candesartan Cilexetil in the context of Cu 

toxicity in yeast. 

 

ARBs prevent Cu-induced apoptosis in the human hepa-

toma HepG2 cell line  

In an effort to translate our yeast data to a higher eukary-

otic cell model, we investigated the effect of the ARBs 

Candesartan Cilexetil and Losartan on Cu-induced apopto-

sis in the human hepatoma HepG2 cell line. To this end we 

first evaluated HepG2 survival in absence of Cu upon incu-

bation with Candesartan Cilexetil and Losartan. In initial 

experiments we titrated the Candesartan Cilexetil or Losar-

tan dose to investigate a putative ARB-associated toxicity 

towards HepG2 cells, and observed that while doses higher 

than 25 µM Candesartan Cilexetil induced killing of HepG2 

cells, 100 µM Losartan did not have an effect on cell viabil-

ity (data not shown). Subsequently, we investigated the 

effect of 25 µM Candesartan Cilexetil and 100 µM Losartan 

on HepG2 cell viability in presence of different Cu concen-

trations. While ARB treatment in presence of Cu doses that 

decreased cell viability by less than 50% did not result in 

any significant effects (Fig. 4 a), we found that only 100 µM 

Losartan significantly increased cell viability upon treat-

ment with 1 mM or 1.25 mM Cu (Fig. 4 a): HepG2 viability 

decreased to approx. 28% or 8% upon treatment with 1 

mM or 1.25 mM Cu, respectively, while coincubation with 

100 µM Losartan resulted in 46% or 26% viability respec-

tively. Coincubation with 25 µM Candesartan Cilexetil and 

Cu did not affect cell viability. These data suggest that par-

ticular ARBs confer protection against severe Cu-induced 

cell death in mammalian cells. 

Subsequently, similar as to our yeast experiments, we 

evaluated the effect of Candesartan Cilexetil and Losartan 

on Cu-induced apoptosis in HepG2 cells by FLUOS-labeled 

Annexin V staining. In line with literature [9, 18], we ob-

served an increased prevalence of Annexin V-positive cells 

upon treatment with 1.5 mM Cu, indicating Cu-induced 

apoptosis (Fig. 4 b). In addition, while treatment with 100 

µM Losartan decreased Cu-induced apoptosis (Fig. 4 b), 25 

µM Candesartan Cilexetil did not (data not shown). Taken 

together, these data indicate that specific ARBs can pre-

vent Cu-induced cell death and apoptosis in human cells. 

 

DISCUSSION 

In the present study we report on the screening of the 

Pharmakon 1600 repositioning library in order to identify 

agents that increase tolerance to Cu-induced toxicity in 

yeast and the identification of the drug class of ARBs. Next, 

we showed that specific ARBs increase yeast tolerance to 

Cu and Cp, and affect markers of Cu-induced apoptosis. 

Likewise, we found that specific ARBs increase human cell 

line tolerance to Cu and decrease the prevalence of apop-

totic markers.  

Our Cu-based yeast toxicity screen resulted in the iden-

tification of 7 clinically used drugs that can significantly 

increase yeast tolerance to Cu (data not shown) including 

the ARBs Candesartan and Losartan that are used as anti-

hypertensive drugs [63]. The drug class of ARBs is of par-

ticular interest given the numerous reports that describe 

beneficial effects of ARBs in human pathologies related to 

mitochondrial dysfunction. For instance Losartan treat-

ment reduces mitochondrial dysfunction in aged and spon-

FIGURE 4: Losartan 

prevents Cu-induced 

apoptosis in HepG2 

cells. (a) Losartan in-

creases HepG2 cell 

viability in presence of 

Cu. HepG2 cells were 

treated with Cu (0.75 

mM - 1.25 mM) in 

presence of control (1% 

DMSO, black bars), 25 

µM Candesartan Cilex-

etil (white bars) or 100 

µM Losartan (grey 

bars). Following 48 h of 

incubation, cell viability 

was determined by 

MTT viability staining, and expressed as compared to cells receiving no Cu. Biological repeat is four. (***P < 0.001; ANOVA test using Tukey 

correction). (b) Losartan prevents Cu-induced apoptosis in HepG2 cells. HepG2 cells were treated for 1.5 mM Cu in absence (control) or pres-

ence of 100 µM Losartan for 24 h. Subsequently, cells were stained with FLUOS-labeled Annexin V and samples were analyzed by flow cy-

tometry. Biological repeats is three. (**P < 0.01; Student t-test). 
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taneously hypertensive rats [35, 36]. Furthermore, in a 

