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Abstract

Many biological processes are intrinsically dynamic, incurring profound changes at both molecular and physiological levels.
Systems analyses of such processes incorporating large-scale transcriptome or proteome profiling can be quite revealing.
Although consistency between mRNA and proteins is often implicitly assumed in many studies, examples of divergent
trends are frequently observed. Here, we present a comparative transcriptome and proteome analysis of growth and
stationary phase adaptation in Streptomyces coelicolor, taking the time-dynamics of process into consideration. These
processes are of immense interest in microbiology as they pertain to the physiological transformations eliciting biosynthesis
of many naturally occurring therapeutic agents. A shotgun proteomics approach based on mass spectrometric analysis of
isobaric stable isotope labeled peptides (iTRAQTM) enabled identification and rapid quantification of approximately 14% of
the theoretical proteome of S. coelicolor. Independent principal component analyses of this and DNA microarray-derived
transcriptome data revealed that the prominent patterns in both protein and mRNA domains are surprisingly well
correlated. Despite this overall correlation, by employing a systematic concordance analysis, we estimated that over 30% of
the analyzed genes likely exhibited significantly divergent patterns, of which nearly one-third displayed even opposing
trends. Integrating this data with biological information, we discovered that certain groups of functionally related genes
exhibit mRNA-protein discordance in a similar fashion. Our observations suggest that differences between mRNA and
protein synthesis/degradation mechanisms are prominent in microbes while reaffirming the plausibility of such mechanisms
acting in a concerted fashion at a protein complex or sub-pathway level.
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Introduction

Large scale transcriptome profiling using DNA microarrays has

afforded us with an unprecedented ability to examine cellular

dynamics in great detail. These changes, generally portrayed as

sets of genes being up- or down-regulated, give clues to the

regulation of many biological processes. Implicit in many such

analyses is often an assumption that the dynamics of the

translational product of genes parallels that of the transcripts.

Although such correlations do exist in numerous cases, discor-

dance between mRNA and proteins are not quite uncommon.

Previous studies exploring disparities between transcriptome and

proteome data [1–6] have largely employed direct comparisons of

mRNA and protein expression ratios between each sample pair.

However, for dynamic processes, a more rational approach would

entail a comparison of temporal profiles arising from the time-

dynamics of each mRNA and protein. We show here that such a

comparative transcriptome and proteome analysis with a consid-

eration for temporal dynamics can yield intriguing insights into the

process of growth and stationary phase adaptation in Streptomyces

spp.

Streptomycetes are a group of gram-positive mycelial bacteria

which are capable of synthesizing an amazingly diverse repertoire

of potent biomolecular agents. These multicellular differentiating

prokaryotes belong to the genera actinomycetes, a class of

common soil microbes that produce over two-thirds of the world’s

antibiotics [7]. Natural products such as antibiotics are typically

synthesized in a relatively quiescent stationary phase following

cessation of rapid growth, when the cells direct their metabolism

toward survival and long-term propagation. This capability of

streptomycetes has been extensively exploited in large-scale

industrial fermentation processes for synthesizing a variety of

therapeutic natural products and other biomolecules. Growth-

phase dependent gene expression in Streptomyces, therefore, merits

attention both from a fundamental, as well as a commercial

perspective.

S. coelicolor is the most widely studied streptomycete and its

genome encodes a relatively large number of genes compared to
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other bacteria [8]. This includes numerous regulators like sigma

factors which play key roles in orchestrating global gene expression

pattern shifts through transcriptional regulation. Although tran-

scriptional control remains as one of the primary means of gene

expression regulation in prokaryotes, Streptomyces spp. are known to

employ some post-transcriptional regulatory mechanisms. The

best known example thus far in S. coelicolor is, perhaps, the probable

translational control of over 140 genes containing a rare leucine

TTA codon (including antibiotic and developmental regulators) by

growth dependent expression of the sole tRNA (bldA) that can

efficiently translate them [9]. Other notable examples include

AbsB, an RNase III homolog [10] and Clp, an ATP-dependent

protease family [11] that play key roles in morphogenesis and/or

antibiotic biosynthesis. Given the physiological and genetic

complexities associated with Streptomyces, it is quite conceivable

that numerous other such instances have simply not been

elucidated yet. A major challenge in investigation of gene

regulation in such organisms is to delineate the extent to which

changes in proteins abundances are brought about by transcrip-

tional or post-transcriptional regulatory means.

In the current work, we employed a shotgun proteomics

approach combined with isobaric tagging for relative and absolute

protein quantitation (iTRAQTM) [12] for a quantitative assess-

ment of the proteome dynamics in S. coelicolor M145. Taking

advantage of the multiplexing capability of the iTRAQTM system,

we constructed time-series profiles representing protein dynamics

through different growth stages in liquid culture and compared the

results with microarray-derived transcriptome data. We then

simplified the data using principal component analysis to evaluate

the overall degree of concordance between mRNA and protein

levels and to identify individual instances of significant discordant

behavior. Finally, this data was mapped onto a metabolic reaction

network to evaluate correlations amongst functionally related

genes and interpret the biological significance of such dynamics.

Results

Growth kinetics and experimental setup
To examine the changes in proteome profiles associated with

growth and adaptation in S. coelicolor M145 cells, we isolated total

cell proteins from eight temporally spaced samples (7 h, 11 h,

14 h, 16 h, 22 h, 26 h, 34 h and 38 h) as shown in Figure 1. The

samples chosen reflect changes in cellular physiology associated

with growth and transition to stationary phase as well as the

conspicuous onsets of two prominent antibiotics, undecylprodi-

giosin and actinorhodin. Since the iTRAQTM system used in this

study can analyze only four distinct samples in a single experiment,

we chose to distribute the eight protein samples to three runs of

mass spectrometric analysis (Figure 1). The experiments were also

designed so as to enable validation of the methodology by

comparison of two protein ratios (16 h/11 h and 38 h/11 h)

estimated from independent replicate runs.

Assessment of protein identification accuracy and
quantification reproducibility

Protein identifications and quantifications were carried out by

searching the raw spectral data (*.wiff files) against a theoretical

proteome of S. coelicolor using ProteinPilotTM software and inbuilt

ParagonTM search engine [13]. Decisions concerning the inclusion

of single peptide (particularly single spectral evidence) hits and

peptide confidence score cutoffs will greatly influence the final

number of proteins one can report. A heuristic means to arrive at

these decisions is by estimating the false positive identification rates

by performing a search against a randomized decoy database.

