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Abstract
Background: Ovarian cancer is one of the lethal gynecological diseases in women. However, using tumor microenvironment
related genes to identify prognostic signature of ovarian cancer has not been discussed in detail.

Methods: The mRNA profiles of 386 ovarian cancer patients were retrieved from The Cancer Genome Atlas. Univariate Cox
regression and LASSO Cox regression analyses were performed and 14 optimized prognostic genes related to tumor
microenvironment were identified.

Results: The multivariate Cox hazards regression showed risk score was an independent prognostic signature for ovarian cancer.
Nomogrammodel could reliably predict the patients’ survival. Furthermore, M1macrophages, M2macrophages, and follicular helper
T cells, differentially expressed between the high- and low-risk groups, were found to be associated with the risk score.

Conclusion: CTL-associated antigen 4 (CTLA4) and indoleamine 2,3-Dioxygenase 1 (IDO1), which were previously shown to be
important immune checkpoints, probably contribute to the immunosuppressive microenvironment aberration. This study may shed
light on the prognosis of ovarian cancer.

Abbreviations: GEO = Gene Expression Omnibus, TCGA = The Cancer Genome Atlas, TME = tumor microenvironment.
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1. Introduction

Ovarian cancer is the most lethal gynecological malignancy,[1]

followed by cervical cancer and uterine body cancer, and its
morbidity and mortality rates are still increasing.[2] Malignant
ovarian lesions include primary lesions and secondary lesions. In
the primary lesions, epithelial ovarian carcinoma is the most
common malignant ovarian tumor (70% of all ovarian
malignancies), besides, the stromal tumors of the ovary, germ-
cell tumors, sex-cord stromal tumors, and other more rare types
are also included.[3] Unfortunately, early ovarian cancer is
minimal, nonspecific, or even asymptomatic due to its anatomy
features,[4] therefore, most cases are diagnosed at an advanced
stage.[5,6] Epithelial ovarian carcinoma has considerable com-
plexity and heterogeneity in biology, drug response, and survival
time, representing a major obstacle for its precision medicine.
Recent studies have shown that the tumor microenvironment

(TME), composed of a variety of immune cells and stromal cells,
is crucial in the occurrence and development of cancer and cell
response to chemotherapy.[7] At the same time, the rise of
immunotherapy, including immune checkpoint inhibitor, shows
that the assessment of TME heterogeneity and the remodeling of
the immune microenvironment have broad application and
profound impact on cancer treatment.[8] Recently, some studies
have investigated the TME-related markers for tumor prognosis.
The study of Zeng et al[9] describes the comprehensive features of
gastric cancer TME-related genes and provides new strategies for
cancer treatment. Another study indicates that many elements of
TME other than tumor epithelial cells could influence the
progression of non-small cell lung cancer.[10] Consequently, new
treatment strategies and paradigms are of great need for these
patients. Unfortunately, only a few immune therapies have been
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Table 1

Clinicopathological characteristics of OV patients from TCGA
database.

OV patients (N=375)

Characteristics No. %

Age
�59 (median) 198 52.80%
>59 (median) 177 47.20%

Race
White 326 86.93%
Black or African American 24 6.40%
Asian 11 2.93%
American Indian or Alaska 2 0.53%
Native Hawaiian or other Pacific islander 1 0.27%
Unknown 11 2.93%

Pathologic stage
I 1 0.27%
ii 24 6.40%
iii 293 78.13%
iv 57 15.20%

Survival time
Long (>5 years) 75 20.00%
Short (<5 years) 300 80.00%

OS status
Dead 230 61.33%
Alive 145 38.67%

OS= overall survival; OV=ovarian serous cystadenocarcinoma; TCGA=The Cancer Genome Atlas.
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approved for ovarian cancer treatment. Therefore, the mining of
TME-related genes in the immune microenvironment significant-
ly changes the treatment prospects of ovarian cancer. TME-
related genes may be a potential solution to the overwhelmed
drug resistance and improve the clinical outcome of ovarian
cancer patients.[11]

In this study, we analyzed the expression of 760 TME-related
genes in ovarian cancer patients. Meanwhile, we constructed a
risk score model by hub TME-related genes to predict the
prognosis of ovarian cancer patients, and evaluated the efficiency
of this model in multiple levels, which provides new ideas for
improving the prognosis of ovarian cancer patients.