comparative study, Losartan, Olmesartan and Valsartan 

were shown to prevent liver fibrosis in alloxan-induced 

diabetic rats. In contrast to Losartan and Valsartan treat-

ment, Olmesartan treatment preserves mitochondrial ul-

trastructure [39]. Even protective effects of ARBs against 

Alzheimer disease have been suggested [40, 41] and long 

term Losartan administration to rats significantly increases 

life span [42]. Recently, Olmesartan treatment was shown 

to attenuate high fat diet-induced decreased mitochondrial 

respiration [64], while Losartan was reported to ameliorate 

mitochondrial function in indirect flight muscles in Dro-

sophila melanogaster [65]. An additional advantage of 

ARBs is that they are well tolerated and not associated 

with class-related side effects [66, 67]. In all these studies, 

however, the underlying molecular mechanism of these 

beneficial effects of ARBs on mitochondrial function and 

tolerance to apoptosis were not addressed.  

While some ARBs are specific to either Cu or Cp-

induced toxicity (Valsartan or Candesartan and Irbesartan, 

respectively), other ARBs do not show any effect to either 

toxic insult. However, the ARBs Candesartan Cilexetil, 

Losartan and Olmesartan Medoxomil display activity 

against both Cu and Cp (Table 1). Interestingly, Candesar-

tan Cilexetil and Olmesartan Medoxomil are ester prodrug 

versions of their parent compound Candesartan and 

Olmesartan, respectively, and display improved bioavaila-

bility [68, 69]. It is therefore plausible that the uptake of 

these prodrugs in yeast is more efficient, and thereby is a 

determinant of their protective effect against Cu and Cp. 

Nonetheless, given the effect of these aforementioned 

ARBs against both toxic agents, this suggests that Cu and 

Cp toxicity in yeast may be mediated by overlapping path-

ways. Common defense mechanisms against Cu and Cp 

have been described in yeast and mammalian cells. For 

example, pre-treatment of yeast cells with Cu or Cp is re-

ported to increase yeast tolerance to Cp or Cu, respectively, 

in both cases due to degradation and delocalization of the 

Cu transporter Ctr1p [70]. Additionally, at low Cu concen-

trations that do not affect Ctr1p, Cu also protects against 

Cp-induced toxicity in yeast [71]. In mammalian cells, Cu 

and Cp increase activity of aSMase, leading to an increased 

production of the apoptosis inducer ceramide [9, 72, 73] 

and both Cu and Cp-induced toxicity have also been asso-

ciated with pro-apoptotic Bax [74-80]. As we observed that 

ARBs cannot rescue yeast growth defects induced by nox-

ious insults such as tunicamycin, valproic acid, acetic acid 

or CCCP, it seems that the protective effect of ARBs is tox-

in-specific. 

A Cu-chelating activity has never been reported for 

ARBs. However, Losartan has been described to spontane-

ously form an insoluble complex with Cu [81], and ARB-Cu 

complexes have been reported to display anti-oxidant ac-

tivity [82-84], pointing to the possibility of Cu-chelation by 

ARBs. Whether the underlying mechanistic event that gov-

erns the ARB-mediated protection against Cu-induced tox-

icity is attributed to Cu complexation by ARBs has yet to be 

investigated. As Cu-complexation does not explain the 

ARBs’ effect in Cp toxicity, it is conceivable that ARBs in-

crease yeast tolerance to Cu and Cp in other ways.  

With respect to Cp toxicity, there are some in vivo re-

ports that describe the effect of ARBs against Cp-induced 

toxicity. For instance, chronic Losartan treatment in rats 

after Cp administration improves weight gain following Cp-

induced reduced food intake and weight loss [85]. Losartan 

also reduces Cp-induced lipid peroxidation and glutathione 

depletion in rat kidneys [86]. In addition, combination 

therapies with Losartan and Vitamin E [87] or C [88] as 

treatment for Cp-induced nephrotoxicity in rats have been 

tested, but without any significant result. Noteworthy is 

that both Candesartan and a combination of Candesartan 

and Cp have been shown to suppress tumor growth in a 

xenograft model for bladder cancer in mice. However, the 

combination of Candesartan and Cp proved to be less ef-

fective than Candesartan alone, suggesting a protective 

effect of Candesartan against Cp-induced apoptosis [89].  

Yeast is a powerful model organism to study various 

cellular processes, including mitochondrial function and 

apoptosis due to conservation of their regulatory pathways 

[90-93]. Apart from antifungal drug discovery purposes [28, 

94], yeast-based screens are often used to identify com-

pounds that can affect disease-relevant targets, such as for 

instance calcineurin [95], human telomerase [96], or syn-

ergetic DNA-damaging drug combinations [97]. Also, yeast 

assays have been reportedly used to gain insight into the 

mode of action of clinically used compounds [98]. For in-

stance, the anti-anginal drug Molsidomine [99] was shown 

to target lanosterol synthase in the sterol biosynthetic 

pathway [98].  

