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Natural systems are, almost by definition, heterogeneous: this can be either a boon or an obstacle to be overcome,
depending on the situation. Traditionally, when constructingmathematicalmodels of these systems, heterogeneity
has typically been ignored, despite its critical role. However, in recent years, stochastic computationalmethods have
become commonplace in science. They are able to appropriately account for heterogeneity; indeed, they are based
around the premise that systems inherently contain at least one source of heterogeneity (namely, intrinsic
heterogeneity).
In this mini-review, we give a brief introduction to theoretical modelling and simulation in systems biology and
discuss the three different sources of heterogeneity in natural systems. Ourmain topic is an overview of stochastic
simulation methods in systems biology.
There aremany different types of stochasticmethods.We focus on one group that has become especially popular
in systems biology, biochemistry, chemistry and physics. These discrete-state stochastic methods do not follow
individuals over time; rather they track only total populations. They also assume that the volume of interest is
spatially homogeneous. We give an overview of these methods, with a discussion of the advantages and disad-
vantages of each, and suggest when each is more appropriate to use. We also include references to software
implementations of them, so that beginners can quickly start using stochastic methods for practical problems
of interest.
© 2014 Székely and Burrage. Published by Elsevier B.V. on behalf of the ResearchNetwork of Computational and

Structural Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

The recent paradigm of systems biology sets out to examine biolog-
ical phenomena at the systems level. This is in contrast to the wide-
spread approach of reductionism, whereby researchers attempt to
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understand entire systems by studying them one small component at a
time. The reductionist approach has given us valuable insights and a de-
tailed understanding of the molecular components of biological pro-
cesses. However, it is becoming clear that we need a complementary
approach that takes a holistic view of these processes by looking at
their systems-level dynamics: this is systems biology [1,2]. Reduction-
ism implicitly assumes that the entire system is just the sum of its
parts, which is not necessarily true: complex patterns can arise from
collections of simple components [3]. The challenge of systems biology
is to understand extremely complex systems without breaking them
into easy-to-digest parts, and for this, the right computational and
mathematical tools are essential [4].

Mathematical modelling and computational simulation perform es-
sential roles in biology. This popular mantra of the theoretical biologist
is often heard stated, but one could easily askwhy.Models are useful for
many different purposes: perhaps the most important of these are
crystallising our assumptions and testing them, guiding experiments
and looking at experimentally unreachable scenarios [5], as well as the
much-vaunted ability tomake newpredictions [6]. Ideally, there should
be a virtuous cycle between experiment and theory to understand the
natural system in which we are interested [7] (Fig. 1). This starts off
from our system and question of interest (green box, Fig. 1), for which
we generate an initial hypothesis. This can be very simple, as it is just
a starting point: for instance, if our question was “what is the shape of
the Earth?”, then an initial hypothesis could be “the Earth is flat”.
Then, a mathematical model can be constructed, and solved or simulat-
ed computationally; in parallel, experiments can be run and their results
compared to themodel outputs (blue boxes, Fig. 1). If themodel and ex-
periments agree, then parameters for the model can be inferred from
the data and the model refined, again leading to further experiments
(large arrows, Fig. 1). If they do not agree, this implies that the hypoth-
esis was inappropriate: the model needs revision, and theoretical tests
using different models can provide a starting point for further experi-
ments. For this we need to go back to our natural system and propose
revisions (major or minor) to the model and new avenues for experi-
ment, as well as verifying our findings (small arrows, Fig. 1). Of course,
in our example the model, based on the assumption of a flat Earth,
would disagree with our experimental observations. Therefore we
would have to reconsider our initial hypothesis, and by iterations settle
on the correct answer to our question.

At this point, we pause to clarify some terminology: amodel is an ab-
stract representation of the system in which we are interested, usually
formulated mathematically. This model can, in simple cases, be solved
Fig. 1. Illustration of the cycle of information flow between the natural world and our
theoretical and experimental efforts to understand it.
Adapted from Ref. [7].
analytically for a particular question, giving us an exact analytical solu-
tion to the question posed to the model. In general, however, analytical
solutions for all but themost simplemodels do not exist, andwe have to
resort to methods to solve themodel numerically. These give rise to nu-
merical solutions, which are approximations to the analytical solution
that become more and more accurate as we use smaller and smaller
numerical steps (the unit of discretisation of a numerical approach).
Numerical solutions are (nowadays) evaluated computationally be-
cause they are very time-consuming to carry out by hand. In many
cases, the numerical solution will try to mimic the behaviour of the
real system over time — this is a simulation. A well-known example
might be a flight training simulator for pilots that simulates flying an
aeroplane. This is based on a complicated mathematical model that is
composed of equations for flight dynamics and for how the aeroplane
should react to the controls, as well as other factors such as weather.
The numerical solutions to these equations describe how the aeroplane
behaves over time — they constitute the simulation that the pilot sees
displayed on the screen.

An important point to remember when we talk about mathematical
models is that, in a sense, “allmodels arewrong” [8]. This does notmean
their conclusions or predictions are false — as the famous quote con-
tinues, “but some are useful” [8]; rather, we should bear in mind that
all models are abstractions of reality, simplified versions of the real sys-
tems that they represent. Amodel is a vehicle for gaining understanding
[6], and we would not gain any new understanding from a model that
was as complicated as the real system. Indeed, if we could construct a
perfectmodelwewould not need amodel at all, sincewewould already
have perfect knowledge of the system. Almost all models are phenome-
nological; that is, they are based on a set of simplified assumptions that
we have distilled from the real system using intuition rather than rigor-
ous proof from basic principles [9]. Incorporating only the important
ones allows us to crystallise our understanding of the system (and if
the model gives wrong results, we know that our assumptions were
wrong or incomplete). Creating phenomenological models is not a trivial
task: “sensing which assumptions might be critical and which irrelevant
to the question at hand is the art of modeling” [10].

