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Abstract
Inertial motions may be defined in terms of acceleration and jerk, the time-derivative of acceleration. We investigated the 
relative contributions of these characteristics to the perceived intensity of motions. Participants were seated on a high-fidelity 
motion platform, and presented with 25 above-threshold 1 s forward (surge) motions that had acceleration values ranging 
between 0.5 and 2.5 m/s

2 and jerks between 20 and 60 m/s
3 , in five steps each. Participants performed two tasks: a magnitude 

estimation task, where they provided subjective ratings of motion intensity for each motion, and a two-interval forced choice 
task, where they provided judgments on which motion of a pair was more intense, for all possible combinations of the above 
motion profiles. Analysis of the data shows that responses on both tasks may be explained by a single model, and that this 
model should include acceleration only. The finding that perceived motion intensity depends on acceleration only appears 
inconsistent with previous findings. We show that this discrepancy can be explained by considering the frequency content 
of the motions, and demonstrate that a linear time-invariant systems model of the otoliths and subsequent processing can 
account for the present data as well as for previous findings.
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Introduction

Perception of self-motion results from interactions between 
different sensory modalities (Howard 1982): the visual sys-
tem registers optic flow and uses this information to esti-
mate velocity and motion direction (de Winkel et al. 2018), 
and the vestibular system and a variety of somatosensory 
(proprioceptive/kinesthetic and tactile) sensors throughout 

the body transduce the magnitude and direction of inertial 
stimulation directly (Zaichik et al. 1999).

For translational motion, which is the focus of the 
present study, the otolith organs of the vestibular system 
are generally regarded as the primary contributor (Walsh 
1961; Valko et al. 2012). Physiological studies performed 
in monkeys (Fernandez and Goldberg 1976; Massot et al. 
2011; Yu et al. 2012; Jamali et al. 2013; Laurens et al. 
2017) have shown that the output of the otolith organs, 
the afferent neural firing rate, and subsequent processing 
of these signals depends on acceleration and jerk (rate 
of change of acceleration), and changes with frequency 
content. Similarly, psychophysical studies performed in 
humans show that motion direction detection thresholds 
(Benson et al. 1986; Soyka et al. 2009, 2011), absolute 
detection thresholds (Heerspink et al. 2005) and differ-
ential thresholds (Grant and Haycock 2008) depend on 
acceleration and jerk. In the majority of these psychophys-
ical studies, motion perception is described as a linear 
time-invariant (LTI) system, which characterizes the sys-
tem’s output in response to sinusoidal acceleration inputs 
using transfer functions. Grant and Haycock (2008) took 
a somewhat different approach: they presented subjects 

Communicated by John C. Rothwell.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s0022​1-020-05745​-7) contains 
supplementary material, which is available to authorized users.

 *	 Ksander N. de Winkel 
	 ksander.dewinkel@tuebingen.mpg.de

	 Florian Soyka 
	 florian.soyka@tuebingen.mpg.de

	 Heinrich H. Bülthoff 
	 heinrich.buelthoff@tuebingen.mpg.de

1	 Max Planck Institute for Biological Cybernetics, 
Max‑Planck‑Ring 14, 72076 Tübingen, Baden‑Württemberg, 
Germany

http://orcid.org/0000-0003-0534-2723
http://orcid.org/0000-0003-2568-0607
http://crossmark.crossref.org/dialog/?doi=10.1007/s00221-020-05745-7&domain=pdf
https://doi.org/10.1007/s00221-020-05745-7


700	 Experimental Brain Research (2020) 238:699–711

1 3

with trapezoidal motion profiles, and characterized these 
motions in terms of their peak acceleration and jerk val-
ues. They then quantified the relative contributions of 
these properties to perceived motion intensity. Consist-
ent with the literature, the results indicated that perceived 
motion intensity depended both on acceleration and jerk. 
However, the range of acceleration and jerk values used 
was small, and the experimental paradigm consisted of a 
relatively small number of pairwise comparisons. Conse-
quently, it is not known to what extent these findings can 
be generalized.

The present study was designed to expand upon these 
results: participants were presented with a larger range of 
motion stimuli, with acceleration and jerk values approx-
imately an order of magnitude larger than in the Grant 
and Haycock study (Grant and Haycock 2008), using a 
high-fidelity motion simulator. In addition to a pairwise 
comparison (2-interval forced choice, 2IFC) task, partici-
pants also performed a magnitude estimation (ME) task. 
The relative contributions of acceleration and jerk were 
determined by using a statistical model of perception that 
simultaneously accounts for the data in the 2IFC and ME 
tasks. Previous work considering LTI models focused on 
perception around the absolute detection threshold. Here, 
we also assessed whether an LTI model can predict per-
ception for supra-threshold motion. By combining the data 
of these different tasks and analyses, we aimed to contrib-
ute to a better understanding of perceived motion intensity.

Methods

Ethics statement

The experiment was performed in accordance with the 
Declaration of Helsinki. Participants provided written 
informed consent before participation in the study. The 
experiment protocol was approved by the ethical commit-
tee of the Eberhard Karls University in Tübingen, Ger-
many (reference: 355/2019BO1).

Participants

Seven participants (mean age 33.3, SD 14.0, 4 females) 
were recruited for the study. Three of them were employ-
ees of the Max Planck Institute for Biological Cybernet-
ics; the remaining four were recruited from the institute 
participant pool. Fitness to participate in a simulator study 
was assessed by questionnaire. Participants were informed 
of the experimental goals and procedures in compliance 

with the notion of informed consent. External participants 
were compensated for their time at a rate of C8/h.