Table 1 summarizes the results of such searches at various

confidence levels using data from all three experimental runs. At

99% confidence level, single peptide hits incur only 3.9% false

identification rate (i.e. the fraction of all single peptide hits ( =

1100-680) that could be ‘false’ based on decoy database search ( =

18-2)). For single spectral evidence hits, a similar calculation leads

to only 4.9% false identification rate. On the other hand, the 81

( = 1181-1100) additional proteins identified by relaxing the

confidence cutoff from 99% to 95% will likely include 21 ( = 39-

18) false hits giving rise to ,26% false identification rate.

Consequently, only the 1100 proteins identified with $99%

confidence were considered for further analysis. Biological

interpretations from single peptide hits were, however, made only

when additional evidences such as similar dynamic profiles from

functionally related genes were available. This set of 1100 proteins

corresponds to approximately 14% of the theoretical predicted

proteome of S. coelicolor. 330 of these proteins were identified in all

three runs thus providing an eight time-point protein profile.

To assess the degree of technical variance in quantification of

relative protein abundance levels, we calculated the coefficient of

variation (CV) based on log mean average of protein ratios

estimated from independent experimental runs. The 16 h to 11 h

quantification ratio calculated for 420 common proteins identified

in runs 1 and 2 resulted in a median CV of 0.081 while the 38 h to

11 h ratios estimated for 382 proteins identified in both runs 2 and

3 gave a median CV of 0.138. These values are comparable with

those previously reported in literature for iTRAQTM experiments

[14]. A small fraction (3.1% and 6.8% respectively in the two

comparisons) yielded a relatively high CV (.0.5) and as such,

interpretation of protein profiles in these cases will require

considerable circumspection. Nevertheless, consistency across

technical replicates in these isobaric tagging LC-MS/MS

experiments were at least comparable to, if not better than, those

of 2D gel electrophoresis methods (median CVs recalculated in

linear scale for the two duplicates were 12% and 21%; compare

with 20–30% variability reported for 2D gel electrophoresis [15]).

To assess biological variability, we compared the stationary

phase to log phase protein expression ratio between independent

biological replicate cultures. The CV based on log mean ratios for

this comparison was found to be 0.15 and a scatterplot showing

this comparison is shown in supplemental data (Figure S1).

Figure 1. Growth-time curve of S. coelicolor in R52 complex
media. Samples analyzed by MS runs 1, 2 and 3 are indicated.
doi:10.1371/journal.pone.0002097.g001

mRNA-Protein Comparison
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A synopsis of proteins identified and their abundance
Proteins identified from the 2D LC-MS/MS experiments were

categorized according to a classification scheme based on their

primary annotation. Proteins from all functional categories except

laterally acquired elements were identified in our analysis (Table 2).

Classes of proteins that were highly represented included those

that belong to nucleotide biosynthesis and ribosomal constituent

families (where over three-fourths of the total annotated proteins

were identified) and to a lesser extent, amino acid biosynthesis and

central intermediary and energy metabolism families. Unsurpris-

ingly, only 5% of the regulatory proteins were found, perhaps

indicating the relatively low expression levels sufficient for their

functional efficiency or the more likely possibility of these genes

not being expressed under the culture conditions tested. Analysis

of chromosomal organization of these proteins revealed that

approximately 80% (872 of 1100) were located in the 4.9 Mb

central core (containing only 56% of all genes) reinforcing the

belief that the chromosome arms are largely comprised of auxiliary

genes [8].

Several previous studies including one in S. coelicolor [16] have

considered optimal codon usage in genes as a reliable indicator for

enhanced protein expression. To examine if this is observed in our

dataset, we calculated a Codon Adaptation Index (CAI, [17]) for

every gene in S. coelicolor based on ribosomal genes as the reference

set. CAI values range from 0 to 1 with higher values indicating

optimal codon usage (i.e. codon usage trend similar to ribosomal

Table 1. Summary of database search results.

All hitsa $2 MS/MS spectrab $2 peptide hitsc

ID confidence scored $95% $99% $95% $99% $95% $99%

S. coelicolor database searche 1181 1100 851 795 728 680

Decoy database searchf 39 18 10 3 6 2

False Identification Rate 3.30% 1.64% 1.18% 0.38% 0.82% 0.29%

aall protein identifications.
bprotein identifications with $2 MS/MS spectral evidences.
cprotein identifications with $2 unique peptide hits.
dconfidence score as reported by ProteinPilotTM.
edatabase downloaded from ftp://ftp.sanger.ac.uk/pub/S_coelicolor/whole_genome/Sco.prot_fas; a list of common contaminants were included in the search but
contaminant protein hits are not reported here.

fdatabase created by randomizing amino acids sequence; this database resembles S. coelicolor database in terms of number of entries, sequence lengths and amino acid
composition.

doi:10.1371/journal.pone.0002097.t001

Table 2. Functional classification of proteins identified.

Functiona Total Present Number Identified Percent identified

Cell processes 800 108 14%

Macromolecule metabolism 496 130 26%

Amino acids biosynthesis 123 53 43%

Nucleotide biosynthesis 30 24 80%

Ribosomal constituents 67 51 76%

Biosynthesis of cofactors and carriers 118 38 32%

Central intermediary metabolisms 111 44 40%

Degradation of small molecules 200 37 19%

Energy metabolism 189 74 39%

Fatty acid and phosphatidic acid biosynthesis 56 15 27%

Secondary metabolism 277 63 23%

Periplasmic, exported or lipoproteins 1318 106 8%

Two-component systems 165 15 9%

RNA polymerase core enzyme binding 88 7 8%

Regulatory proteins 673 36 5%

Protein kinases 39 6 15%

Laterally acquired elements 139 0 0%

Not classified 565 76 13%

Hypothetical proteins 2371 217 9%

Total 7825 1100 14.1%

aprotein classification scheme derived from EcoCyc database; downloaded from http://www.sanger.ac.uk/Projects/S_coelicolor/scheme.shtml.
doi:10.1371/journal.pone.0002097.t002
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genes in this case). Figure 2A shows the distribution of proteins

identified from different CAI groups. Proteins in high CAI groups

were significantly better represented in our identifications. In

addition, even amongst those proteins identified, there is a definite

positive correlation between CAI and exponentially modified

protein abundance index (emPAI), a measure of protein

abundance derived from the total number of spectral evidences

contributing to a given protein identification [18] (Figure 2B).