The choice of modelling/simulation method is determined by the
aspects of the natural system in which we are interested, how realistic
an estimation of it we want, and our mathematical and computational
resources. There aremany types ofmethods that could be used, each in-
corporating different levels of detail and requiring different computa-
tional effort (Fig. 2). At one end of the scale, the most accurate, and
computationally expensive, methods are molecular dynamics simula-
tions. These can be separated into two broad categories: quantum
methods [11], which evaluate the wavefunctions at the level of individ-
ual electrons and are necessary when quantum effects become impor-
tant (surprisingly, there are examples of this in macroscopic biological
processes [12,13]), or classical methods, which go one step up and
solve the classical equations of motion for molecules to simulate their
motion deterministically [14]. Although these methods are as close as
we can get to exactly and fully describing systems at the microscopic
level, they nonetheless still make considerable simplifications (for in-
stance, the approximations of the Schrödinger equations/deterministic
force fields in quantum/classical molecular dynamics, respectively).

Going up in scale, there are several classes of stochastic methods
(our main focus in this paper), and at the highest end of the scale are
continuous deterministicmethods such as ordinary andpartial differen-
tial equations [15–17] (Fig. 2). There are several transitions between
random (quantum molecular dynamics, stochastic simulations) and
deterministic methods (classical molecular dynamics, ordinary differ-
ential equations), and the reason for this is the level at which we view
the system and the information in whichwe are interested (we explore
this further in Section 4). Each of thesemethods is best suited for solving
problems of certain scale and complexity. For instance, classicalmolecular
dynamics can simulate huge numbers of discrete particles for very short
simulation times (usually nanoseconds, microseconds or sometimes up



Fig. 2.Modelling and simulation methods compared based on their level of detail/accuracy versus their computational difficulty. We focus on the fourth category of methods, which we
have broken down into sub-categories that we describe in Section 5. The figure is not to scale. *Themaster equation and the SSA are both ‘exact’ as such (see Section 5), but there are some
caveats. The master equation can be solved exactly, numerically or by approximations, whilst the SSA is strictly only exact in the limit of infinite simulations.

Fig. 3. Sources of heterogeneity. The total observed heterogeneity in a natural system bro-
ken down into its three components: genetic, environmental, and stochastic. Different
sources of heterogeneity are present at different scales, and the typical scales are given.
Adapted from Ref. [25].
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to the millisecond scale), whereas ordinary differential equations look
only at concentrations of macromolecules but can simulate these for
many hours (or longer). An important point to remember is that no
method type can be said to be ‘better’ than the rest, only more suitable
for a certain problem. Each has its own uses, arising from its inherent ad-
vantages and disadvantages.

In this mini-review, we give an overview of discrete-state stochastic
simulations (henceforth, shortened to ‘discrete’; the time variable is
continuous) that are commonly used in systems biology. Specifically,
we will focus on the fourth group of methods in Fig. 2 (in yellow).
These can be used to simulate molecular populations over relatively
long time periods, whilst still regarding them as being composed of dis-
crete units. However, as we do not keep track of each molecule's posi-
tion or momentum, these methods lose their spatial aspect and must
also assume that the system is stochastic (see Section 4). We have
attempted to keep this overview as non-technical as possible. For this
reason, we give only general descriptions of each method type and
avoid delving into their mathematical definitions, derivations or back-
ground; for those readers who are interested, we provide references
to the primary literature. For more mathematical overviews of stochas-
tic methods, we refer the reader to several useful works [18–21]. In ad-
dition, Ref. [22] is a short non-technical overview of stochastic methods
and parameter inference (Fig. 1, top arrow), and Ref. [23] gives an acces-
sible introduction to the mathematical details.

This mini-review consists of five further sections. We start with
the concepts of heterogeneity and noise, introduced in Section 2. In
Section 3, we explicitly illustrate the difference between deterministic
and stochastic methods using an example. Next, in Section 4 we intro-
duce some non-technical background for discrete stochastic methods.
Section 5 contains the descriptions of the main types of discrete sto-
chasticmethods and discussions of their respective advantages and dis-
advantages. Finally, in Section 6 we give a brief summary and discuss
fruitful research directions for the future.

2. Heterogeneity

Heterogeneity is a key property of biological systems at all scales:
from the molecular level all the way up to the population level
[24–26]. In order to gain a better quantitative understanding of these
systems, it is important to incorporate heterogeneity into systems
biologymodels. Although during the past century and half the contribu-
tions of ‘nature versus nurture’ to heterogeneity evoked endless debate,
nowadays it is common scientific consensus that ‘nature’ and ‘nurture’
are not two sides of a coin: rather they have a complex and intercon-
nected relationship [27]. In recent years, it has been noted that we
must consider another source of heterogeneity, arising from ‘chance’
[28–30]. Thus we can classify heterogeneity as arising from three
main sources: genetic (nature), environmental (nurture) and stochastic
(chance) (Fig. 3). We give a brief overview below; Ref. [25] provides
an excellent and more in-depth discussion of this topic.

Perhaps the most obvious of these is genetic heterogeneity. Since
Darwin, it has become canonical knowledge that cells and animals
with different genes should clearly be different. This is certainly the
case in most populations of cells and animals in the wild. One counter-
example is convergent evolution, where different species evolved simi-
lar phenotypic features independently [31]. This phenotypic similarity is
thought to usually have a different genetic basis, showing that the rela-
tionship between genotype and phenotype is not a simple, linear one
[32]. However, recent work has shown that there are a surprising num-
ber of cases of convergent (phenotypic) evolutionwith a corresponding
convergence in genotype [33,34]. As genetics is a very well-established
topic and covered in many textbooks [35], we do not go into further
details about genetic heterogeneity here.

However, even isogenic (that is, genetically identical) organisms or
populations of cells can be very different; the famous cloned animals
from recent decades are excellent illustrations of this phenomenon,
known as non-genetic or phenotypic heterogeneity [25,26,36,37]. In
other words, heterogeneity is not only generated by genetic variation,
and we can identify two other sources of heterogeneity.

The first can loosely be called environmental, or extrinsic [38,39].
This is a very broad term whose usage various by author and context,
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and can best be labelled as ‘heterogeneity from neither genetic nor
intrinsic sources’ (this definition will become more apparent shortly).
Depending on the context, any of the following can be contributing
factors: the external environment of a metazoan; the external environ-
ment of constituent cells inside a metazoan; the external environment
of a cell population (either unicellular organisms or a cell line in vitro);
the internal environment of the cells themselves; and cell state [40].
Examples of each of these factors could be: the weather an animal expe-
riences in a particular year; the amount of water or oxygen in the blood
of an animal; the pH or nutrient level in which a cell population is prop-
agated; numbers and positions within each cell of shared gene expres-
sion machinery such as ribosomes; and cell cycle stage or cell age,
respectively. Clearly, not all of these sources will be considered for the
same system, and they must be chosen phenomenologically. For in-
stance, if we were interested in animal populations we would look
only at the external environment of an animal, whereas if wewere inter-
ested in levels of protein expression of a cell population,wemight look at
differences in individual cells such as ribosome number and cell cycle
stage. Unfortunately, there is a strong possibility of confusion when the
same term is applied at so many different scales. Despite this, we have
deliberately given such a broad definition as we feel that it is helpful to
bear in mind the generality of these ideas, and that they have been
used at various scales and for many different problems. As always, the
choice of what to include in the model lies with the modeller.