Setup

Stimuli were presented using an eMotion 1500 hexapod 
motion system (Bosch Rexroth AG, Lohr am Main, Ger-
many) available in our laboratory (Nesti et al. 2017; de 
Winkel et al. 2017, 2018). The platform was controlled 
using Simulink software (The MathWorks, Inc., Natick, 
MA, USA). Participants were seated in an automotive style 
bucket seat (RECARO GmbH, Stuttgart, Germany) that was 
mounted on top of the platform. Participants were secured in 
the seat with a five-point safety harness (SCHROTH Safety 
Products GmbH, Arnsberg, Germany). To minimize head 
movements, participants wore a Philadelphia-type cervical 
collar. Actuator noise was masked by having participants 
wear earplugs with a 37 dB signal-to-noise ratio (UVEX 
Arbeitsschutz GmbH, Fürth, Germany) as well as a wireless 
headset (Plantronics, Santa Cruz, California, United States) 
that provided active outside noise cancellation and played 
white noise during stimulus presentation.

Stimuli and tasks

To determine the relative contribution of acceleration and 
jerk to perceived motion intensity, we created 25 motions. 
These motions were 1 s forward translations (surge motions), 
consisting of an acceleration phase, a constant velocity 
phase, and a deceleration phase. The acceleration phase was 
defined as A

t
= Amax sin

2(�t∕t1) . t1 was varied to achieve dif-
ferent combinations of acceleration and jerk within individ-
ual motions: there were five levels of maximum acceleration 
( Amax = [0.5, 1.0, 1.5, 2.0, 2.5]m/s

2 ) and five levels of jerk 
( Jmax = [20, 30, 40, 50, 60]m/s

3 ), resulting in 25 different 
motion profiles. As an illustration, the five motion profiles 
for the highest acceleration level ( 2.5 m/s

2 ) and each jerk 
level are shown in Fig. 1.

The ability of the platform to accurately reproduce the 
motion profiles was tested by comparing the commanded 
motion to actual accelerations, recorded using an accelerom-
eter. The recordings indicated that the platform reproduced 
the motion profiles accurately (see Fig. 2).

The motions were used in two tasks: a magnitude estima-
tion (ME) task and a two-interval forced choice task (2IFC). 
To block visual cues, which would provide additional infor-
mation on velocity (Howard 1982; Pretto et al. 2009), par-
ticipants performed both tasks with their eyes closed.

ME task In the ME task, participants were asked to 
attribute intensity ratings to the motions, using an inter-
val measurement scale (Stevens et al. 1946). Participants 
were presented with a motion after which they provided a 
response, and then were moved back to the initial position. 
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Participants first completed three practice trials. On these 
trials, the motion with the middle acceleration and jerk 
levels (i.e., 1.5 m/s

2
, 40 m/s

3 ) was presented, which they 
were told to attribute the value ‘100’. This value served as 
a reference for subsequent motions: for instance, a motion 
feeling twice as strong should be attributed twice the refer-
ence value. After the practice trials were completed, par-
ticipants were presented with each of the 25 motions in a 
random order. The ME task took about 5 min to complete.

The ME task was always performed after the 2IFC task. 
This was done to be sure participants were familiar with 
the range of motions, without explicitly informing them 
of the range of motions and thereby potentially truncating 
their responses.

2IFC task In the 2IFC task, participants performed 
pairwise comparisons on 300 experimental trials. To gen-
erate the trials, we first formed pairs of the 25 different 
motion stimuli that were defined. These pairs of motions 
were generated using the MATLAB nchoosek function, 
which gives all the possible combinations of drawing 2 
items out of 25 items (25!∕2!(25 − 2)! = 300).

Second, we randomized the order of the motions within 
the pairs. This was necessary because the MATLAB func-
tion returned the pairs as an ordered list in which the first 
motion tended to have larger acceleration/jerk values than 
the second. This would be problematic because predomi-
nantly presenting motions with larger peak accelerations 
and/or jerks first would bias the responses toward stating 
that the first motion of a pair was more intense.

From the five values that peak acceleration could take 
on and the five for jerk, theoretically nine difference val-
ues ΔAmax = Amax(motion2) − Amax(motion1) , and nine 
ΔJmax = Jmax(motion2) − Jmax(motion1) can be obtained, 
ranging from the smallest minus the largest to the largest 
minus the smallest (e.g., 0.5–2.5 = −2; 2.5–0.5 = 2). Con-
sequently, the Δ values for the 300 trials are distributed 
over a 9 × 9 grid. This distribution is not uniform but peaks 
around the smaller Δ , because there are relatively more com-
binations that lead to smaller Δ values (e.g., 1–0.5 = 0.5; 
1.5–1 = 0.5, 2–1.5 = 0.5, 2.5–2  = 0.5, but only 2.5–0.5 = 2). 
Because of the randomization of the order of motions within 
the trials, the distribution of ΔAmax and ΔJmax also differed 

Fig. 1   Visualizations of the 
motion profile in terms of posi-
tion X (upper left), velocity V 
(upper right), acceleration A 
(lower left), and jerk J (lower 
right), for motions with a 
maximum acceleration A

max
 of 

2.5m/s
2 , and maximum jerks 

J
max

 of [20, 30, 40, 50, 60] m/s
3 . 

The properties of different 
motions are matched between 
panels on the basis of their color
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slightly between participants, and not all points on the grid 
were presented. This is illustrated in Fig. 3. Finally, we ran-
domized the order of the trials.

Participants initiated each trial themselves by means 
of a button press. The first motion of a pair was presented 
1 s after the trial was initiated; the second motion was pre-
sented 2 s after completion of the first. At the end of the trial, 
participants indicated which motion of the pair was more 
intense by means of a button press (i.e., ‘first’, or ‘second’). 
After the response was received, the simulator was moved 
back to its initial position over 3 s. Including breaks, the 
2IFC task took approximately 1.5 h to complete.