Also, based on emPAI calculations, some of the most abundant

proteins in the cell were found to be the chaperones (GroES/EL1/

EL2; SCO4296, 4761–62), elongation factor Tu-1 (SCO4662), a

putative tellurium resistance protein (SCO4277) and a type I

polyketide cluster reductase (SCO6282).

Comparison of proteome and transcriptome data –
correlations in average abundance

Changes in the global proteome associated with liquid culture

growth of S. coelicolor were examined using relative protein ratios

calculated from MS/MS signals of the isobaric tags. Since a

common reference allows comparison of expression ratios from all

samples in a single profile for each protein, data from all three

experimental runs were combined to yield fold-change ratios with

respect to 7 h sample. Consequently, only 894 proteins identified

in run 1 (which includes the 7 h sample) could be used for this

analysis.

To assess the extent to which observations from microarray

analysis correlate with those from mass spectrometry, we isolated

total RNA from the same eight samples shown in Figure 1 and

analyzed them using spotted DNA microarrays described

previously [19]. The microarray was composed of PCR amplified

DNA probes printed in duplicate for 7578 different ORFs in the S.

coelicolor genome which corresponds to approximately 97% of the

predicted genes in this organism.

Since hybridizations were performed with genomic DNA as

reference, the resulting mRNA/gDNA ratio (reported here in

logarithmic scale and referred to as log2 mRNA abundance ratio)

is an indicator of relative mRNA abundance in the cell. A scatter

plot of average log2 mRNA abundance ratio versus emPAI

estimated using total number of MS/MS spectra identified from

all three proteomic runs revealed a moderate correlation between

mRNA and protein abundance (Figure 3). The Pearson’s

correlation coefficient (r) for a straight line fit for this data was a

modest 0.63. Interestingly, this correlation improved when only

the top 50 high ranking genes in terms of CAI values (optimal

codon containing genes) were considered (r = 0.8). For low

ranking genes (those with 50 lowest CAI values among proteins

identified), this correlation dropped to r = 0.35. One possible

reason for this observation could be that low CAI ranking proteins

Figure 2. Relationship between CAI and protein identification
or abundance. (A) Percentage of proteins identified in various CAI
ranges. Values beside the bars represent the absolute number of
proteins identified from each bin (B) Average CAI of identified proteins
in different abundance groups; values in horizontal axis correspond to
protein abundance, ‘‘10’’ indicating the top 10 percentile (most
abundant) to ‘‘1’’ indicating the bottom 10 percentile (least abundant)
proteins. Protein abundance was estimated from MS data using emPAI
based on number of MS/MS spectral evidences (refer to Materials and
Methods)
doi:10.1371/journal.pone.0002097.g002

Figure 3. Correlation between mRNA and protein abundance. A
plot of mRNA abundance calculated as [mRNA/gDNA] from microarray
experiments against protein abundance calculated as emPAI based on
number of MS/MS spectral evidences is shown in log2 scale. The top ten
percentile (highest) CAI ranked genes (blue circles), bottom ten
percentile CAI ranked genes (red circles) and all other genes (green
circles) are shown. For the sake of clarity, five data points with
exceptionally high protein abundance (log2[emPAI].20) are not shown
here. All data points were, however, included in the Pearson’s
correlation coefficient (r) calculation.
doi:10.1371/journal.pone.0002097.g003
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are generally less abundant and emPAI correlates rather poorly

with protein abundance in such cases (since emPAI values tend to

be discrete when peptide counts are low).

Comparison of transcriptome and proteome data –
correlations in dynamics of expression

We sought to identify the major trends in both mRNA and

protein dynamics using Principal Component Analysis (PCA). Of

the 894 genes selected earlier, we chose to analyze only 798 gene

products for which quantification ratios from at least four out of

eight time points could be determined from both microarray and

proteomic experiments. Missing values were estimated by linear

interpolation as before. Considering the eight time-point log

transformed temporal gene expression profiles as data points in an

eight-dimensional space, PCA enabled us to transform coordinate

axes and identify the most important dimensions in this

transformed space (dimensionality reduction thereby simplifying

the time-course data). Independent PCA of both mRNA and

protein data from the 798 gene products indicated that the first

two principal components (PC-1mRNA and PC-1protein) account for

over 85% of the total variance in the either dataset (Figure 4B).

The loadings plots (eigenvectors) for each of these two principal

components were remarkably well correlated between mRNA and

protein data (Figure 4A) implying that the major trends in both

proteome and transcriptome domains were strikingly similar.

Furthermore, the principal component 1 represented the tendency

of genes to be either up- or down-regulated during stationary

phase adaptation. This component alone accounted for over 75%

of the total variance in either dataset, and therefore, appears to be

the most prominent pattern in our data. The other major

component, PC-2, which accounted for an additional 6–9%

variance, represents the tendency of certain genes to be transiently

up- or down-regulated primarily during the transition between

exponential and stationary phase.

Biological insights from gene profile analysis
Genes in major functional classes were examined for their

correlations with the principal eigen-genes and eigen-proteins

shown in Figure 4A. In the following discussion, presence of a gene

in the top or bottom 10 percentile of PC-1, PC-2 values are

considered as indications for positive or negative correlation with

that particular eigen-gene or protein. To facilitate identification of

patterns among functional classes in a metabolic context, the

transcriptomic and proteomic data were also plotted on a

simplified metabolic reaction network using gene annotations

taken from KEGG pathway database (Figure 5).

Energy metabolism. Enzymes for every step in the core

primary metabolic pathways of glycolysis, TCA cycle and pentose

phosphate reactions were detected in our proteomic analysis. The

expression levels of these proteins were generally stable or

exhibited a weak negative correlation with PC-1 of proteins. At

the mRNA level, a similar observation was observed for most

proteins. However, mRNA encoding enzymes leading from

glyceraldehyde 3-phosphate to pyruvate (gap, pgk, pgm and eno)

were moderately correlated with PC-2 indicating a transient

increase and subsequent decrease in expression. Among oxidative

phosphorylation genes, cox1 and qcrB and ATP synthase subunit

atpB were strongly negatively correlated with PC-1 at the mRNA

level. The corresponding proteins, however, had no clear

correlations indicating a relatively flat profile. One putative

cytochrome P450 gene (SCO2884) was highly correlated with

PC-1 at the protein level (upto 8-fold upregulation) and to a lesser

extent at the mRNA level.