2. Methods

2.1. Study population and TME-related genes

In the present study, 386 ovarian cancer patients’ mRNA
expression profiles and corresponding clinical information were
retrieved from The Cancer Genome Atlas (TCGA, https://tcga-
data.nci.nih.gov/tcga/). The patients with incomplete survival
information were excluded. Among the TCGA cohort, 375
patients had complete survival information and were used in the
following analysis. The detailed clinical information of these 375
patientswas shown inTable 1. In addition, the datasetsGSE26193
andGSE63885were retrieved from theGene ExpressionOmnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. GSE26193
contained the information of 107 ovarian cancer patients with
complete survival information, and GSE63885 contained the
information of 101 ovarian cancer patients, 78 of which had
complete survival information.ThemRNAlevels ofovarian cancer
samples in the 2 GEO datasets were quantified by the Affymetrix
Human Genome U133 Plus 2.0 Array platform. The 760 TME-
related genes were obtained based on previous studies[12–16] (see
Table, Supplemental Digital Content, http://links.lww.com/MD/
2

G248, which illustrates the information of the 760 genes related to
tumor microenvironment).

2.2. Construction of prognostic model

Based on the expression levels of 760 TME-related genes,
univariate Cox regression analysis was performed, and the genes
with significant correlation with the prognosis of ovarian cancer
were identified, with P< .05 considered as statistically significant.
Then the LASSO Cox regression analysis was performed using
glmnet package in R to further optimize the TME-related genes
that were associated with the prognosis of ovarian cancer.[17] The
risk score of each sample was calculated with the optimized genes
basing on the following formula:

Risk score ¼
Xn

i¼1
Coef i�Xi

In this formula, Coefi is the risk coefficient of each factor
calculated by the LASSO-Coxmodel,Xi is the expression value of
each factor, and in this study it refers to the mRNA expression
level of TME-related genes. Then, survival and survminer
packages and 2-sided log-rank test were applied to determine
the optimal cutoff value of risk score for stratifying the ovarian
cancer patients. According to the cutoff value, patients were
attributed into Low-Risk group and High-Risk group.

2.3. Survival analysis

Kaplan–Meier analysis was performed to estimate the overall
survival rate of different groups using the survival package and
survminer package. Log-rank test was performed to determine
the difference in survival rate between distinct groups. Multivar-
iate Cox regression model was used to analyze whether risk score
could predict the survival of ovarian cancer patients indepen-
dently of other factors.

2.4. Calculation of immune cell infiltration

We used CIBERSORT[18] to calculate the relative proportion of
22 infiltrating immune cells in each sample. CIBERSORT
characterizes the composition of infiltrating immune cells basing
on deconvolution algorithm and 547 pre-set barcode genes
according to the gene expression matrix. The sum of immune cell
proportion in each sample was 1.

2.5. Establishment of nomogram model

Nomogram is widely used to predict the prognosis of cancer. In
order to predict the 1-year, 3-year, and 5-year survival
probabilities of ovarian cancer patients, the nomogram was
established based on all the independent prognostic factors
determined by the multivariate Cox regression by using the rms
package in R. A calibration curve of the nomogramwas drawn to
compare the predicted overall survival probability of nomogram
and the actual overall survival probability.