Instructions The instructions given to participants were 
formulated to reflect the idea that responses on the tasks are 
based on intensity percepts, which result from a combina-
tion of information on acceleration and jerk. For the ME 
task, the (written) instructions were: “your task is to provide 
subjective ratings on the perceived intensity of motion by 
attributing numbers to stimuli verbally”. For the 2IFC task, 
the instructions were: “you will be presented with sequences 
of two motions, and asked to rate which of the two is more 
intense”. In addition, we provided the following instruction: 

Fig. 2   Accelerometer record-
ings for all motion profiles. 
Each panel shows the record-
ings for a single accelera-
tion level (as noted); the five 
maximum jerks J

max
 of 

[20, 30, 40, 50, 60] m/s
3 are 

represented by the colors 
green, purple, yellow, orange, 
and blue, respectively. The 
corresponding measured 
mean (standard deviation) 
peak acceleration values 
are: 0.46(0.06), 1.01(0.04), 
1.54(0.02), 2.04(0.03), and 
2.57(0.06) m/s

2 . Thick lines 
show the recordings, and thin 
dashed lines the commanded 
motions. The signals are low-
pass filtered using a third-order 
Butterworth filter with a cutoff 
frequency of 40 Hz to filter out 
electrical interference

Fig. 3   Overview of the conditions presented to an example partici-
pant (id 1) in the 2IFC task, and the number of repetitions per condi-
tion. The size of the dots corresponds to the number of repetitions. 
The smallest dots represent 1 repetition; the largest dot represents 14 
repetitions
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“try to perform the tasks intuitively: when the motions have 
stopped, attribute a number or make a judgment on which 
motion was more intense based on your first impression”. 
These instructions were deemed sufficient, as the partici-
pants did not ask for additional explanations.

Perception model

We hypothesized that a percept of motion intensity � is 
constructed from observations A∗

max
, J∗

max
 (i.e., internal rep-

resentations) of the maximum acceleration Amax and jerk 
Jmax for a given motion, and that the contribution of each 
variable may depend on the value of the other. The latter 
means that, for instance, the effect of acceleration may be 
larger for small jerks than it is for large jerks.

We model the percept as a combination of A∗
max

, J∗
max

 , 
and their interaction A∗

max
× J∗

max
 . We also assume that the 

observations are unbiased and have normally distributed 
errors. Consequently, the percept is modeled as a normally 
distributed random variable, with mean �� as

and variance �2
�
 . In Eq. (1) above, �

A
,�

J
,�

AJ
 are the weights 

for the observations on acceleration, jerk and their interac-
tion, respectively. In the remainder of the text, we will use 
the same symbols to refer to coefficients for these effects. It 
should be noted that stimulus-dependent noise (i.e., Weber’s 
law) is not included in this model. We tried to fit a version 
of the model that also included stimulus-dependent noise, 
but in this case the model fitting routine could not find a 
unique solution. In the following two sections, we describe 
how the percept may be transformed into responses on the 
different tasks.

ME task In the ME task, participants have to express their 
percept verbally, as a number. We assume that this process 
involves a linear transformation from the perceptual domain 
to a numerical domain. Using the expressions for the mean 
and variance of the percept, the probability of a response on 
the ME task rME is given by

where Φ(⋅) is the normal distribution function, and

K is the scaling factor from the perceptual domain to the 
numerical domain; r0 is an intercept. The factor K2 is 
included in the equation for the standard deviation because 
when a variable ( � ) is scaled by a factor K, its variance 
increases by the square of that factor (Freund 1962).

(1)�� = �
A
Amax + �

J
Jmax + �

AJ
(Amax × Jmax)

(2)Pr(rME) = Φ(rME,�ME, �ME) ,

(3)�ME = K�� + r0

(4)�ME =
√

K2�2
�
.

2IFC task In the 2IFC task, the response is the binary 
outcome of a comparison between the magnitude of two 
intensity percepts �

a
,�

b
 . We assume that these percepts 

are independent, and that participants respond posi-
tively, namely that the second motion b of a pair was 
more intense than the first a, if 𝜓

b
> 𝜓

a
 . This particular 

response is coded as r2IFC = 1 ; the opposite response is 
coded r2IFC = 0.

Consequently, responses reflect the difference between 
�
b
− �

a
 . When the difference is positive, this means b > a ; 

when the difference is negative, a > b . Using that the per-
cepts are normal distributed random variables with mean 
as in Eq. (1) and variance �2

�
 , their difference is also a 

normal distributed random variable with mean

and variance and standard deviation as

For a given pair of stimuli a, b, the probability of a positive 
response is 1 minus the integral over this distribution from 
(−∞, 0] . This is equivalent to

where Φ−1 is the normal cumulative distribution function, 
and �� the common noise parameter. Note that this is effec-
tively a probit model (Bliss 1934), which will be used in 
separate analyses of the data collected in the 2IFC task.

Model comparisons To evaluate the performance of the 
model, we compared its overall fit (referred to as ‘full’) to 
a number of partial models. These partial models either 
account for subsets of the data, or include a subset of the 
effects. Comparing the fit of the partial models to the full 
model allows us to assess whether it is indeed likely that 
responses on both tasks result from the same perceptual 
process, and what this process is. Three comparisons were 
made: as a first alternative model, we combined individual 
model fits for the two tasks (referred to as ‘add’). This 
comparison allows us to evaluate whether participants 
used the same information/strategy in both tasks. We also 
compared the fit of the full model to different versions of 
the perception model: one omitting the interaction term, 
where perceived intensity is a linear combination of accel-
eration and jerk, named ‘main’; and one that additionally 
omits the term for jerk, named ‘acc’, where perception 
depends on acceleration only. Based on these comparisons, 
we choose the model that provides the most parsimonious 

(5)�2IFC = ��b
− ��a

(6)�2

2IFC
= �2

�a

+ �2

�b

(7)�2IFC =
√

2�� .