Secondary metabolism. Biosynthetic enzymes from all four

major secondary metabolite clusters (actinorhodin, 16/22 genes;

undecylprodigiosin, 15/22 genes; a cryptic type I polyketide, 11/

16 genes and calcium dependent antibiotic, 8/40 genes) and two

other minor ones (deoxysugar synthase and coelichelin) were

detected in our analysis (bottom right panels in Figure 5). Most of

these genes were very strongly correlated with PC-1 at both the

mRNA and protein levels. In addition, most of the actinorhodin

cluster genes displayed a strong negative correlation with PC-2,

primarily due to the fact that these genes are up-regulated only at

very late stages of the culture. Also, mRNA of these genes

appeared to be more dynamic with up to 60-fold changes while

proteins levels changed by less than 20-fold.

Other metabolisms. Numerous amino acid metabolism

proteins and transporters displayed dynamic profiles possibly

hinting at extensive reorganizations in the intracellular amino acid

pool to cope with the nutritional imbalances in stationary phase.

Notable among them were a family of branched chain amino acid

transporters (SCO2008, 2010–12, LivMKGF) which were

positively correlated with PC-1 of both proteins and mRNA.

Genes involved in arginine-glutamate conversion like RocD

(SCO1223) and ArgH (SCO1570) displayed a prominent

correlation with PC-1 only at the protein level. In contrast, a

glycine cleavage system (SCO1378/5472, GcvP/T; glycine

degradation), a serine hydroxymethyltransferase (SCO5470,

GlyA; serine-glycine interconversion) and a related glycine

betaine transporter (SCO1621, OpuAA) all of which are

required for generating one-carbon moieties to be used in

several cellular processes like methyl transfer reactions and

purine biosynthesis were negatively correlated with PC-1 (two to

five-fold down-regulation). In addition, ribonucleotide reductases

like NrdJ/M involved in de novo DNA synthesis also displayed a

strong negative correlation with PC-1 of proteins and mRNA,

presumably due to reduced cellular demands.

Nucleic acids and protein synthesis. DNA polymerase

subunits displayed a generally invariant trend while RNA

polymerase subunits were negatively correlated to PC-1

prominently at the mRNA level. Among protein synthesis

machinery, approximately half of the ribosomal protein sub-

units were negatively correlated with PC-1 at the mRNA level

while much fewer proteins displayed such a trend at the protein

level.

Stress response genes. Catalases CatA/C (SCO0379/

0560) were showed a strong positive correlation with PC-1 while

alkyl hydroperoxide reductases (AhpCD, SCO5032/31) displayed

a negative correlation with PC-1 at mRNA level. The

corresponding proteins with the exception of SCO5032 did not

display such strong correlations. Numerous known and putative

phosphate starvation response genes (PstB, SCO4139; PstS,

SCO4142; NeuB, SCO4881; RegX3, SCO4230; a phosphate

transporter, SCO4228; alkaline phosphatase, SCO2286;

SCO1906; SCO3790; SCO5140 and SCO7631) were strongly

correlated with PC-1 of both proteins and mRNA. These genes

also generally had a high positive value along PC-2, indicating a

transient up-regulatory trend.

Identification of genes with differential mRNA and
protein dynamics

Identification of genes exhibiting differences in mRNA and

protein dynamics might have important biological implications as

they indicate differences in synthesis rates and stability of proteins

and mRNA as well as possible post-transcriptional regulation. This

was performed by comparing the values of genes along the major

principal component axis (PC-1) in mRNA and protein dynamics

mRNA-Protein Comparison

PLoS ONE | www.plosone.org 5 May 2008 | Volume 3 | Issue 5 | e2097



data. Figure 4C depicts a plot of PC-1mRNA against PC-1protein. In

general, the closer a gene is to the y = x line, the greater is the

degree of concordance between mRNA and protein trends (i.e.

PC-1mRNA<PC-1protein). In contrast, genes in the top-left or bottom-

right quadrants generally tend to exhibit opposing trends. One

caveat with this two-dimensional analysis, however, is that the

effects of PC-2 and higher principal components are neglected.

Hence, this analysis should only be considered as a first

Figure 4. Principal component analysis of transcriptome and proteome data. (A) ‘Loadings’ (eigenvector) plot for the first two principal
component axes – PC-1 (solid lines) and PC-2 (dashed lines) from proteome (red lines) and transcriptome (blue lines) data (B) Percentage of variation
accounted for by each of the seven principal components in proteome and transcriptome data (C) Values of genes along PC-1protein plotted against
PC-1mRNA. Green and blue dots represent genes with significantly large difference in expression trends (|PC-1protein2PC-1mRNA|$2). Of these, blue
dots indicate those which are likely to exhibit opposing trends (2nd and 4th quadrants). All other genes are shown as red dots.
doi:10.1371/journal.pone.0002097.g004

mRNA-Protein Comparison
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Figure 5. Integrated transcriptome and proteome data mapped onto a simplified metabolic network. Proteome data (red lines) and
transcriptome data (blue lines) are plotted in the same graph. The horizontal axis of each plot represents time ranging from 7 h to 38 h. The fold-
change ratios of genes in the vertical axis span a value of 6 in log2 scale, except for actinorhodin, undecylprodigiosin, type I polyketide biosynthesis

mRNA-Protein Comparison
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approximation for comparative profile analysis that, nevertheless,

will require confirmation by visual inspection.

Based on this analysis, a total of 289 gene products (36% of

analyzed mRNA-protein pairs) displayed a difference of two or

more between the values of PC-1 in mRNA and protein domains

(|PC-1mRNA2PC-1protein|$2). Of these, 107 (13%) were likely to

exhibit varying degrees of opposing trends (Figure 4C) with 57

genes in top-left quadrant i.e. mRNA up-regulated while proteins

are down-regulated, and 50 genes in bottom-right quadrant i.e.

mRNA down-regulated while proteins are up-regulated.