The final source of heterogeneity, present in all living (and non-
living) systems but often masked by the macroscopic scale at which
we observe them, was perhaps first observed in a cell biology context
by Spudich and Koshland [41]. They noticed that individual bacteria
from an isogenic population maintained different swimming patterns
throughout their entire lives. This was a visible manifestation of
the third source of heterogeneity [26]: chance, otherwise known as
stochasticity or intrinsic heterogeneity (often interchangeably called
intrinsic noise, without the same negative connotations as the colloquial
usage of the word). This arises from random thermal fluctuations at
the level of individual molecules [24,36,42]. It affects the DNA, RNA, pro-
tein and other chemical molecules inside cells inmanyways, most nota-
bly by ensuring that their reactions occur randomly, as does their
movement (via Brownian motion). It is inherent to the process of gene
expression and cannot be predicted (except in a statistical sense) or
fully eliminated. Thus two identical genes in an identical intracellular en-
vironment would still be expressed differently, even in the absence of the
previous two sources of heterogeneity [36,43]. In contrast, extrinsic het-
erogeneity arises from other, outside, sources and affects all genes inside
a cell equally. The reason for this terminology is that these phrases were
popularised in the literature of intracellular gene expression, where only
the random fluctuations are actually inherent to the expression of a
single gene, and all other sources of heterogeneity can be accounted for.

It is possible to separate the contributions of intrinsic and extrinsic
noise in a gene expression network inside a single cell: this is the classic
experiment of Elowitz et al. [44]. In brief, they incorporated two fluores-
cent proteins (cyan and yellow, although they are usually represented
as red and green for conceptual purposes) into the genomeof an isogen-
ic population of Escherichia coli bacterial cells at equidistant points from
the origin of replication. The hypothesis, then, is that if intrinsic noise
does not exist, the two proteinswould be expressed equally, albeit vary-
ing (identically) over time due to extrinsic noise. However, in the pres-
ence of both intrinsic and extrinsic noise, the expression of the two
proteins would be uncorrelated, as intrinsic noise affects the expression
of each protein differently (Fig. 4A). At the level of the bacterial popula-
tion, the presence of only extrinsic noisewould result in cells that are all
yellow (i.e., both red and green fluorescent proteins expressed equally)
but have different brightness; adding intrinsic noise, the population
would be a mix of red, green and yellow cells of different brightness
(Fig. 4B). The respective noise contributions can also be visualised on
a plot of the expression level of green versus red fluorescent proteins:
extrinsic noise results in cells distributed along the diagonal (full line,
Fig. 4C), and intrinsic noise shifts the cells away from this diagonal
(dashed lines, Fig. 4C). Of course, Elowitz et al. found that both sources
of heterogeneity were present [44]. The respective contributions can
also be elegantly quantified using theoretical analysis [45]; however
these calculations are not valid in all situations, for instancewhen regu-
latory molecules are shared between genes [46].

Intrinsic noise is an important biological phenomenon, and its effects
have to be accounted for by cells and organisms. It has both a positive
and negative influence. Some biological systems have evolved to make
use of it: a good example is the case of persister-type bacteria, which
form a subset of some bacterial populations and canwithstand antibiotic
treatments even though they do not have genetic mutations for resis-
tance [47,48]. This is an example of cellular decision making, the ability
of cells to randomly transition between different stable, heritable states
[49]. These stable states arise from the architecture of the gene expres-
sion network, with positive feedback loops leading to bistability at the
single-cell level [50]. The individual cells randomly change between
states (called stochastic switching); the stability of the states at the pop-
ulation level is then achieved by regulating the switching rates of each
state [51]. Some of the most well-known examples of cellular decision
making are bacteria [52,53] and yeast [54], which are easier to investi-
gate experimentally than large multicellular organisms. Yet, this phe-
nomenon is common to cells at all levels of life (for example, human
progenitor cells [55]), and is argued to be one of the key processes in
cellular development [49]. The main difference is that in unicellular or-
ganisms, cellular decision making is useful for cheap, non-genetic adap-
tation in the face of fluctuating environments, whereas in multicellular
organisms it is used to produce distinct cell types and functions within
a constant environment [42]. Finally, of course, stochasticity plays a cru-
cial role in causing genetic mutations [56,57]; these are essential for cre-
ating the heritable variation upon which natural selection can act, thus
allowing evolution to occur [58].

However, mutations are a double-edged sword, as they can often
have strong negative effects. Deleterious mutations that are phenotypi-
cally expressed frequently result in loss of important functions or even
organismic death, and it has been shown that a substantial proportion
of mutations are deleterious [59]. Mutations in stem and somatic cells
are also thought to cause cancer, which has become a serious disease
in modern times [60,61]. Another major negative effect of intrinsic
noise is to interfere with precise regulation of molecular numbers by
gene expression [62], and cells have to compensate for this by adopting
mechanisms that enable robustness of certain key properties [63,64],
such as feedback loops [36,43]. Indeed, it has been found that critical
cellular systems have evolved to minimise their levels of noise [65,66].

It is important to remember that these three sources of heterogene-
ity are not independent, and they are all interconnected in their effects
on cells and populations [26]. For instance, in order for cellular decision
making to occur, the cell must be able to settle in two (or more) stable
states, which are non-genetic in nature. Thus cellular decision making
involves both environmental and intrinsic heterogeneity, the former
in affecting which stable states are possible and the latter in switching
between them. Another example is that of genetic mutations, where
intrinsic noise causes themutations that then contribute to genetic het-
erogeneity. Finally, a powerful example of the interplay of all three types
of heterogeneity is evolution, one of the most fundamental processes in
nature: evolution acts on phenotypes,whichhave a genetic basis but are
also affected by both extrinsic and intrinsic noise [40].