(8)Pr(r2IFC = 1) = Φ−1

�

��b
− ��a

√

2��

�

,
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description of participants’ behavior. We used the Bayes-
ian information criterion (BIC) score as the basis for these 
comparisons (Schwarz 1978).

Linear time‑invariant systems model

As noted in the introduction, much research on the vestibular 
system has been performed from an (aerospace) engineering 
perspective; modeling motion perception based on otolith 
stimulation as a linear time-invariant (LTI) system (Walsh 
1961; Fernandez and Goldberg 1976; Benson et al. 1986; 
Soyka et al. 2009, 2011; Heerspink et al. 2005; Grant and 
Haycock 2008; Mayne 1974; Hosman and Van der Vaart 
1978; Hosman and Stassen 1999). Whereas an in-depth 
treatment of LTI systems is beyond the scope of the pre-
sent paper (for an introduction, see for instance: Soyka 
et al. 2011), we do include an analysis using this method. 
The purpose of this analysis is to provide a benchmark for 
comparison between methodologies typical for psychology 
and engineering. Moreover, the parameters of available LTI 
models have all been determined from absolute (direction) 
detection thresholds. Inclusion of this analysis for above-
threshold motion thus also serves to validate these models 
for a novel range of motions.

The LTI model is a transfer function (Eq. 9), which is 
based on a simplified model of how acceleration inputs bend 
the sensory hair cells (cilia) of the otoliths, leading to an 
output that can be interpreted as proportional to a neural 
firing rate:

here s is the complex number frequency parameter, K is a 
gain, which scales the output, and �

N
, �1 and �2 determine 

how the output signal changes relative to the input signal 
in terms of frequency content. The behavior of this transfer 
function using parameters found by Soyka et al. (2011)1 is 
illustrated in Fig. 4. The figure shows the model output for 
one of the presently used motion profiles according to this 
transfer function.

(9)H(s) = K ×
(1 + �

N
s)

(1 + �1s)(1 + �2s)
,

Results

The data from the ME and 2IFC tasks were analyzed sepa-
rately, using linear models (ME task) and generalized linear 
models (2IFC task), as well as simultaneously, using the 
perception model described in the “Perception model” sec-
tion. As an illustration, the data and model fits are shown for 
an example participant in Fig. 5. In addition, we compare 
the present findings to predictions made using an LTI sys-
tems model based on the functioning of the otoliths (Soyka 
et al. 2011). The separate analyses were performed first to 
evaluate the main and interaction effects of acceleration and 
jerk in the two tasks independently. Fitting these models is 
equivalent to separate fits of the perception model to data of 
the two tasks. By combining the results of the individual fits, 
an evaluation of the evidence for the combined perception 
model can be made using a statistical criterion. To account 
for individual differences, the data from each participant 
were analyzed individually. Overall conclusions were drawn 
by combining individual results.

ME task

Data obtained in the ME task were analyzed using a linear 
model, which had the following form in Wilkinson notation: 
(Wilkinson and Rogers 1973)

The ‘1’ term indicates the intercept. All terms on the 
right hand side of Eq. 10 were centered (i.e., the medians 
were subtracted from every value) (Hox et al. 2017). The 
model was fitted to the data using the fitlm function of the 

(10)rME ∼ 1 + Amax + Jmax + Amax × Jmax .

Fig. 4   Behavior of the LTI model with parameters found by Soyka 
et al. (2011). The figure shows the system output (thick line) for one 
of the motion profiles (thin dashed line). The motion corresponds to 
the identically colored motion profile in Fig. 1 ( A

max
= 2.5 m/s

2 and 
J
max

= 60 m/s
3 ). Note that the scaling is arbitrary

1  Apart from the parameters found by Soyka et  al. (2011), we also 
evaluated other sets of parameters, namely those found by Soyka 
et al. (2011) based on the data from Zaichik et al. (1999), Heerspink 
et  al. (2005) and Hosman and Stassen (1999). This did not qualita-
tively affect the results (also see “Discussion”).
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MATLAB Statistics and Machine Learning toolbox (MAT-
LAB 2017). Estimated coefficients are presented in Table 1 
below. We also present standardized coefficients for acceler-
ation, jerk and their interaction. Note that these can be inter-
preted as the relative contributions to ratings of perceived 
motion intensity. Standardized coefficients were calculated 
as �∗

i
= �

i
�
i
∕�

rME
 (see e.g., Long 1997; Hox et al. 2017), 

where i represents acceleration, jerk, or the interaction.
For comparison between the tasks and modeling 

approaches, we divide the average standardized coef-
ficients by the sum of their absolute values. This yields 
relative weights 𝜔̃

A
= 0.730, 𝜔̃

J
= 0.012 and 𝜔̃

AJ
= −0.258.

The findings suggest that the subjective intensity of 
motion increases with the size of the acceleration, and 
that this effect may be moderated by the magnitude of the 

jerk. This moderation effect means that the strength of 
the effect of acceleration decreases for larger jerk values.