Functionally related genes exhibit similar discordant
behavior

Integrating transcriptome and proteome data with available

functional information yields valuable biological insights. A careful

examination of Figure 5 reveals that several mRNA and proteins

are regulated at a pathway or sub-pathway level. It is evident that,

in a number of cases, even when dissonant trends are observed

between mRNA and protein profiles (discovered using PCA), such

behaviors are usually conserved across at least a few functionally

related and/or chromosomally linked genes. Figure 6 shows some

interesting profiles that fall in this category. Surprisingly certain

groups of genes exhibited not just discordant, but contrasting

mRNA-protein profiles. These include a putative protein secretion

system (SCO1515–1517; Figure 6A), a glutamate uptake system

(GluABCD, SCO5774–77; Figure 6B) and a xylose uptake system

(SCO6008–6011; Figure 6C). In each case, the proteins exhibited

a two- to eight-fold increase in abundance upon entry into

stationary phase while the corresponding transcripts displayed a

concomitant two- to four-fold down-regulation. Another set of

genes is comprised of those for which the protein levels remained

relatively constant while mRNA amounts decreased rapidly in

stationary phase, hinting at lower rates of protein turnover than

mRNA. These include RNA polymerase subunits (RpoBC,

SCO4654/55; Figure 6D), phosphoribosyl transferases/ribosomal

proteins (SCO3122–24; Figure 6E), a set of ABC transporters

(BkdBC, SCO5113/14; Figure 6F), ATP synthase subunits

(AtpABC, SCO5367/71/74; Figure 6G), a set of chromosomally

linked hypothetical proteins (SCO1651/1655, Figure 6H) and

succinate dehydrogenase subunits (DhsAB, SCO4855/56;

Figure 6I). Several other distinct profiles were also observed

including cases where mRNA was transiently up-regulated but

subsequently down-regulated while protein levels remained

constant (Figure 6K and 6L) or displayed an increase during

transition to stationary phase (Figure 6J). However, the most

common type of divergent behavior was differing degrees of

differential patterns in largely the same direction. Four such

examples are shown in Figure 6 – a set of arginine biosynthesis

genes (SCO1222–23; Figure 6M; up-regulated), oxidative stress

response genes (AhpCD, SCO5031–32; Figure 6N; down-

regulated), fatty acid biosynthesis genes (FabDHF, SCO2387/

88/90; Figure 6O; down-regulated) and two other chromosomally

linked proteins (DNA-binding protein Hu and malate oxidore-

ductase, SCO2950/51; Figure 6P).

It is important to note that our observation of similar dynamic

trends among functionally related genes lends significant biological

confidence to protein quantification even in the absence of strict

statistical confidence. Numerous instances of genes that could not

grouped in functional clusters also exhibited divergent behavior.

The complete set of genes identified from Figure 4C is presented

in Table S1. A subset of these genes with substantial profile

differences are plotted and shown in Supplemental Data (Figure

S3). For the sake of a balanced perspective, some genes with

remarkable concordance between mRNA and protein profiles are

also shown alongside (Figure S2).

Discussion

To analyze dynamic biological systems, one often needs to

extract quantitative information from multiple time-point samples.

A mass spectrometry based approach using iTRAQ labeled

peptides is well suited for such analyses as it allows simultaneous

analysis of multiple samples. Using this strategy, we identified 1100

S. coelicolor proteins with less than 2% false identification rate and

quantification variances comparable to, if not better than, other

proteomic approaches. Over half of the proteins identified in this

study were previously undetected implying that our study

significantly enhances the repertoire of experimentally validated

ORFs in S. coelicolor. Consistent with previous reports on

correlations between codon usage and mRNA expression [20],

we observed that genes with a higher CAI (‘optimal’ codon

containing genes) were more likely to be detected in our analysis.

The major goal of this study was to analyze the extent of

correlation between mRNA and protein expression. A direct

comparison of average mRNA and protein abundance measures

shown in Figure 3 did not reveal a strong correlation. This

seeming lack of correlation could be attributed to the absence of a

reliable continuous metric for measuring protein abundances from

mass spectrometry approaches employed here. Nevertheless, this

correlation appeared to be substantially higher for genes with a

stronger bias toward ‘optimal’ codons (Figure 3) raising a

possibility that optimal codon containing genes are primarily

regulated at the transcriptional level. This would imply that high

mRNA abundance gives rise to high protein abundance and vice

versa for such genes. In contrast, genes with poor codon usage may

have additional post-transcriptional regulatory roadblocks and

consequently exhibit a relatively poor correlation. Some recent

investigations on prokaryotic translation [21,22] also point to the

relative importance of codon usage over other factors like

translation initiation/termination sequences in determining

mRNA-protein correlation. This evidence, taken together with

the fact that Streptomyces display an unusually high G+C bias and

generally do not require a highly conserved ribosome binding

(Shine-Dalgarno) sequence for translation initiation [23], might

suggest that polypeptide chain elongation during translation plays

a crucial role in dictating protein expression. It is also noteworthy

that, despite using a different metric for estimation of mRNA and

protein abundance, a similar trend was reported earlier for a

compilation of yeast transcriptome and proteome data [24].

Correlations between transcriptome and proteome data can also

be evaluated at the level of the dynamics of mRNA/protein

expression. Several previous studies in yeast [1–6] have reported

widely varying, but nonetheless poor to moderate correlations

between mRNA and protein abundance ratios (Spearman rank

correlations ranging from 0.21 to 0.74). When similar protein and

mRNA ratios from all the samples in our data pooled together

and phosphate starvation response genes where the vertical axis spans a value of 8 in log2 scale. Each plot begins with log ratio = 0 at 7 h. Single
peptide protein identifications are indicated with an asterisk (!), and their MS/MS spectra are provided Figure S4. Pathways and corresponding
enzymes were identified from KEGG database [34]. Only major reactions in each pathway are shown. Gene names and SCO numbers are provided in
Tables S2 and S3.
doi:10.1371/journal.pone.0002097.g005
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were plotted together (graph not shown), we observed a relatively

weak correlation of 0.55. Although this suggests, at best, a rather

moderate correlation between mRNA and protein data, it fails to

address one important aspect of our data, namely, its time-series

nature. The introduction of time as an additional data dimension

means that gene expressions can now be viewed as part of a

continuing trend in the process of stationary phase adaptation

instead of absolute static two-point relative fold-change ratios per

se. The complexity in time-series data could then be reduced using

PCA to facilitate mRNA-protein comparison. Consistent with our

observations, a recent study in S. coelicolor using defined medium

[25] had concluded that the major principal components in

mRNA and protein domains are similar. However, unlike previous

studies, in our approach, we extracted mRNA and proteins from

the same set of samples for comparative analysis. This allowed

direct gene-by-gene comparisons with much higher confidence

disregarding culture to culture variations and thereby identifica-

tion of discordant behaviors among individual genes.