3. Deterministic versus stochastic models

For the rest of this mini-review, we will use the language of cell
biology, both to keep the text simple, as well as because many of these
concepts have been extensively used in cell biology. Therefore, we will
refer to reactions occurring inside a cell volume between different
types of biochemical molecules (or, interchangeably, particles) with
various reaction rates. These will generally be genes (for our purposes,



Fig. 4. Separating intrinsic and extrinsic noise with a two-colour experiment. Here we illustrate the classic two-colour experiment of Elowitz et al. [44]. Two differently-coloured fluores-
cent proteins (here, red and green) are inserted into the genome of E. coli. (A) Hypothetical time series of fluorescent protein expression for either extrinsic noise only (correlated expres-
sion), or both intrinsic and extrinsic noise (uncorrelated expression). Numbers are labels for each bacterial cell. (B) The corresponding population-level viewof the bacterial cells at each of
the two time points t1 and t2. (C) Plotting the expression levels of the fluorescent proteins on the same figure, extrinsic noise results in variation along the diagonal (blue line). Intrinsic
noise results in deviations from the diagonal (dashed blue lines).
Adapted from Ref. [44].
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sections of DNA that are copied into mRNA and initiate a gene expres-
sion network), RNA or proteins, as well as chemical compounds. The
terminologywe use transfers easily to other systems, andwe emphasise
that themethods we describe can be, and have been, also applied more
generally.

As we have discussed in the previous section, there is considerable
heterogeneity at every scale of biological systems. The first two sources
are now well-known, but until recently the effects of intrinsic noise
have generally been ignored in biology [28], both conceptually as well
as in themathematical and computationalmethods that have tradition-
ally been used. These are typically systems of differential equations,
which are both continuous and deterministic — that is, their state vari-
ables are real numbers representing the concentrations of molecules
and they do not include noise [67]. Such models are indeed useful for
many problems, but they can only be regarded as accurate when we
are interested in the mean dynamics of a large number of molecules,
large enough that we need not worry about individual molecules but
can approximate them as concentrations. This becomes viable when
molecular populations are of the order of many hundreds or above, for
instance in enzymatic reactions in the cytoplasm or solutions in test
tubes. Above this population size, the fluctuations from intrinsic noise
are averaged out and the deterministic approximation becomes increas-
ingly valid. This is because intrinsic noise, as a rule of thumb, behaves as
1
ffiffiffi

X
p , where X is the number of molecules in the system.

We define noise level here as the coefficient of variation of the abun-
dance of a molecule, that is, the standard deviation of its distribution
divided by its mean. Roughly, the above rule of thumb arises because
molecular reactions are random Poissonian birth–death processes (see
Section 4). More rigorous theoretical efforts to characterise the scaling
also invoke a simple birth–death model of transcription (the copying
of a section of DNA to mRNA) and translation (protein production
from mRNA), the analysis of which yields a scaling law. This scaling
does indeed behave roughly as stated above for both mRNA and
proteins, with a Poisson term of 1

ffiffiffi

X
p plus other, more complicated,

term(s) [43,68–70]. For mRNA, these depend on the type of regulation,
with constitutive expression producing a Poisson distribution as expect-
ed for a single birth–death process, and more complicated regulation
strategies producing non-Poisson mRNA distributions [71]. Proteins
also have non-Poisson distributions (albeit their scaling is also roughly
Poissonian), as they are dependent on both mRNA birth and death as
well as translation rates [43,69]. Experimental studies have confirmed
these results, finding that total noise does scale roughly as the in-
verse square of abundance until high abundances. At this point, ex-
trinsic noise is thought to take over as the dominant source of
noise [72–74].

Thus intrinsic noise rapidly increases as molecular populations
decrease, and it often becomes necessary to include the effects of
stochasticity in biological models, especially for small systems with
low populations of some molecular species, such as gene expression
networks [75]. Here, discrete stochastic models must be used, whose
variables represent actual molecular numbers. An intermediate model
type between these two scales is that of continuous stochastic models
(stochastic differential equations) [76]. These can be used to model
biological systems that are relatively large (of the order of hundreds
and up) and so can approximate molecular numbers as concentrations,
but also include the effects of noise. They are similar in form to deter-
ministic differential equations, but contain extra terms that represent
noise [77,78].



Fig. 5. Simulations of the Schlögl system using deterministic and stochastic methods. Four
typical trajectories of the SSA (coloured lines, left panels) and ordinary differential equa-
tions (black lines, left panels). The full distribution at simulation time T = 10, in the
limit of a large number of simulations, is shown in the right panels for each initial config-
uration. Note that herewe actually used themaster equation (see Section 5), which can be
solved numerically for this problem, to generate these as it allowed for faster computation.
Parameters used are A= 105, B=2 × 105 and c1 = 3 × 10−7, c2 = 10−4, c3 = 10−3, and
c4 = 3.5.
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An informative example for illustrating the key differences between
the deterministic and stochastic approaches is the Schlögl reaction
system [79]. This is a system of four chemical reactions, commonly
used as a benchmark system in the literature, given by

Aþ 2X⇌
c1

c2
3X;

B⇌
c3

c4
X:

ð1Þ

There are three different molecule types, X, A and B, with X the
molecule whose numbers we are interested in, and levels of A and B
held constant. This system has a bistable distribution under certain
parameter configurations, with an unstable equilibrium state at an
intermediate value between the two stable ones. We simulate trajecto-
ries of this system over non-dimensional time T = 10 using both a
discrete stochastic method (the SSA, see Section 5) as well as a deter-
ministic (ordinary differential equation)method (Fig. 5). In the stochas-
tic case, the trajectories are different in each simulation (Fig. 5, coloured
lines), and when many of them are run a full probability density func-
tion can be found (Fig. 5, blue curves). When initial X (denoted X(0))
numbers are high, X at final time (X(T)) is generally also high
(Fig. 5A), and similarly for low X(0) (Fig. 5C). However, X(T) can often
end up in the other stable state, especially for intermediate values
of X(0) (Fig. 5B). In contrast, using the deterministic model, each
X(0) always produces the same X(T) (Fig. 5, black lines). The determin-
istic solution switches from one trajectory (corresponding to high or
low X(T)) to the other at the intermediate, unstable equilibrium state
(around X(0) = 250 for these parameters). Note that with the parame-
ter regime used here, the system is always bistable: although it appears
that there is only one stable state in Fig. 5A and C, if the stochastic sim-
ulations were run for a long simulation time T the resulting probability
distributions would all look similar to that in Fig. 5B.