The results of this study indicate that Cu-induced apop-

tosis in yeast is independent of Aif1p, Nuc1p or Yca1p. In 

addition, the data presented here also highlight the fact 

that despite the conservation of several important meta-

bolic pathways, there still remain yeast and mammalian 

cell-specific aspects: while in mammalian cells Cu-induced 

toxicity is directly related to impact on mitochondrial func-

tion [4-8], there are contradictory reports regarding Cu-

induced toxicity and mitochondrial function in yeast [15-

17]. Indeed, the loss of the cytoplasmic ROS generator 

Yno1p or cytoplasmic Sod1p increases or decreases yeast 

tolerance to Cu, respectively, indicating that Cu-induced 

toxicity in yeast seems associated with detrimental cyto-

plasmic, but does not exclude, mitochondrial ROS produc-

tion. Still, by using Cu-induced toxicity in yeast as a screen-

ing model, we were able to identify the plant-derived pep-

tide OSIP108 as an agent that prevents Cu-induced apopto-

sis in yeast and human cells, preserves mitochondrial ultra-

structure in human cells, but also prevents Cu-induced liver 

damage and decreases oxidative stress levels in zebrafish 

larvae [18, 23, 24]. Hence, these reports illustrate the valid-

ity of our screen to identify agents with a putative applica-

tion in persevering mitochondrial function and preventing 

apoptosis. This is of particular importance as mitochondrial 

dysfunction, ROS and apoptosis have been linked to several 

human conditions such as aging, cancer [100], diabetes 

[101, 102] and non-alcoholic steatohepatitis [103], but also 

neurodegenerative disorders [104] including Alzheimer 
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disease [105] and Parkinson’s disease [106, 107], and rare 

diseases such as WD [4]. Current treatment options for 

mitochondrial dysfunction-related disorders are inade-

quate and mostly consist of the administration of cofactors 

and oxygen radical scavengers [108-110]. Thus, there still is 

an urgent need for novel treatments in combating mito-

chondrial dysfunction-related disorders and ARBs may 

show promise, as well as OSIP108, in this regard.  

Noteworthy is that while the effects of ARBs on cellular 

metabolism in a higher eukaryotic setting is typically based 

on its ability to block the interaction between Angiotensin 

II and the Angiotensin II Receptor Type 1, neither the lig-

and nor the receptor have thus far been identified in S. 

cerevisiae, suggesting the existence of additional cellular 

targets for ARBs [44, 63]. Thus, it is plausible that ARBs 

mediate Cu-tolerance in yeast and mammalian cells irre-

spective of their known cellular targets. Hence, despite 

that our yeast data show promise regarding the protective 

effect of ARBs against Cu-induced toxicity, it therefore re-

mains to be investigated whether their mode of action in 

yeast can be translated to a mammalian setting. 

In conclusion, this study again highlights the potential 

of S. cerevisiae as a model organism, to identify novel 

compounds that increase tolerance to inducers of mito-

chondrial dysfunction in mammalian cells such as Cu. Un-

raveling the anti-Cu mode of action of ARBs in yeast might 

reveal new therapeutic targets in treatment of WD, or mi-

tochondrial dysfunction-related conditions in general.  

 

MATERIALS AND METHODS 

Materials and microorganisms 

The yeast strains used in this study is Saccharomyces cere-

visiae wild type yeast strain BY4741 (WT) and corresponding 

mutants (Δaif1, Δcrs5, Δcta1, Δctt1, Δcup2, Δgrx5, Δnuc1, 

Δsod1, Δsod2, Δyca1, Δyno1) (Euroscarf, Germany) were cul-

tured in SC (0.77 g/L complete amino acid supplement mixture 

(CSM) (Bio 101 Systems); 6.7 g/L yeast nitrogen base without 

amino acids (YNB); 20 g/L glucose). HepG2 cells, human hepa-

toma cells, were purchased from ATCC (Rockville, MD, USA) 

and grown in Minimal Essential Medium (MEM) supplemented 

with 10% fetal calf serum, 2 mM L-glutamine, 100 U/ml peni-

cillin and 100 µg/ml streptomycin. Cis-

diamminedichloroplatinum (II) (cisplatin, Cp), copper sulphate 

pentahydrate and copper chloride (CuCl2, Cu) were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in 