2IFC task

Data obtained in the 2IFC task were analyzed using a gener-
alized linear model, which had the following form in Wilkin-
son notation (Wilkinson and Rogers 1973)

where Φ−1 represents the probit link function, ‘ −1 ’ indicates 
the omission of an intercept, and ΔAmax,ΔJmax represent 
the difference between the peak acceleration and jerk val-
ues of the second and first motion, respectively. All terms 

(11)Φ−1(r2IFC) ∼ −1 + ΔAmax + ΔJmax + Δ(Amax × Jmax) ,

Fig. 5   Data and model fits for an example participant (id 1). The left 
panel shows the findings for the ME-task, and the right panel the 
findings for the 2IFC-task. Dots represent individual responses. The 
gray surfaces show the separate model fits (i.e., for the task repre-
sented by the panel); blue surfaces show the fit of the joint perception 
model. For the left panel, the axes c.A

max
, c.J

max
 , represent the (cen-

tered) peak acceleration and jerk values, respectively. The vertical 

axis represents responses R in arbitrary units � . For the right panel, 
the axes labeled ΔA

max
 and ΔJ

max
 show the difference in peak accel-

eration and jerk values between the second and first motion of a pair. 
In this panel, the size of the dots is proportional to the corresponding 
number of observations. The vertical axis represents the probability 
of responses that the second motion was perceived as more intense 
than the first

Table 1   Unstandardized 
and standardized parameter 
estimates for the ME model

Boldfaced parameters are different from 0 at the � = 0.05 significance level (assessed by t tests). The row 
labeled x̄ shows the average value for each parameter

id Unstandardized Standardized

r
0

�
A

�
J

�
AJ

�∗
A

�∗
J

�∗
AJ

1 92.14 110.00 − 0.15 − 0.52 1.17 − 0.03 − 0.29
2 73.71 63.72 − 1.03 0.08 0.86 − 0.28 0.05
3 82.07 108.80 0.41 − 1.06 1.37 0.10 − 0.69
4 65.86 100.76 0.89 − 1.18 1.54 0.27 − 0.93
5 144.82 182.00 − 0.38 − 1.06 1.18 − 0.05 − 0.36
6 70.93 131.72 0.93 − 1.38 1.46 0.21 − 0.80
7 86.07 74.00 − 0.40 − 0.00 0.95 − 0.10 0.00
x̄ 87.94 110.14 0.04 − 0.73 1.22 0.02 − 0.43
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on the right hand side of Eq. 11 were centered using the 
same method as for the ME-task. An intercept was omitted 
because theoretically, the probability of a positive response 
should be 0.5 when ΔAmax,ΔJmax (and their interaction) 
are 0. The model was fitted to the data using the fitglm 
function of the MATLAB Statistics and Machine Learning 
toolbox (MATLAB 2017). Estimated and standardized coef-
ficients are presented in Table 2. Standardized coefficients 
were calculated as �∗

i
= �

i
�
i
∕�

r2IFC
 (see e.g., Long 1997; 

Hox et al. 2017), where i represents acceleration, jerk, or the 
interaction. �

r2IFC
 had a fixed value of 1.

For comparison between the tasks and modeling 
approaches, we divide the average standardized coefficients 
by the sum of their absolute values. This yields relative 
weights 𝜔̃A = 0.801, 𝜔̃J = −0.051 and 𝜔̃AJ = 0.148.

The findings indicate that the discrimination task was 
performed predominantly on the basis of the difference in 
acceleration between motions.

Perception model

The perception model (“Perception model”) was fitted to the 
data by minimizing the negative log-likelihood, using the 

MATLAB fmincon function of the Optimization toolbox 
(MATLAB 2017). Parameters �

A
,�

J
,�

AJ
 are the weights 

for the observations on acceleration, jerk, and their interac-
tion; K and r0 are the response gain and intercept in the ME 
task, respectively. The standard deviation for the ME data 
was treated as a free parameter, and the standard deviation 
for the 2IFC data was fixed at 1. Consequently, the model 
can be seen as a combination of the separate analyses with 
the constraint that the weights for acceleration, jerk and their 
interaction are the same for the two tasks. Model coeffi-
cients (and standardized coefficients for acceleration, jerk, 
and their interaction) are presented in Table 3.

The standardized coefficients were ‘x-standardized’, 
meaning they were calculated as �∗

i
= �

i
�
i
 , where the sub-

script i refers to a particular term (Long 1997). The values 
reported in the table were calculated using the � parameters 
from the ME task.

For comparison between the tasks and modeling 
approaches, we divide the average standardized coefficients 
by the sum of their absolute values. This yields relative 
weights 𝜔̃

A
= 0.879, 𝜔̃

J
= −0.047 and 𝜔̃

AJ
= 0.074 . The 

findings are consistent with the separate analyses, showing 
that responses are primarily driven by acceleration.

Table 2   Unstandardized 
and standardized parameter 
estimates for the 2IFC model

Boldfaced parameters are different from 0 at the � = 0.05 significance level (assessed by t tests). The row 
labeled x̄ shows the average value for each parameter

id Unstandardized Standardized

�
A

�
J

�
AJ

�∗
A

�∗
J

�∗
AJ

1 2.71 − 0.01 0.00 2.77 − 0.29 0.11
2 1.80 − 0.00 0.01 1.83 − 0.04 0.32
3 2.54 − 0.04 0.03 2.59 − 0.88 1.35
4 3.00 0.00 − 0.00 3.07 0.08 − 0.18
5 3.64 0.01 − 0.01 3.72 0.13 − 0.53
6 4.70 0.01 0.00 4.80 0.21 0.08
7 2.90 − 0.03 0.05 2.95 − 0.59 2.87
x̄ 3.04 − 0.01 0.01 3.11 − 0.20 0.57