Running many stochastic simulations reveals the full probability
distribution, asymptotically approaching exactness as simulation number
is increased; in contrast, a deterministic simulation can only ever find
one point from the full distribution, an obvious simplification even of a
unimodal distribution. Moreover, in the case of bimodal systems such
as the Schlögl reactions, a deterministic simulation can find at best one
point on one of the peaks and so cannot be considered representative
of the true behaviour of the system. On the other hand, deterministic
simulations are generally much faster to run than their stochastic coun-
terparts, and inmany cases their result does represent some useful statis-
tic of the system (for instance, the mean of a symmetric, unimodal
distribution)— but this can usually only be determined after comparison
with stochastic results. For a more technical description of the precise
relationship between stochastic and deterministic models, see Ref.
[80]. Deterministic methods are an important class of modelling and
simulation methods: they have been used extensively in many fields,
they often obtain good results, are much faster to solve than stochastic
methods, and have mature fields dedicated to their analysis and solu-
tion. They are complementary to the stochastic methods we focus on
in this mini-review and both can be employed in concert with each
other.

4. Accounting for stochasticity

In an idealworld with infinite computational power, wemight think
that we could run simulations involving every single atom and its
electrons to solve every possible problem with perfect accuracy, by
tracking their individual positions and momenta (a hypothetical per-
fectly accurate version of molecular dynamics). However this would
not be possible for two reasons: 1) quantum effects would introduce
randomness (the only way to fully incorporate this is to use a quantum
framework that is inherently probabilistic, rather than deterministic);
and 2) even forgetting about quantum effects, the simulations would
be very sensitive to initial conditions because of the extreme complexity
of the problem. But the accuracy of a model's initial conditions depends
on the sensitivity of our instruments, which will never be fully perfect.
Thus, at best, our simulations could give us excellent approximations
to reality for finite time spans. Finally, we do not live in an ideal world
and even our current, approximate, molecular dynamics simulations
are extremely computationally intensive, so we are nowhere near to
the ideal-world scenario above. For now, therefore, when we are inter-
ested in simulating relatively complicated systems for longer than mil-
liseconds, it makes sense to simplify the model to remove extraneous
information. If we are not explicitly interested in the positions and mo-
menta of all molecules, thenwe can simply forget about them and focus
only on how the total number of each molecular species changes
through time. Doing this meanswemust now abandon our determinis-
tic formulation, label all this extra information that we have abandoned
as a ‘black box’ represented as randomness (see below), and treat the
problem as a stochastic one.
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Biochemical systems can involve many different types of molecules,
which vary in size and number, moving around in a solution (for in-
stance, the inside of a cell or a test tube);we are typically only interested
in a subset of them. Inevitably, the molecules will experience a series of
collisionswith each other, sometimes with anothermolecule of interest
and sometimes with other molecules. A fraction of these collisions will
be betweenmolecules of the correct type, energy and direction to be re-
active, rather than elastic, collisions. We now make two key assump-
tions, that non-reactive collisions are much more frequent than reactive
ones, and that the system is in thermal equilibrium. These ensure that
the system is ‘well-mixed’ and our molecules of interest are distributed
‘macroscopically homogeneously’ throughout the volume (that is, ran-
domly with a uniform distribution) [81]. Looking at the probability
that a reaction occurs in an infinitesimal time interval, we can show
that the time between reactions has an exponential distribution. We
do not go into the mathematical details here; Gillespie's original text
gives a coherent step-by-step account (Ref. [82], p. 2344). This implies
that the number of reactions occurring in some time interval is given
by a Poisson random number (Ref. [83], p. 1719), as was also suggested
by Spudich and Koshland to explain their observations [41]. These re-
sults arise directly from considering the interactions of the molecules
of the system in a probabilistic sense under the assumptions above.
The derivation justifies the use of mass action kinetics, where the pro-
pensity, or instantaneous probability, of a reaction is given by a rate con-
stant multiplied by the abundance of reactants (number for discrete
methods, concentration for continuous ones; the rate constant changes
accordingly [84]). The population numbers are random variables, since
the reactions occur randomly. Combined with the above conditions,
this means that we can use a Markov jump process to model the time
evolution of this system [81,82,85,86]. These make discrete jumps in
state, with the current state of the system only depending on the previ-
ous state. The mathematics behind this Markov formalism has been
thoroughly researched and we do not focus on it here [68,86] — it is,
however, important to know that our models are based on this
framework.

For biochemical reaction systems that satisfy the assumptions above,
the simplificationwe havemade results in a huge decrease in computa-
tional effort whilst still allowing us to tell how the molecular popula-
tions behave over time in a statistically exact way (where ‘statistically
exact’ means that the simulation results have statistics identical to
that of theMarkov process thatwe have assumed describes our system)
[81]. Indeed, this exactness should also hold for other systems that obey
the same assumptions, i.e. they are spatially homogeneous and well-
mixed by frequent collisions (or an active mixing mechanism), and
whose interactions can be assumed to be collision-driven. Of course,
for systems that do not satisfy these assumptions, the simulations will
not be exact; in this case, we may be able to assume similar principles
but can no longer rely on a rigorous derivation, leaving us with a stan-
dard phenomenological model.

Now, how important is this property of exactness? Overall, it may
not be a hugely important factor, for three reasons. Firstly, although
the simulation results may exactly stick to our model, by its very nature
themodel will not be an exact representation of reality, and sowill itself
be ‘inexact’ to some degree, as discussed in the Introduction section.
Secondly, even when a method is exact in this way, it is only in the
limit of infinite simulations (or when solved analytically, for the master
equation), and as we are restricted by computational time the simu-
lation number will often not be as close as we would like to this
limit. Finally, and most significantly, there is usually a large amount
of uncertainty in the measurements that experiments can produce
due to the numerous sources of error (e.g., [87]). Experimental
error levels can often be much higher than the difference between
exact and approximate simulations, thus negating the advantage of
an exact method.