DMSO and distilled H2O respectively. Note that there is some 

controversy in literature regarding the use of DMSO as solvent 

for Cp. We however did not observe major differences in Cp-

induced toxicity in yeast upon using either DMSO or 0.9% NaCl 

in distilled H2O as solvent for Cp. The Pharmakon 1600 reposi-

tioning library (10 mM in DMSO) was obtained from Mi-

croSource Discovery Systems, Gaylordsville, CT, USA. All Angi-

otensin II Type 1 receptor blockers (ARBs) (Candesartan, Can-

desartan Cilexetil, Eprosartan, Irbesartan, Losartan, Olmesar-

tan, Olmesartan Medoxomil, Telmisartan, Trityl Candesartan 

Cilexetil and Valsartan, as listed in Table 1) were purchased 

from Sequoia Research Products (Pangbourne, UK) and dis-

solved in DMSO. Protocols involving the effect of ARBs on 

yeast growth in presence of valproic acid, tunicamycin, acetic 

acid or CCCP are included in the supplementary data. 

Yeast Cu toxicity screen in solid media 

The Pharmakon 1600 repositioning library was screened using 

a Cu-induced toxicity yeast model as described [18]. 

 

Yeast survival in presence of Cu and Cp in liquid media 

A WT overnight culture (ONC) in SC was diluted to OD600 = 2 in 

fresh SC and incubated with 2% DMSO (vehicle control) or ARB 

(25 µM – 100 µM) in presence or absence of 2 mM CuSO4 or 

250 µM Cp for 4 h or 16 h, respectively. Following incubation 

at 30°C and 250 rpm, proper cell dilutions were plated onto 

YPD agar plates (1% Yeast extract, 2% Bacteriological peptone, 

2% glucose and 1.5% agar) and survival was calculated as 

compared to an unstressed yeast culture. Regarding the effect 

of dhSph or OSIP108 on yeast tolerance to Cu upon treatment 

with Candesartan Cilexetil, cells were treated as described 

above in absence (2% DMSO) or presence of OSIP108 (12.5 

µM or 25 µM) and 100 µM Candesartan Cilexetil.  

 

Detection of apoptotic markers in yeast 

To determine Cu-induced ROS production Cu-treated yeast 

cells were stained with 5 µg/ml dihydroethidium (Molecular 

Probes) (DHE) and analyzed by flow cytometry as described 

[18]. Subsequent data analysis was performed by using FlowJo 

software (Tree Star Inc., Ashland, MA, USA). For detection of 

DNA fragmentation, yeast cells were stained by Terminal de-

oxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assay as described [18]. TUNEL positive cells were imaged by 

fluorescence microscopy (Zeiss Axio Imager Z1 fluorescence 

microscope) and at least 600 cells/samples were manually 

counted. 

 

Yeast spot plating 

Overnight yeast cultures in SC were diluted to OD600 = 0.01 

and 5 fold-serial dilutions were spotted on control plates (0 

mM CuSO4) or Cu-containing (1.25 mM – 1.5 mM) solid SC 

medium (1.5% agar) in presence of 0.5% DMSO (control) or 

100 µM Candesartan Cilexetil. Subsequently, plates were in-

cubated at 30°C for 48 h. 

 

HepG2 Cu toxicity experiments  

HepG2 viability upon treatment with CuCl2 (0.75 mM – 1.25 

mM) in presence of 1% DMSO (control), 25 µM Candesartan 

Cilexetil or 100 µM Losartan was performed as described pre-

viously [21]. Briefly, 10
4
 cells were seeded in triplicates in 96 

well plates and incubated for 24 h. Next day, cells were treat-

ed with copper and/or Candesartan Cilexetil or Losartan and 

further incubated for 48 h. Cell viability was determined by 

MTT assay and results were calculated as percentage of un-

treated control cells.  

 

Detection of apoptosis and oxidative stress in HepG2 cells 

Detection of apoptotic markers by FLUOS-Annexin V (Roche 

Diagnostics NV Belgium, Belgium) staining and subsequent 

flow cytometry analysis in HepG2 cells upon treatment with 

1.5 mM CuCl2 in presence of 1% DMSO (control) or 100 µM 

Losartan was performed as described previously [21]. Briefly, 

10
6
 cells were seeded in a 6 well plate and incubated for 24 h. 

Next day, cells were treated with copper and control or Losar-

tan Cilexetil and Losartan for an additional 24 h. Cell culture 

supernatants and cells were collected and subjected to FLUOS-

Annexin V staining followed by flow cytometry analysis 

(Beckman Coulter, Germany). 
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