The discordance between transcriptome and proteome data

observed here can be attributed to two important factors –

differences in translation efficiency that depend on codon usage

and ribosome binding sites among other factors between different

genes and diversity in degradation rates among different genes and

also between mRNA and proteins. The latter is, probably, a

crucial factor because we have seen that while mRNA levels

decrease sharply for many genes in stationary phase, the protein

levels displayed only a modest decrease or sometimes no change at

all. The stringent response induced in Streptomyces and many other

bacteria through increased levels of ppGpp during stationary

phase is a phenomenon that causes reduced transcription of

Figure 6. Examples of related genes displaying similar behavior. Examples of functionally or chromosomally clustered genes exhibiting
discordant mRNA and protein dynamics trends as identified using PCA. Dashed lines indicate regions where data interpolation was performed for
PCA calculations.
doi:10.1371/journal.pone.0002097.g006
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several growth related genes [26]. Redistribution of the RNA

polymerase caused by decreased levels of the primary vegetative

sigma factor and increased activity of alternative sigma factors is

thought to be the reason for this phenomenon. Consistent with this

theory, we observed that the levels of HrdB protein (the primary

sigma factor in S. coelicolor) decreased by ,35% between 7 h and

34 h in culture. While this caused decreased levels of several

transcripts belonging to primary metabolism and DNA, RNA and

protein synthesis machineries, it is conceivable from the observa-

tions that the corresponding proteins, unlike mRNA, are more

stable because they show only a modest change in abundance. In

addition to these effects, different proteins may have different

degradation rates. The N-terminal amino acid of proteins has been

proposed to play a significant role in dictating its stability [27]. S.

coelicolor is known to carry out N-terminal processing of proteins in

certain cases [26] thereby introducing N-end heterogeneity which

might significantly contribute to variations in protein stability.

Although we did not find correlations linking the N-terminal

amino acid with mRNA-protein divergence, we found that

proteins displaying concordance with mRNA (|PC-1mRNA2PC-

1protein|,1) contained larger fractions of lysine, a probable

destabilizing amino acid in prokaryotes compared to proteins that

were less dynamic than mRNA (PC-1mRNA2PC-1protein.2) (4.6%

compared to 3.9% of lysine abundance with p-value = 0.07). This

is consistent with earlier reports in yeast suggesting that the

protein-wide amino acid composition may correlate with protein

degradation [28]. We also explored the possibility of mRNA-

protein divergence arising from known post-transcriptional

regulatory mechanisms like those involving the rare leucine codon

– TTA [9]. Five genes encoding TTA codon were identified and

examined in our study. Three of those including an actinorhodin

transporter (SCO5083) displayed consistent mRNA and protein

dynamics as defined by the criteria shown in Figure 4C. However,

the other two genes – a regulatory protein AdpA (SCO2792)

involved in morphological differentiation [29] and a protein of

unknown function (SCO6638) – displayed increasing protein

trends although the corresponding mRNA levels were relatively

constant. This indicates a possible role for growth dependent

control of these genes by bldA, the only S. coelicolor tRNA known to

translate the rare TTA codon.

To an extent experimental noises could also account for the

apparent discrepancy between mRNA and protein. Accurate

identification of a protein as described earlier does not necessarily

guarantee an accurate quantification. Numerous factors like

peptide concentration and amino acid composition can influence

the quality of spectra and hence the apparent quantification ratios

obtained from iTRAQ experiments. Error factor and p-value

estimates presented in the supporting information provide a means

of assessing consistency between peptides within the same protein.

Given these technical limitations, discerning the actual biological

effects from experimental noises is challenging. In this work, the

time-series nature of the data provided an opportunity for

estimating the fidelity of quantification through detection and

further scrutiny of outlier points from an otherwise consistent

trend (like monotonic increase, for example). Also, most

importantly, consistency between functionally related genes

significantly enhanced our confidence in the observations,

especially in cases of mRNA-protein discordance.

Our analysis reveals that many of the molecular machineries

causing divergent mRNA-protein behavior act at a protein

complex or biological pathway level. Similar profiles among

groups of related mRNA in bacteria frequently arise because of

their organization into single transcription units (nearly 30% of the

genes listed in Table S1 could be classified as belonging to operons

[30]). Many of the corresponding proteins also displayed

similarities in expression profiles indicating likely similarities in

ribosomal occupancies, translation efficiencies and degradation

rates as well. The surprising discovery presented here was that

such co-expression and probable co-regulation of related mRNA

and proteins was observed even in cases with divergent mRNA-

protein dynamics.

In summary, we have shown that a mutually complementary

analysis of transcriptome and proteome data enables one to better

understand the dynamics of biological systems. While the

importance of transcriptional regulation is quite evident from the

unusually large number of genes encoding transcriptional

regulators in S. coelicolor [8], we show here that post-transcriptional

regulation may be an equally important facet of the intricate

molecular adaptation machinery employed by this fascinating

microbe.

Materials and Methods

Bacterial strains and culture conditions
S. coelicolor M145 spores were generated in Mannitol-Soy flour

agar plates [31]. Liquid cultures were performed in shaker flasks

(220 rpm; 30uC) in R52 medium (R5 medium devoid of

additional K2HPO4, CaCl2 and L-proline) as described earlier

[32]. Briefly, ,2.56109 spores were first pregerminated in 26YT

medium for 8 h. Germinated spores were then harvested,

dispersed by brief sonication and inoculated into 250 ml of R52

medium with 0.05% (v/v) antifoam 289 in siliconized conical

flasks with stainless steel coiled springs. Cell growth was monitored

by measuring optical density at 450 nm of dispersed (sonicated)

mycelia. Samples were harvested periodically for transcriptome

and proteome analysis and chilled rapidly in dry ice/ethanol bath

before centrifugation. Cell pellets were stored at 280uC until

further analysis.