This approach was initially introduced to simulate the time evolu-
tion of dilute gases, as it relies on the assumption that the reactions
are activation-controlled (called ‘ballistic’ by Gillespie), meaning that
the molecules diffuse to within reacting distance of each other faster
than the reaction can occur [18,88]. More recently, it has been extended
to dilute solutions in a bath of solvents, which because of their slow rate
of diffusion are diffusion-controlled, that is themolecules diffuse slowly
compared to the reaction time [88,89]. This latter case is clearly the
more relevant to cell biology, as both the interior and exterior environ-
ments of cells are much more like a dilute solution than a gas. In fact,
although most applications of these methods in cell biology were for
simulating liquid solutions, it had not been rigorously shown prior to
Ref. [89] that the formulation would still hold for such cases.

There is now overwhelming evidence that the inside of the cell is far
from being a homogeneous environment, and there are many factors
that constrain the movement of molecules (known as macromolecular
crowding) [90–92].When these effects become too strong, ourmain as-
sumptions no longer hold and the methods we describe in this mini-
review may not be accurate anymore. This is currently an active area
of research [88,93,94]. Despite this, there are many cases where macro-
molecular crowding is not an issue [92], orwherewe can approximately
say that this is the case. Thus, like ODEs, non-spatial stochastic methods
remain extremely useful theoretical tools, but evenmore so for systems
with low numbers of molecules. As always with modelling, we have to
be aware of our assumptions andmake sure they hold in each particular
problem.
5. Stochastic methods

Summarising the previous section, we have assumed that our sys-
tem is well-mixed and in thermal equilibrium, and themolecules inside
are moving around randomly. This implies that the molecules are dis-
tributed randomly, roughly homogeneously inside the volume (with
equal probability of being found anywhere, that is). This tells us that
the probability of a single reaction occurring within some short time
period is a function only of X, the current state of the system (and a
rate constant) [81,82,85,86]. Therefore, because the molecular popula-
tions are random variables and their values after the next reaction
depend only on their current values, we can model the time evolution
of such systems as Markov jump processes [81,86].

We saw earlier the three types of heterogeneity in biological sys-
tems. So far in our discussion of stochastic methods, we have only con-
sidered intrinsic heterogeneity. Thus the methods below inherently
incorporate intrinsic, but not other sources of heterogeneity. However,
this is not a problem: genetic and environmental heterogeneity can be
included even in deterministic simulations, and it is the intrinsic contri-
bution that they are missing. Genetic heterogeneity can roughly be as-
sumed to stay constant over simulation time, whereas environmental
heterogeneity can vary on a timescale that is comparable to the cell
cycle time [62]. The way to incorporate these is by using different initial
conditions, parameters and reaction propensities. In the case of genetic
or slowly-changing environmental heterogeneity, these are set at the
start and kept constant; for faster-changing environmental heterogene-
ity, the parameters or reaction propensities can be varied over the
course of the simulation [95]. Their values can be chosen randomly
from some distribution (known or assumed), or set manually if we
have enough information about the system.
5.1. Master equation

One starting point in the Markov formalism is to write down a so-
called master equation [85], which gives an exact and full description
of the behaviour of the Markov process through time. It consists of a
system of coupled differential equations, with one equation for each
possible state of the system at each time point, that can be evaluated
to give a full probability distribution.



Fig. 6. Comparison of simulation methods. (A) Two typical trajectories each from the SSA
(green line) and tau-leap (red dotted line) and ordinary differential equation solutions
(black line). The inset shows an enlargement between t = 6.7 and t = 6.9 to highlight
the discrete steps of the SSA. (B) Full probability distributions at final time T=10 generated
from 104 simulations of the SSA and tau-leap with step sizes 0.05 and 0.4, compared to the
solution of the master equation (from which the SSA is almost indistinguishable). Here
X(0) = 250.
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In simple terms, this chemical master equation asks the question
“what is the probability that the system is in some state X at time
t + 1?” The answer is made up of two contributions:

1. the probability that the systemwas already in stateX at time t anddid
not change +

2. the probability that the system was in another state at time t and
changed into state X.

Repeating this to find the probabilities of all possible states (and
then forming it into a set of differential equations by taking the rate of
change of these probabilities over time) yields the master equation.

Solving the master equation would seem to be the ideal way of
looking at stochastic systems, as it can tell us the full distribution of pos-
sible states the system can be in over time, but for one major disadvan-
tage: its complexity. This becomes apparent when considering how
many equations must be solved at each time point, and bearing in
mind that the number of possible states can increase exponentially
with time. Analytical solutions can only be found for very simple sys-
temswith linear (mass action) reaction propensities [96]. The equations
can also be directly solved numerically, giving approximations of the
probability distribution; although for more complicated problems this
is still impractical due to the large number of possible states, recent
work has shown that it is becoming a viable approach that can some-
times be faster than simulation for realistic systems [97–102].

It is also possible to derive the moment equations for the stochastic
model from the master equation; these are deterministic differential
equations that describe only the values of the moments (for instance,
the mean) through time, rather than the entire distribution. In general,
except for the case of linear reactions again, they also form an infinite set
of equations that must be closed manually, thus introducing errors
[103–105]. Another approach is to use the linear noise approximation
of van Kampen on the master equation, which yields information on
the behaviour of the mean plus small fluctuations about it (that is, the
second central moment of the full distribution) in the limit of continu-
ous molecular populations [68,106].

Nevertheless, it is often the case that the systems in which we are
interested are too complicated to solve using the master equation
approach, even numerically or via an approximate method. Thus we
must use trajectory-based approaches, which differ from the master
equation in that they do not find the distribution of all possible states
over time. Rather, they simulate single realisations, meaning that at
each step they choose one out of all the possible outcomes. The trajecto-
ry of each stochastic simulation is different (as in Fig. 5), since each is a
single realisation sampled randomly from the full distribution given by
the master equation. Given many of these random single trajectories,
we can build up a picture of the full distribution.

5.2. Stochastic simulation algorithm

This brings us to the workhorse stochastic method for many
researchers today: the stochastic simulation algorithm (SSA; also known
as the Gillespie method or Gillespie SSA) [82]. This method is statistically
exact — that is, a full probability distribution built up from an infinite
number of simulations will be identical to the distribution of the Markov
process, given by the master equation (Fig. 6). The direct method imple-
mentation of Gillespie [82] is arguably the simplest SSA variant, and it is
conceptually very easy to understand: in order to simulate one stochastic
realisation, we must step along in time, choosing 1) when the next reac-
tion will happen, and 2) what that reaction will be. The SSA is very pop-
ular and its algorithmic simplicity ensures that it is easy to start using for
practical simulations. For this reason,we recommend it as a starting point
for readers interested in trying stochastic simulations in their own
research. We do not give exact algorithmic instructions here, as there
are detailed instructions in many other sources, such as Refs. [18,20,23,
82,88]. There is also complete software available to start using the SSA
straight away (see Table 1). The SSA can also be used to simulate delays
in intracellular processes [107,108].