2.6. Statistical analysis

Kaplan–Meier method was used to estimate the overall survival
rate of different groups. Log-rank test was used to analyze the
significance of difference in survival rate between different
groups. Wilcoxon signed-rank test was used to compare the
difference in immune cell infiltration in different groups, with
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Figure 1. Construction of the prognostic model for ovarian cancer. (A) Univariate cox regression analysis of 48 tumor microenvironment (TME)-related genes that
were significantly associated with the prognosis of ovarian cancer. (B) Determination of the tuning parameter lambda in the LASSO regression model. The horizontal
axis was log (lambda), and the vertical axis was partial likelihood deviation. The lambda value corresponding to the smallest partial likelihood deviation value was the
optimal, and the corresponding number on the top was the number of variables. (C) Kaplan–Meier survival curve in TCGA dataset. The horizontal axis was time and
the vertical axis was survival rate. Different colors represented different groups. The P value was based on the log-rank test. (D) Kaplan–Meier survival curve in the
meta-GEO dataset. (E) The heat map of the mRNA expression of the 14 selected genes in the high-risk and low-risk samples in the TCGA dataset. The horizontal
axis was the sample, and the vertical axis was the gene. Red represented high expression, blue represented low expression, and the groups of the samples were
marked with different colors on the heat map. 95% CI=95% confidence interval, HR=hazard ratio; GEO=Gene Expression Omnibus, TCGA=The Cancer
Genome Atlas.
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P< .05 as the threshold of statistical significance. R software
(v3.5.2) was used for the statistical analysis of this study.
3. Results

3.1. Construction and verification of the prognostic model

Univariate Cox regression analysis was performed using the
samples from TCGA database with the expression values of 760
TME-related genes as continuous variables, and the hazard ratio
(HR) of each gene was calculated. A total of 48 genes were
identified as prognostically relevant genes with P value< .05 as
the threshold. The genes with HR value<1 were protective genes
that were conducive to the prognosis, and those with HR value
>1 were hazardous genes associated with unfavorable prognosis
(Fig. 1A). LASSO Cox regression analysis was performed with
the 48 identified genes. According to the lambda value which the
gene number corresponded to in the LASSO Cox analysis,
we selected 14 genes in the following analysis to achieve the
smallest lambda value (Fig. 1B). The 14 genes were ELN, FBLN1,
ANGPT2, FBL, COMP, PPL, PLD2, PDLIM4, EMP1, MYC,
ITGAM, FRAT2, WDR45, and ADSL.
In order to obtain a unified cut-off value for the stratification of

ovarian cancer patients, the expression values of these genes were
normalized to the data with the average value of 0 and standard
deviation (SD) value of 1. Then, thenormalized expression value of
each TME-related gene is weighted with the regression coefficient
of LASSO Cox regression analysis to establish a risk score model
3

for predicting patients’ prognosis basing the data of TCGA
cohort. Risk Score= (0.032648133�ELN)+(0.050148701�
FBLN1)+(–0.182538141�ANGPT2)+(0.022643331�FBL)+
(0.008810390�COMP)+(0.037391649�PPL)+(0.029721887�
PLD2)+ (0.055455835�PDLIM4)+ (0.018301503�EMP1)+
(0.008366183�MYC)+(0.039140799� ITGAM)+(0.018056371�
FRAT2)+ (0.032383440�WDR45)+ (0.046671263�ADSL).
Base on this formula, the risk score of each patient in the TCGA
dataset and meta-GEO verification set (the combination of 2
GEO datasets) was calculated. And according to the optimal cut-
off point (0.00515), these patients were divided into a high-risk
group and a low-risk group. Survival analysis showed that in the
TCGA and meta-GEO datasets, the high-risk ovarian cancer
samples had poorer survival compared with the low-risk samples
(Fig. 1C and D). In addition, significantly differential expression
levels of these 14 genes between the high- and low-risk groups in
TCGA cohort were observed (Fig. 1E). In conclusion, the risk
score based on the 14 genes, ELN, FBLN1, ANGPT2, FBL,
COMP, PPL, PLD2, PDLIM4, EMP1, MYC, ITGAM, FRAT2,
WDR45, and ADSL, could predict the prognosis of patients with
ovarian cancer.
3.2. Risk score is an independent prognostic marker for
ovarian cancer