Table 3   Parameter estimates for 
the perception model

Boldfaced parameters are different from 0 at the � = 0.05 significance level (assessed by t tests). The row 
labeled x̄ shows the average value for each parameter

id Unstandardized Standardized

�
A

�
J

�
AJ

K r
0

�∗
A

�∗
J

�∗
AJ

1 2.98 − 0.01 − 0.01 33.19 92.14 2.03 − 0.12 − 0.23
2 1.83 − 0.01 0.00 33.40 73.71 1.24 − 0.12 0.16
3 2.76 − 0.04 0.02 18.49 82.07 1.85 − 0.53 0.69
4 3.27 0.01 − 0.01 19.31 65.86 2.23 0.14 − 0.37
5 3.70 0.00 − 0.01 44.37 144.82 2.52 0.04 − 0.43
6 4.91 0.01 0.00 16.01 70.93 3.34 0.18 − 0.14
7 3.07 − 0.03 0.05 14.22 86.07 2.09 − 0.40 1.62
x̄ 3.22 − 0.01 0.01 25.57 87.94 2.18 − 0.12 0.18
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Model comparisons

We assessed whether the perception model (‘full’) provides 
a fair account of the data by comparing its fit to the com-
bined fit of the separate models (‘add’). In addition, we 
compared the fit to a model omitting the interaction effect 
(‘main’), and to a model additionally omitting the term for 
jerk (‘acc’). These comparisons were made on the basis of 
the Bayesian information criterion (BIC). This is a measure 
of relative model quality based on the model likelihood. The 
score includes a penalty for the number of parameters (e.g., 
Hox et al. 2017). Models with a lower score are preferred. 
The calculated BIC scores are presented in Table 4.

For 3/7 participants, we found positive evidence (id 2,4,6; 
ΔBIC = 2 − 6 ) for the acceleration-only model; for another, 
the evidence for this model and the main-effects model was 
about equally strong (id 5; ΔBIC = 1.6 ); and for another 
participant the evidence for this model was about equally 

strong as the evidence for the separate fits (i.e., ‘add’: id 
3; ΔBIC = 1.6 ). For the participant with id 1, the best fit-
ting model is the one with main effects, indicating a nega-
tive additive effect of jerk; and for the participant with id 7 
the best fitting model is the additive model, suggesting this 
participant may have applied different strategies in the two 
tasks.

Overall, the model comparisons favor the ‘acc’ model, 
with ΔBIC = 13.7 . A ΔBIC > 10 is considered decisive evi-
dence (Kass and Raftery 1995). This indicates that data of 
both tasks is best described with a model that only includes 
acceleration as a predictor.

Linear time‑invariant systems model

To assess whether the LTI model can account for responses 
on the ME and 2IFC tasks, we processed each motion profile 
using the transfer function (as shown in Fig. 4). The transfer 
function was defined using the MATLAB tf function, and 
the motion profiles were passed through the transfer function 
using the lsim function. These functions are part of the 
Control System toolbox (MATLAB 2017).

Responses on the ME-task can be generated using the LTI 
model by taking the peak of the absolute value of the model 
output for each motion. We can then fit the same (statistical) 
linear model to these data as was done for the human par-
ticipants. Similarly, we can generate binary ‘responses’ by 
comparing the peak values of the LTI model outputs for all 
different motions, and then fit the probit model to this data. 
The results of this approach are shown in Fig. 6. Note that 
this approach does not consider the perceptual noise that is 
present in actual human data, such that 1. ‘responses’ for the 
ME task lie on the plane exactly, and 2. there are no mistakes 
in the 2IFC task, causing the slope of the psychometric func-
tion to be steeper than it is for actual participant data.

By comparing Fig.  6 with Fig.  5, it can be seen 
that the LTI model reproduces the human data quite 

Table 4   Model BIC scores

‘add’ represents the combined score of models fit to the data of the 
two tasks separately, ‘full’ represents the perception model; ‘main’ 
the model excluding the interaction term and ‘acc’ the model includ-
ing only a term for acceleration. The ‘overall’ scores were calculated 
on the basis of the sum of the likelihoods, number of parameters and 
number of observations. Boldfaced values indicate the best (i.e., low-
est) BIC value for each row

id BIC

add full main acc

1 402.4 397.7 392.9 402.4
2 446.2 446.9 441.6 436.0
3 408.0 412.8 412.9 409.6
4 413.6 415.1 410.7 405.8
5 431.0 428.1 424.6 426.2
6 383.1 387.4 381.7 376.9
7 340.1 348.8 362.8 370.3
Overall 2933.3 2918.3 2895.3 2881.6

Fig. 6   Simulated responses to 
the ME (left panel) and 2IFC 
(right panel) tasks generated on 
the basis of outputs from the 
LTI model given in Soyka et al. 
(2011). For comparison with 
Fig. 5, the same sets of stimuli 
were used as those presented 
to participant ‘id 1’. For the 
right panel, the size of the dots 
is proportional to the number 
of simulated responses, which 
was kept equal to the number 
of actual observations for the 
participant
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accurately. Fitting the linear model that was used for the 
ME task to the simulated data yielded standardized coef-
f icients �∗

A
= 1.029,�∗

J
= −0.078,�∗

AJ
= −0.046 ,  cor-

responding to relative weights 𝜔̃
A
= 0.893, 𝜔̃

J
= −0.068 

and 𝜔̃
AJ

= −0.040 . Fitting the probit model that was 
used for the 2IFC task yielded standardized coefficients 
�∗
A
= 22.477,�∗

J
= −0.004,�∗

AJ
= 0.010 , corresponding to 

relative weights 𝜔̃
A
= 0.974, 𝜔̃

J
= −0.003 and 𝜔̃

AJ
= 0.023 . 