Unfortunately, the directmethod SSA pays the price for its simplicity
in computational time, as two random numbers must be generated at
each step. The next reaction method is significantly more complicated
but also faster for large systems and many reactions, with several algo-
rithmic improvements to increase speed [109]; several other variants of
the SSA have since been developed, alsomaking improvements in com-
putational speed [110,111] (further examples are helpfully summarised
in two recent reviews [18,88]). However, despite these increases in
computational speed, the SSA has an inherent limitation: it must simu-
late every single reaction. This is, of course, its great strength too, but in
cases where there are many reactions or larger molecular populations,
it often becomes too slow to generate useful numbers of simulations in
a practical time period.

5.3. Tau-leap

In such cases, which occur quite often in real applications, we must
turn to the tau-leap method [83]. This is similar to the SSA in that
each simulation is a single stochastic realisation from the full
distribution at each step. However, the steps are much larger (hence
its name), their selection now being based on considerations of efficien-
cy and accuracy. It counts the total number of occurrences of each type of



Table 1
Advantages and disadvantages of several modelling/simulation methods.

Simulation method Cat. Advantages Disadvantages References Software

Master equation 4 Exact Very computationally intensive [85,143]
SSA 4 Statistically exact Very computationally intensive [82,109] COPASI [144]

StochKit [145]
STOCKS [146]
BioNetS [147]

Tau-leap 4 Relatively fast Approximate; too slow for large systems
or frequent/multiscale reactions

[83,113,118] StochKit [145]

Higher-order 4 Relatively fast; accurate Approximate; too slow for large systems or
frequent/multiscale reactions

[83,121,122,124,125]

Multiscale/hybrid 4 Fast; good for systems with disparate
reaction scales

Approximate; problems with coupling
different scales

[131,132,137,139,148] COPASI [144]
BioNetS [147]

Brownian dynamics 2 Tracks individual molecules Slow; molecule size must be artificially added [149,150] Smoldyn [149,151]
MCell [152]

Compartment-based 3 Accounts for diffusion between
homogeneous compartments

Slow; compartment size must be set manually;
each compartment is homogeneous

[150,153,154] MesoRD [153]
URDME [155]

SDE 5 Fast Continuous; Gaussian noise [76] BioNetS [147]
PDE (R-D) 6 Very fast; spatial Continous; no noise [156]
ODE 6 Very fast Continuous; no noise [157]

Cat. represents Category from Fig. 2. Abbreviations: SSA, stochastic simulation algorithm; SDE, stochastic differential equation; PDE (R-D), partial differential equation (classical reaction-
diffusion equations); ODE, ordinary differential equation.
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reaction over that step. Thus if there areM reactions, we takeM Poisson
random number samples based on the molecular populations at the
beginning of the step. This has the key advantage that we now do not
need to spend time simulating individual reactions. Therefore, the tau-
leap is much faster than the SSA: although this is very problem-
dependent, it is not uncommon to observe speedups of two orders of
magnitude. However, its main drawback is that we have lost accuracy
compared to the SSA, in three ways: first, we do not know exactly
how many reactions occurred (we can only estimate this), second, we
do not know exactly when each reaction occurred within the time
step, and third, we cannot account for the fact that each reactionmay af-
fect the probability of the other reactions occurring by altering the
chemical populations. This is illustrated in Fig. 6, comparing the master
equation and SSA to the tau-leap with two different error levels. With
the larger error level, the tau-leap has quite noticeably lost some accu-
racy. Finally, taking M Poisson random number samples per step can
also be computationally intensive, depending on the size ofM. The accu-
racy issue can be mitigated (at the expense of computational time) as
the error level, and so time step size, is decreased; indeed, as the time
step tends to zero, the tau-leap effectively becomes the SSA, with each
step experiencing either zero or one reaction. Some implementations
combine the SSA with tau-leaping via a threshold on the number of
molecules in the system at any given time.

The steps of the tau-leap are chosen tomaximise both computation-
al efficiency and accuracy. However, these are generallymutually exclu-
sive, so inevitably there is a trade-off to find themost optimal step size:
the larger the time step, the less processing time the simulation takes
but the more it loses accuracy, and vice versa. Several schemes have
been devised to optimise the time step [112,113].

There is another, complementary, issue with the tau-leap: as many
reactions are simulated at once, molecular species that are depleted in
any reaction can go negative if the time step is too large. This is obviously
unphysical, and so undesirable, and schemes have been developed
that allow the choice of larger time steps whilst avoiding negative
populations [113–118].

5.4. Higher-order tau-leap

Recently, another aspect of tau-leapmethods has received attention,
namely the order of accuracy. This is amathematical property of numer-
ical methods, and gives the answer to the question “by howmuch does
the error of this method decrease as the time step is decreased?” The
(weak) order of accuracy of the tau-leap is one [119–121], meaning
that its error decreases proportionally to the time step. Higher-order
methods have order greater than one, meaning that as the time step is
decreasedwe gain accuracy compared to order onemethods. Therefore,
they allow us to use larger time steps to achieve the same error level,
thus decreasing computational time. Their disadvantage is that they
are mathematically more complicated. In addition, in the stochastic
case it is not clear that methods up to arbitrarily high order can be con-
structed. Although, in fact, Gillespie himself first proposed the simplest
such method along with the original tau-leap [83], this line of inquiry
has only recently been the focus of more effort [121–126].

5.5. Multiscale methods

Although it is not uncommon for systems of interest to be rather
complicated, this can often be overcome by using fast leapingmethods.
However, the classic counterexample is a system with reactions that
operate at very different timescales, for instance one very slow and
one very fast (called a ‘stiff’ system). These are not tractable via amaster
equation approach, either analytically or numerically, because the
fast reactions increase the possible state space very quickly. The SSA
would simulate every single fast reaction, and in doing so require
huge computational effort. Ironically, although they constitute the vast
majority of reactions in stiff systems, often the fast reactions are tran-
sient (that is, they settle down quickly after a slow reaction occurs)
and what we are really interested in is the overall slow-scale dynamics
of the system. Thus we again rely on approximate methods. Although
standard tau-leap and higher-order tau-leap methods are able to simu-
late these systems, their time stepsmust be reduced,which can dramat-
ically slow down simulation time when the separation of the scales is
large and the fast reactions very frequent.