Age, TNM stage, race, and risk score were adopted for
multivariate Cox regression analysis to determine whether the
risk score was an independent prognostic indicator (Fig. 2A). It
was found that risk score and stage were still significantly

http://www.md-journal.com


Figure 2. Risk score was an independent prognostic marker of ovarian cancer. (A) Forest map of multivariate Cox regression analysis. Compared with the
reference sample, samples with a hazard ratio>1 had a higher risk of death, and samples with a hazard ratio<1 had a lower risk of death. (B and C) Kaplan–Meier
survival curves of ovarian cancer samples with different stages. (D and E) Kaplan–Meier survival curves of ovarian cancer samples of different age groups.
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correlated with the overall survival of ovarian cancer patients.
Samples with a high risk score were at greater risk of death (HR=
6.33, 95% CI: 3.50–11.45, P< .001).
To further explore the prognostic value of risk score in ovarian

cancer samples with different clinicopathological factors (includ-
ing age and TNM stage), we regrouped the ovarian cancer
patients according to these factors and conducted Kaplan–Meier
survival analysis. It was found that, the overall survival rate of
samples in the high-risk groupwas significantly lower than that in
the low-risk group in early stage (Stage I + Stage II) and advanced
stage (Stage III + Stage IV) samples (Fig. 2B and C); also, in
samples �59years old and samples >59years old (Fig. 2D and
E). These results indicated that the risk score could be used as an
independent indicator to predict the prognosis of ovarian cancer
patients.
3.3. Nomogram model could reliably predict the long-term
survival of ovarian cancer patients

The 2 independent prognostic factors including stage and risk
score, were used to construct the nomogram model (Fig. 3A).
Three lines were drawn upwards to determine the points obtained
from each factor in the nomogram for each patient. The sum of
these points was located on the “Total Points” axis, and a line
from the Total Points axis was drawn to determine the survival
probability of ovarian cancer patients at 1, 3, and 5years. The
calibration curve was close to the ideal curve (a 45° line that
4

passed through the origin of the coordinate axis with a slope of
1), indicating that the predicted overall survival probability
agreed well with the actual result (Fig. 3B, C and D).

3.4. Immune landscape of the ovarian cancer patients

We used the CIBERSORT software combined with the LM22
feature matrix to estimate the difference in infiltration of 22
immune cell types between high-risk and low-risk ovarian cancer
patients. The immune cell infiltration in 375 ovarian cancer
patients from TCGA were summarized in Fig. 4A. The change in
the proportion of tumor infiltrating immune cells in different
patients might represent the inherent characteristics of individu-
als. There were significant differences in the relative proportion of
infiltrating immune cell types such as M1 macrophages between
the high-risk and low-risk groups (Fig. 4B), and these 3 immune
cell types were correlated with the risk score (Fig. 4C). Through
principle component analysis (PCA) analysis, it was found that
based on these 3 types of immune cells, samples within the low-
risk and high-risk groups could be well separated (Fig. 4D).
The expression of immune checkpoints has become a

biomarker for ovarian cancer patients to choose personalized
immunotherapy.[19] The correlation between the patient’s risk
score and the key immune checkpoints [CTL-associated antigen 4
(CTLA4), PD1, indoleamine 2,3-Dioxygenase 1 (IDO1), TDO2,
LAG3, TIGIT] was analyzed and it was found that the risk score
was significantly correlated with them (Fig. 5A). Meanwhile, the



Figure 3. Establishment of nomogram to predict the survival of ovarian cancer patients. (A) Nomogram predicting the survival probability at 1, 3, and 5years in
ovarian cancer patients. (B–D) The calibration curve for the nomogram predicting the survival probability at 1, 3, and 5years in ovarian cancer patients. The X axis
represented the predicted survival rate of the nomogram, and the Y axis represented the actual survival rate.
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expressions of CTLA4 and IDO1 among these 6 immune
checkpoints were significantly different between the ovarian
cancer patients within high-risk and low-risk groups (Fig. 5B).
The result implicated that the poor prognosis of patients with
high-risk ovarian cancer might be associated with the immune
cell infiltration and immune checkpoints, however, further
investigation is still needed.