Cell lysis and sample preparation
Cell lysis was kept as simple as possible to avoid introduction of

compounds that might potentially interfere with mass spectrom-

etry. Accordingly, frozen cell pellets were pulverized by grinding in

liquid nitrogen and cellular contents were solubilized in 50 ml of

lysis buffer (8 M urea, 4% CHAPS) supplemented with 4 mM

phenylmethylsulfonyl fluoride. The volumes were brought up to

400 ml each with dissolution buffer (0.5 M triethylammonium

bicarbonate, pH 8) and protein assays were then carried out using

Commassie PlusH Bradford assay (Pierce Research Instruments,

Singapore). Aliquots of 100 mg proteins from each sample were

processed for labeling with iTRAQ according to manufacturer’s

instructions (Applied Biosystems, Foster City, CA). The labeled

samples were mixed and concentrated in a SpeedVac to reduce

volatile content, before diluting 106with cation exchange loading

buffer (10 mM KH2PO4, 25% acetonitrile, pH 3).

Strong cation exchange fractionation
Injection of the sample was performed in multiple aliquots onto

a strong cation exchange column (PolyLC 2 mm6150 mm,

Nestgroup, Southborough, MA). Separation of peptides was

performed by developing a 2-step gradient of KCl – from 0% to

20% salt buffer (10 mM KH2PO4, 20% acetonitrile, 500 mM

KCl, pH 3) over 40 min, followed by an increase to 100% salt

buffer over 20 min, at a flow rate of 200 mL/min with fractions

collected every 1.5 min. Fractions were desalted using C-18 spin

columns (VivapureH, Sartorius, Singapore) and eluted in 70%

acetonitrile, 0.25% formic acid. Acetonitrile in the eluant was

eliminated by SpeedVac and each fraction was reconstituted with
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1% formic acid, 2% methanol in Milli-Q water for mass

spectrometric analysis.

Mass spectrometry
NanoLC- mass spectrometry (MS/MS) was performed using a

QSTAR-XL hybrid quadrupole-time of flight tandem mass

spectrometer (Applied Biosystems) coupled to an LC-Packing

(Sunnyvale, CA) system comprising of a FAMOS autoinjector

unit, a SWITCHOS 10 port valve unit, and an ULTIMATE-

PLUS nano-flow pumping unit. An injection volume of 10 ml from

each sample was made onto a reversed-phase C-18 peptide

trapping cartridge (300 mm65 mm, LC-Packings) in a flow of

0.1% formic acid for 5 min at 25 ml/min. Following the wash step

the flow from the pumping unit was diverted back through the

trapping cartridge at 100 nl/min. Peptides were eluted from the

cartridge by application of a gradient from 0 to 90% acetonitrile in

0.1% formic acid over 40 min at 100 nl/min, and separated by

passing through a C-18 reversed phase column (packed in-house

with 5 mm particle size packing material from Column Engineer-

ing, Ontario, CA). Peptides eluting from the column were sprayed

directly into the orifice of the mass spectrometer, which was run in

IDA (information dependent acquisition) mode selecting all 2+ to

4+ charged ions with signal intensity greater than eight counts per

second over the specified mass range. For experimental runs 1 and

3, low protein-content fractions were run once and scanned in the

m/z range 350–1100 amu, while high protein-content fractions

were run thrice scanning m/z ranges of 350–600 amu, 598–800

amu, and 798–1100 amu each time. For run 2, all fractions were

run first scanning an m/z range of 350–1100 amu, while certain

high protein-content fractions were reinjected for analysis with an

exclusion list derived from previously identified peptides. For

collision-induced dissociation, nitrogen gas was used at a setting of

four and the collision energy set to automatic allowing increased

energy with increasing ion mass.

Protein identification, quantification and data processing
Protein identifications were carried out by searching the raw

data files (*.wiff) against a predicted S. coelicolor proteins database

(supplemented with some common contaminant protein se-

quences) using ProteinPilotTM software v1.0. The predicted S.

coelicolor protein sequences containing 7810 entries were

downloaded from ftp://ftp.sanger.ac.uk/pub/S_coelicolor/

whole_genome/Sco.prot_fas and appended to a list of 179

common contaminant sequences provided with TurboSequest

v.27 rev 12/BioWorks 3.1 (Thermo Electron, Waltham, MA).

Trypsin specificity was chosen and default options were used all

other parameters including the commonly observed oxidized

methionine and deamidation of asparagine being considered as

possible variable modifications and N-terminal/lysine/tyrosine

labeling of iTRAQ reagents as fixed modification. MMTS was

chosen as cysteine alkylation modification. The instrument type

was set to QSTAR ESI. Unlike many other search engines,

ProteinPilotTM does not use fixed mass tolerances but rather

employs feature probabilities and a concept called ‘‘Sequence

Temperature Value’’ [13]. However, for a comparison with

conventional algorithms, we note that over 95% of the peptides

scored in our analysis had precursor delta masses less than 0.16

Da. Peptide and protein summary results were exported to

Microsoft ExcelH 2003 for further analysis.

In estimating quantification ratios, peptides where the total

ion counts of iTRAQ peaks were below a threshold of 40 were

excluded. The default bias-correction factors from ProteinPi-

lotTM (based on median ratios) were used for normalization.

Sample 11 h was analyzed in all three experimental runs

conducted in this study. Therefore, protein abundance ratios

rij/11h,k were obtained from experimental run k for each protein i

in sample j with respect to the 11 h reference sample.

ProteinPilotTM also reports p-values and 95% confidence

intervals for each protein ratio based on quantification

assessments from multiple peptides when available. For those

sample pairs that were analyzed in two MS runs, the relative

average abundance ratio (rij/11h), p-values and 95% confidence

intervals were recalculated from individual bias-corrected

peptide ratios and percentage errors of the combined peptide

dataset using the algorithm described in ProteinPilotTM user’s

manual. This step was carried out using Matlab 7.0. Finally, all

values were processed to yield protein abundance ratios with

respect to the first time-point sample (i.e. 7 h) using

ri
j=7h~

ri
j=11h

ri
7h=11h

ð1Þ

The complete dataset containing protein identifications and

expression data are provided Table S2.