For this latter procedure it should be noted that because there 
is no noise in the responses, there is a perfect separation 
between acceleration/jerk values for which the model pre-
dicts zeros and ones. In other words, the fit does not have 
a sloping area where the probability of a positive response 
gradually increases; instead, there is a hard cutoff. Nev-
ertheless, the fit shows that where the cutoff lies depends 
on acceleration only, which is consistent with the results 
obtained for human participants.

Discussion

The goal of the present study was to determine the relative 
contributions of acceleration and jerk to perceived motion 
intensity. In a separate analysis of the ME task, a positive 
effect of acceleration was found for all participants, and a 
negative interaction effect between jerk and acceleration 
was found for three participants. This latter finding implies 
that the strength of the effect of acceleration decreases for 
higher levels of jerk. In terms of relative contributions, per-
ceived intensity was primarily driven by acceleration, with 
a weight approximately three times larger than the interac-
tion effect. In a separate analysis of the 2IFC task, positive 
effects of acceleration were again found for all participants, 
and an opposite, positive, interaction effect was observed 
for two participants. In terms of the relative contributions, 
responses were again driven by acceleration, with a weight 
about five times larger than that of the interaction effect. A 
joint analysis of the data obtained in both tasks indicated 
that percepts of motion intensity could in fact be explained 
with a single model, and that the most parsimonious descrip-
tion is obtained when this model includes acceleration only. 
During debriefing, some participants indicated that they dis-
sociated an ‘initial kick’ from a subsequent ‘push’, and that 
their responses were driven by the latter. These introspec-
tive accounts of how participants performed the task are 
consistent with the experimental data and suggest that those 
observations where the effect of acceleration appeared to be 
moderated by jerk could have cognitive causes.

To the best of our knowledge, the present research ques-
tion has only been addressed in a small number of previous 
studies, using acceleration and jerk levels at the absolute 
detection threshold. Most of these studies were performed 
with the aim of modeling perception based on the otoliths as 

an LTI system. These models provide a simplified account 
of how the hair cells of the otoliths respond to inertial 
stimulation. Typically, the parameters of these models are 
determined from absolute detection thresholds (Mah et al. 
1989; Zaichik et al. 1999; Heerspink et al. 2005), or direc-
tion detection thresholds (Benson et al. 1986; Soyka et al. 
2009, 2011, 2013), and therefore the models indirectly also 
account for cognitive processes that ultimately result in the 
responses on the detection tasks. Because we obtained sub-
jective ratings of motion intensity and differential thresholds 
rather than detection thresholds, and because the present 
acceleration and jerk levels far exceed the threshold values, 
the present results cannot be compared with these studies 
directly. However, by processing the presently used motion 
stimuli using the LTI model described in Soyka et al. (2011), 
we were able to simulate responses for both experimental 
tasks. By subsequently comparing the statistical model for 
simulated data to the model for actual human data, we can 
compare the two approaches. Doing so showed that also 
according to the LTI model, responses should be driven by 
acceleration. This result appears inconsistent with the results 
of the only other study where the relative contributions of 
acceleration and jerk were determined explicitly (Grant and 
Haycock 2008). The authors of this study designed trap-
ezoidal motion stimuli with peak acceleration and jerk val-
ues distributed over a three-by-three rectangular grid, and 
had participants perform a series of pairwise comparisons 
for this grid. From the obtained responses, they determined 
whether and how the probability that participants judged 
one motion to be more intense than another depended on 
acceleration and/or jerk, similar to the present 2IFC task. It 
was reported that there were positive effects of both accel-
eration and jerk, whereas in the present study responses 
depended on acceleration only. This apparent inconsist-
ency can be explained by considering the LTI model, as 
well as the choice of predictors included in the statistical 
model; whereas the present motions lasted 1 s, and thus 
had frequency content of 1 Hz and above, their motions 
lasted approximately 3 s, and thus contained frequencies 
of 1

3
 Hz and above. According to the LTI model, it is in this 

range of frequencies that the output changes from being 
proportional to both acceleration and jerk (0.01–1 Hz) to 
just acceleration ( > 1 Hz). When we simulate responses 
for the trapezoidal motion profiles specified in Grant and 
Haycock (2008) using the LTI model (Soyka et al. 2011), 
and then fit a regression model with only main effects for 
acceleration and jerk to this data (Fig. 7, left panel), we 
find positive coefficients for both ( �

A
= 40.92,�

J
= 6.80 ). 

These coefficients are very similar to the reported val-
ues ( �

A
= 6.15,�

J
= 0.76 ), when expressed in rela-

tive terms (simulated: 𝜔̃
A
= 0.86, 𝜔̃

J
= 0.14 ; reported 

𝜔̃
A
= 0.89, 𝜔̃

J
= 0.11 ). However, when we also consider 

interaction effects (Fig. 7, right panel), the results change 
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considerably, showing a large positive interaction effect, 
a positive effect for acceleration, and a negative effect for 
jerk ( �∗

A
= 3.84,�∗

J
= −2.59,�∗

AJ
= 18.54 ; relative weights: 

𝜔̃
A
= 0.15, 𝜔̃

J
= −0.10, 𝜔̃

AJ
= 0.74 . The absolute relative 

values do not sum to 1 exactly due to rounding error).
It is interesting to note that the outcome of the simula-

tions did not change for variations of the LTI model with 
other sets of parameters, namely those found by Soyka et al. 
(2011) based on the data from Zaichik et al. (1999), Heer-
spink et al. (2005) and Hosman and Stassen (1999). Varia-
tion of the parameters resulted in differences in scaling and 
slight differences in the shape of the outputs, but the conclu-
sions with respect to the present tasks were identical. The 
reason for this is that differences between sets of parameters 
mostly affect low frequencies, whereas the motion profiles 
used in the present study contained mainly high frequencies.