4. Discussion

Ovarian cancer has the highest mortality rate among all
gynecological malignancies. Nearly 80% of the patients are
diagnosed after the occurrence of symptoms, and the disease has
already progressed into a late stage.[20] The focus of cancer
treatment, especially cancer immunotherapeutic strategy, has
shifted from killing the cancer cell by conventional cytotoxic
chemotherapy towards re-building the immune system to
eliminate cancer cells and prevent the recurrence and relapse
of cancer.[21] Here is a strong call for the methods to identify and
develop clinically valuable gene signatures for ovarian cancer
prognosis, especially the analyses basing on comprehensive and
unbiased whole-genome data.
In this study, we first identified 48 TME-related genes

associated with the prognosis of ovarian cancer in TCGA
cohort. By using the LASSO Cox analysis, we finally selected 14
genes (ELN, FBLN1, ANGPT2, FBL, COMP, PPL, PLD2,
5

PDLIM4, EMP1, MYC, ITGAM, FRAT2, WDR45, and ADSL)
to construct the risk score model for prognosis, and the scoring
system showed strong discriminative power to separate patients
with good or poor survival. Some of these 14 genes are already
reported to contribute to ovarian cancers’ pathophysiological
features. For example, EMP1, belongs to the EMP family and
encodes the glycoprotein with 4 conserved domains.[22,23] EMP1
promotes the proliferation and invasion of ovarian cancer cells by
activating the MAPK pathway.[24] C-myc, a common over-
activated oncogene by amplification, has been found in>70% of
the advanced ovarian cancer patients.[25,26] ITGAM is a
potentially significant gene which plays a key role in the
metastasis of high-grade serous ovarian cancer.[27] In the ITGAM
knockout mice, the tumor growth and immunosuppressive
cytokine mRNA levels are enhanced.[28,29] ANGPT2 is highly
expressed in ovarian cancer tissues and cells, which promotes the
intraperitoneal growth of ovarian cancer, contributing to the
poor prognosis of mice infected by ovarian cancer cells.[30]

COMP encodes the extracellular matrix glycoprotein, and its
increased expression is implicated in the development of
epithelial ovarian cancer involving in the proliferation, migra-
tion, invasion, and apoptosis of ovarian cancer cells regulated by
SNHG25.[31,32] PDLIM4, a gene which is frequently suppressed
in various cancers, is considered as a tumor suppressor.[33] It has
been shown that PDLIM4 expression is significantly decreased in
ovarian cancer, which is related to the aggressive characteristics
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Figure 4. Immune infiltration in high-risk and low-risk ovarian cancer patients. (A) The relative proportion of infiltrating immune cells in all patients. (B) Immune cells
with significant difference between the high-risk and low-risk groups. The horizontal axis was the high-risk and low-risk groups, and the vertical axis was the relative
infiltration rate of immune cells. The P value was calculated by the Wilcoxn method. (C) The Chord diagram showing the correlation between the risk score and the
three significantly different immune cell types between the high-risk and low-risk groups, the thicker link between them represented the stronger correlation. (D) The
PCA analysis of the samples based on the 3 significantly different immune cell types between the high-risk and low-risk groups. The dots with different colors
represented different types of samples.

Figure 5. The relationship between important immune checkpoints and risk score. (A) The Chord diagram showing the correlation between the risk score and the
expression of immune checkpoints. The thicker connection between them indicated the stronger correlation. (B) Violin charts of immune checkpoints with
significantly different expression levels between the high-risk and low-risk groups. Different colors represented the high-risk and low-risk groups. The vertical axis
was the expression level. The P-value was calculated using the Wilcoxn method.
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of this disease such as the proliferation, migration, and invasion
abilities of cancer cells, leading to an inferior prognosis.[34] ELN
is significantly differentially expressed between primary ovarian
cancer and peritoneal metastatic ovarian cancers, indicating that
ELN may be associated with the metastasis of ovarian cancer.[35]

PLD2 overexpression in ovarian cancer cells could increase the
production of lysophosphatidic acid, a lipid mediator which
enhances the motility and growth of ovarian cancer cells.[36]