In such cases, we have two options: implicit methods or multiscale
methods. On the one hand, implicit methods are based on deterministic
methods for stiff systems. Their approach is to allow the use of normal-
sized time steps by expanding the range of time steps where themethod
is stable, thus opening the door for stiff systems to be simulated in similar
time periods as non-stiff ones [127–129].

On the other hand, multiscale methods partition reactions into fast
and slow types, then simulate the reactions separately. Many different
multiscale methods have been developed, so here we discuss their gen-
eral outlines. The fast reactions are usually simulated using an approxi-
mate method (often deterministic approaches like moment equations
derived from the master equation, or stochastic or ordinary differential
equations) and the slow reactions using a more accurate stochastic
method (stochastic differential equation, tau-leap, or SSA) [130–136].
The fast reactions can assume that the slow reactions are constant
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over their timescale; the slow reactions can assume that the fast reac-
tions have relaxed to asymptotic values between each slow reaction.
Thus, the two sets of reactions are simulated semi-independently. This
can also be generalised to three or more regimes [137]. This approach al-
lows for significant reductions in computational time as the fast reactions,
which would take up the most computational effort, can be simulated
very quicklywith continuousmethods. However, it also introduces errors
associatedwith coupling the two scales, aswell as the possibility of errors
from the simulation of the fast reactions. These can be substantial when
some molecular populations are very low. An interesting exception runs
short bursts of a single SSA for the fast reactions, which is used to infer
parameters for a differential equation approximation of the slow reac-
tions [138,139].

6. Summary and outlook

In this mini-review, our aim has been to give an introduction to the
background and an overview of discrete-state stochastic modelling and
simulation methods that are commonly used in systems biology today
to take account of stochasticity.We have deliberately avoided themath-
ematics that is typically used in such reviews to make this work more
accessible for beginners and thosewith non-mathematical backgrounds
interested in these methods. For a moremathematical introduction, the
reader is encouraged to consult Refs. [18,20,21,23].We have covered the
major groups of methods within the discrete stochastic umbrella, and
discussed their advantages and disadvantages; this information is dis-
tilled into Table 1.Where possible,we have also included in Table 1 soft-
ware available for making use of these methods quickly and easily.

Thesemethods are not only used in cell biology; they have also been
employed in many other settings. For instance, the SSA has been used
for population biological models [140]. In addition, it is widely used in
chemistry and physics [141]; in fact, an identical approach was devel-
oped simultaneously for use in physics, known as the kinetic Monte
Carlo algorithm [142].

As our space is limited, we have focussed our attention only on
discrete stochastic methods that do not take spatial considerations
into account (category 4, Fig. 2). However, there are many related
methods (categories 2–6, Fig. 2) and the problems they can be used to
address have a large amount of overlap. Although we have included
molecular dynamics simulations in Fig. 2, the figure is not to scale, and
there is a much bigger gap between molecular dynamics (category
1) and individual-based methods (category 2) than between individual-
based methods and the rest. We have included methods in categories 2
to 6 in Table 1 with some references as a starting point. Common exam-
ples, with their category from Fig. 2 given in brackets, include Brownian
dynamics (2), compartment-based methods (3), stochastic differential
equations (5), reaction-diffusion equations (6, spatial) and ordinary
differential equations (6).

One related area that we have not covered in this work is parameter
inference and model selection (top arrow, Fig. 1), which is very impor-
tant for testing and improving mathematical models. This involves
using statistical methods to find model parameters from the available
experimental data, and to discriminate between which model best
fits this data (e.g., [67,158–160]). This is typically not an easy task, as
there is often not as much data as would be statistically desirable and
what data is available can be noisy; Bayesian approaches offer a way
of surmounting these problems [84]. Three useful references that give
an introduction to this fast-developing field are Refs. [22,23,84].

Finally, we turn to our opinion of what lies ahead for the field. There
is still a lot of work ongoing to refine both the SSA and approximate
methods. This is obviously an important task. However, as more and
more new and improved such methods are being developed, it may
be time to focus on the step-change improvements we can make. In
particular, there are three areas where we stand to make significant
improvements. Firstly, we are in the age of parallel processing, and
parallelised stochastic methods allow us to start harnessing this
power. This can be done using a standard desktop computer [161] or
high-performance clusters. Moreover, modern graphics cards now
have substantially more raw processing power than CPUs, as they
consist of thousands of parallel graphical processing units. Because of
the architecture of graphics cards this does not translate into a like-
for-like decrease in computational time, but with proper parallelised
methods it can be greatly reduced. Work in this area is ongoing
[162–164]. Secondly, many multiscale methods have already been de-
veloped, but asmultiscale problems are so common in real applications,
we still have plenty of potential for development in this area. In partic-
ular, linking the fast and slow reactions introduces errors. The future
promises super-multiscale models, where processes on many different
scales are integrated into one model. For instance, one long-term goal
of systems biology is patient-specific medicine, where a customised
model of the entire body is generated and then used to diagnose and
pinpoint remedial action for the patient [165]. In such cases, we would
need more than two or three different modelling regimes because of
the sheer differences in scales involved. Thus it is necessary to think
about how we can develop models with many different scales, and
link them together accurately. Finally, we believe that there is excellent
potential in the related area of spatial stochasticmethods. The limitation
of non-spatial methods is that they can only be accurately applied to
spatially homogeneous systems, but this assumption does not hold in
many (or even most) cases of interest. For instance, the membrane of
the cell is an extremely heterogeneous environment, and even the cyto-
plasm contains many macromolecules that impede diffusion [90]. It is
important to developmethods that can take proper account of such het-
erogeneous environments.

In summary, discrete-state stochastic methods have now come into
their own, especially in the last two decades, and they are now widely
used in the sciences. Althoughwehavemade good progress in improving
the basic methods and developing new ones, we still have someway be-
forewe can accurately simulate thewide variety of systems presented by
the natural world.
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