These findings illustrate that a time-domain perspective 
on motion perception (i.e., characterizing motions in terms 
of acceleration or jerk) has limited generalizability. More 
specifically, to use regression models that take into account 
peak acceleration and/or jerk to model perception requires 
the specification of individual models for every possible 
motion over time, which is clearly not feasible. Adopting a 
frequency domain perspective offers a more versatile alter-
native: through the use of the LTI model, perception for a 
much larger range of motions can be captured with a sin-
gle model. This argument is supported by the fact that the 
presently used LTI model can explain our results as well as 
those of Grant and Haycock (2008), whereas the regression 
models obtained in these studies are very different.

Limitations and future work

A common finding in psychophysical research is that per-
ceptual noise increases with stimulus magnitude (i.e., 
Weber’s Law). In this study, the statistical modeling of the 
responses in the 2IFC task was equivalent to a probit regres-
sion. The regression coefficients together specify how well 

the alternative decision outcomes can be discriminated; the 
noise coefficient determines the scaling of the regression 
coefficients. In other words, the same discrimination perfor-
mance can be achieved with a set of large regression coef-
ficients with a large noise coefficient, as with a set of small 
regression coefficients with a small noise coefficient—pro-
vided that the relative values are equal. For this reason, it 
is generally necessary to fix the noise coefficient in probit 
regressions. We initially intended to determine whether the 
noise increases with stimulus magnitude by simultaneously 
fitting the statistical perception model to the data of the 2IFC 
and the ME task. However, because all participants used dif-
ferent subjective scales, this did not yield consistent results. 
Consequently, it was not possible to include the effects of 
stimulus-dependent noise in the modeling. Nevertheless, 
given that the only variability in responses was along the 
acceleration dimension (Fig. 5), we believe such effects 
would not affect the conclusion that, for the present motion 
stimuli, perception was driven by acceleration.

A possible limitation of the present study is that jerk was 
manipulated by varying the duration of the acceleration/
deceleration peaks. By doing so, velocity (and distance, for 
that matter) was varied as well (Fig. 1). Theoretically, veloc-
ity is not the effective stimulus for the body’s inertial sen-
sors; this motion property can only be estimated more or less 
directly by the visual system, from optic flow (Howard 1982; 
Pretto et al. 2009). Because participants were blindfolded, 
estimates of velocity would necessarily result from inte-
gration of the acceleration or jerk signals over time, which 
implies that these higher derivatives drive perception. More-
over, the overall results show that jerk did not actually affect 
the responses. Nevertheless, it may be argued that because of 
their covariation, one cannot disentangle the effects of jerk 
and velocity using these profiles in cases where effects of 
jerk could occur, such as for motions with lower-frequency 
content than in the present study. In future work, it would be 
possible to avoid this confound by defining motion profiles 
where the acceleration/deceleration pulses are triangular 

Fig. 7   Peak LTI model Soyka 
et al. (2011) output for motion 
profiles used in Grant and 
Haycock (2008) (dots) and fits 
of statistical models (surfaces). 
The left panel shows the fit 
of a model with linear terms 
for acceleration and jerk only; 
the right panel shows a model 
that additionally includes an 
interaction term. Note how the 
model in the left panel is a tilted 
plane, whereas the model on the 
right shows a distinct curvature, 
indicative of the interaction 
effect
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(Siegmund et al. 2005; Siegmund and Blouin 2009). To test 
whether doing so would affect the outcome of the present 
study, we defined a set of 1 s motion profiles (hence with 
similar frequency content as in the present study) with tri-
angular acceleration/deceleration pulses of 250 ms. We then 
varied the amplitude and timing of the peak to achieve the 
same maximum acceleration and jerk values as in the present 
study, and we processed these motions in the same way as 
we did for the profiles used by Grant and Haycock (2008). 
The results of these simulations also showed that perception 
would depend on acceleration only, with a relative weight 
for acceleration 𝜔̃

A
= 0.999 . These additional simulations 

are described in detail in the appendix, available as sup-
plementary material.

Another limitation is that it was assumed that the motion 
commands sent to the platform were identical to the motion 
of the head. We ensured that the platform accurately repro-
duced the commanded motion using an accelerometer 
mounted at the platform itself, and minimized the discrep-
ancy between the motion of the head and the platform by 
using a cervical collar. Because such collars are not infinitely 
stiff, it is likely that the motion of the head was not identical 
to the motion of the platform. However, our characteriza-
tion of the motion in terms of commanded acceleration/jerk 
proved sufficiently precise to yield accurate predictions, as 
was the case for a previous study with a similar paradigm 
(Grant and Haycock 2008). In future work, an accelerometer 
could be placed at the head to further improve precision.

Finally, despite the absence of an effect of jerk in the 
experimental data, introspective reports obtained dur-
ing debriefing indicated that some participants had noted 
a manipulation of jerk, but did not use this information to 
perform the experimental tasks. Perception of jerk is not 
consistent with the predictions of the LTI model. It could be 
hypothesized that there are distinct sensations of accelera-
tion and jerk. Such a segregation could for instance serve 
purposes related to postural control, where sudden distur-
bances with large jerks require a different response than sus-
tained accelerations. This could be tested in future work by 
specifically instructing participants to focus on a particular 
motion characteristic.

Conclusions

We investigated the perception of above-threshold motions 
with frequency content above 1 Hz, using two different 
experimental tasks. Our findings indicate that both tasks 
were performed on the basis of acceleration and did not 
depend on jerk. We show that the data collected in the pre-
sent experiment as well as previous findings for motions 
with lower frequencies, where jerk was found to play a role, 
can be described by an LTI systems model that captures 
otolith output and its subsequent processing.
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