Therefore, PLD2 may involve in ovarian cancer by regulating the
generation of lysophosphatidic acid. For the remaining genes,
although there are no direct researches on their association with
ovarian cancer, most of them are reported to be associated with
other cancers. FBLN1, located on chromosome 22 (22q13), is
reported to be closely associated with the migrative, adhesive, and
invasive features of tumor cells, and is adopted as a signature in
multiple cancers.[37] For example, the FBLN1 in serum is
considered as a noninvasive biomarker in identifying colorectal
cancer.[38] FRAT2 is located on human chromosome 10q24.1 and
could regulate the WNT signaling pathway.[39] Increased expres-
sion of FRAT2 is observed in multiple cancers, such as the gastric
cancer and lung cancer, which is probably associated with the
regulation of WNT signaling pathway.[40,41] WDR45 encodes the
beta-propeller protein, and itsmutationoccurs in cancers including
endometrial carcinoma and clear cell renal carcinoma.[42,43] ADSL
plays a key role in the de novo purine synthesis pathway, and is an
oncogenic driver in several cancers, thus being considered as an
essential therapeutic target in cancer.[44] FBL encodes the nucleolar
protein and enhances the proliferation of cancer cells through
modulating mRNA translation and rRNAs methylation, which is
considered as a potential oncogene in some cancers such as breast
cancer and prostate gland cancer.[45] These results also confirm the
potential reliability of our study indirectly.
We analyzed the fractions of infiltrating immune cells in ovarian

cancer patients stratified by the risk score. It was found that theM1
macrophages, M2 macrophages, and follicular helper T cells were
associated with the risk score. Moreover, compared with the low-
risk group, the high-risk group showed decreased infiltration
proportions of M1 macrophages and follicular helper T cells, and
increased infiltration proportion of M2 macrophages. Liu et al[46]

indicates obesity could promote the metastasis of ovarian cancer by
down-regulating the infiltration of M1 macrophages, which may
result in the poor survival outcome of the ovarian cancer patients.
Lan et al[47] has demonstrated theM2macrophages infiltration and
the activation effects on the transformation from macrophages to
M2macrophages probably lead to the inferior prognosis of ovarian
cancer. Additionally, the infiltration of follicular helper T cells are
proved to be correlated with superior prognosis in breast cancer
patients.[48] These researches are consistent with our result on the
association between infiltrations of M1 macrophages, follicular
helper T cells, M2 macrophages, and ovarian cancer prognosis.
As the immune checkpoints are instructive for personalized

immunotherapy, also analyzed the key immune checkpoints in
the ovarian cancer patients. It was found that the risk score was
correlated to all key immune checkpoint including CTLA4, PD1,
IDO1, TDO2, LAG3, and TIGIT. Additionally, CTLA4 and
IDO1 were differentially expressed between the high-risk and
low-risk ovarian cancer patients. The patients with high risk
score had increased expression levels of CTLA4 and IDO1,
indicating that the poor prognosis of high-risk ovarian cancer
patients may be associated with the immune checkpoints, and
immunotherapy targeting CTLA4 and IDO1 is a potential
alternative for ovarian cancer treatment. Though the early study
7

showed CTLA4 blockade had minimal activity in ovarian cancer
models,[49] recent studies reported CTLA4 blockade could boost
the expansion of tumor-reactive CD8+ tumor-infiltrating
lymphocytes in ovarian cancer.[50] In the present data, tailor
targeted therapy against IDO1 may enhance the effectiveness of
treatment. IDO1 inhibitors have been designed, screened, and
tested in preclinical models of disease, but further verification in
clinical trials is still required.
5. Conclusions

In thepresentwork,weare concernedwith thegenetic characteristics
of the microenvironment. Our systematic analysis and assessment
demonstrate that 14TME-related genes probably play a pivotal role
in the prognosis of ovarian cancer patients, and the risk score based
on these 14 genes may help to outline the prognosis of patients with
ovarian cancer. However, although our results obtained from
bioinformatics analysis exhibit promising performance, experimen-
tal validation is needed to further validate our results.
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