RNA extraction and microarray analysis
Culture samples harvested for RNA extraction were mixed with

one-fifth volume of a ‘‘stop solution’’ (5% phenol in ethanol, [33])

to preserve intact RNA before rapid chilling, centrifugation and

storage at 280uC. For RNA extraction, cell lysis was performed

using liquid nitrogen and cellular contents were resuspended in

buffer RLT (RNeasy Mini kit; Qiagen Inc., Valencia, CA) while

all further steps were carried out according to manufacturer’s

instructions. RNA integrity was assessed by gel electrophoresis and

quantity/purity estimated by UV absorbance at 260 nm and

280 nm.

Microarrays produced based on chip construction protocols

reported earlier [19] were used for transcriptome analysis. Briefly,

,10 mg total RNA was reverse transcribed using SuperScriptTM II

RNase H- reverse transcriptase (Invitrogen, Carlsbad, CA) with

random hexamer primers and amino-allyl dUTP nucleotides

(Ambion, Austin, TX) to yield cDNA. This cDNA and 200 ng

sheared gDNA were labeled with Alexa 647 (Invitrogen) and Cy3

(LabelIT reagents; Mirus Bio Corp., Madison, WI) dyes respec-

tively. Labeled samples were mixed and co-hybridized onto

microarrays in the presence of 50% formamide at 50uC for 16 h.

Slides were washed after hybridization and scanned with

ScanArray 5000 (Perkin Elmer, Wellesley, MA). Each chip

contained duplicate spots for every gene providing a means for

basic statistical analysis.

Microarray images were analyzed using GenePix software

(Axon Instruments, Union city, CA) to obtain raw spot intensity

data. Median fluorescence intensities from each spot were used to

calculate mRNA quantification ratios as log2[cDNA/gDNA].

Data points with standard deviations greater than 0.5 were filtered

out and remaining data was normalized using a quantile

normalization approach [19]. For comparison with protein

profiles, this mRNA abundance data (log2[cDNA/gDNA]) from

different samples were processed to yield log2[cDNAi/cDNAto]

relative gene levels for each sample i with respect to the first

sample (t0 = 7 h). The dataset containing gene expression values

and further analyses corresponding to those proteins identified in

mass spectrometry are provided in Table S3. The complete

microarray data has been deposited in a MIAME compliant

manner at Gene Expression Omnibus (http://www.ncbi.nlm.nih.

gov/geo/): accession GSE7172.
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Data analysis
For microarray analysis, data points from technical replicate

spots falling outside of mean 61.2 times standard deviation were

discarded for every gene. Genes with large absolute standard

deviations between replicate spots ($0.5 in log2 scale) were also

eliminated from further analysis. In addition, gene profiles

generated were compared with profiles from biological replicate

cultures for consistency of expression patterns.

Reproducibility of quantitative protein data from independent

MS runs was assessed using coefficient of variation. Since this data

is likely to resemble a log-normal distribution, the coefficient of

variation was calculated as

CVi,j~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10s2

i,j {1

q
ð2Þ

where si,j is the standard deviation of log10[r
i
j/11h,k = 1,2,3] for protein i

in sample j with respect to 11 h using any of the independent runs k,

where the sample pair j and 11 h were analyzed together. Note that

log10 is used specifically in this case for the sake of comparison with

previous reports [14] while log2 is used for all other analysis

described in this work. The CV was also calculated in linear scale as

ratio of mean to standard deviation for comparing with similar

results from 2D gel based experiments [15].

Protein abundance estimates were obtained from exponentially

modified protein abundance index, emPAI [18] calculated as

emPAI~10
g
t{1 ð3Þ

where g is the total number of MS/MS spectra contributing to a

given protein identification and t is the maximum number of

theoretical peptides generated from a protein sequence by trypsin

digestion allowing for a maximum of one missed cleavage.

Codon Adaptation Index (CAI) was estimated as described

previously [17]. The algorithm for CAI calculation was imple-

mented in Matlab 7.0 with bioinformatics toolbox.

Data visualizations combining gene dynamics and protein

annotations obtained from the Sanger Institute (Cambridge, UK)

and The Institute of Genomic Research (TIGR) were also

performed in Spotfire software. Information for pathway analysis

was generally obtained from ScoCyc (http://scocyc.jic.bbsrc.ac.

uk:1555/) and Kyoto Encyclopedia of Genes and Genomes

(KEGG, [34]). All individual gene profiles discussed in this

manuscript have low quantification p-values (#0.05) and/or

additional confidence from similar profiles from functionally

grouped genes.

Supporting Information

Figure S1 Biological replicate analysis for proteome data. Two

independent biological replicate cultures were performed and

samples were analyzed using iTRAQ. The resulting protein data

were compared to assess quantification consistency. The figure

shows a scatterplot of logarithm of stationary phase to exponential

phase expression ratio from the replicates. Since the sampling

time-points were not exactly same (due to variations in duration of

lag phase between cultures), an overall ratio of average expression

in stationary phase to exponential growth phase is shown. The

ratios used here are those of 40 h : 9 h samples for replicate #2

and an average of 34 h : 7 h and 38 h : 7 h for replicate #1.

Further time-points in replicate #1 were analyzed with mass

spectrometry and that dataset is presented in the manuscript.

Samples analyzed by MS runs 1, 2 and 3 are indicated.

Found at: doi:10.1371/journal.pone.0002097.s001 (0.17 MB PDF)

Figure S2 Examples of some genes exhibiting good correlation

between mRNA (blue) and protein (red) profiles. The horizontal

axis corresponds to time spanning from 7 h to 38 h while the

vertical axis corresponds to log2 expression ratio relative to 7 h

sample. The numbers on the top right indicate the total number of

unique peptide hits supporting each protein identification.

Found at: doi:10.1371/journal.pone.0002097.s002 (0.08 MB

PDF)

Figure S3 Additional examples of genes exhibiting discordant

mRNA (blue) and protein (red) dynamics. The horizontal axis

corresponds to time spanning from 7 h to 38 h while the vertical

axis corresponds to log2 expression ratio relative to 7 h sample.

Figure S3(a) shows additional functionally or chromosomally

related genes displaying mRNA-protein discordance. Figure S3(b)

shows isolated such discordance among isolated genes (genes that

could not be grouped into related categories). The numbers on the

top right of each panel in Figure S3(b) indicate the total number of

unique peptide hits supporting each protein identification.

Found at: doi:10.1371/journal.pone.0002097.s003 (0.09 MB

PDF)

Figure S4 MS/MS fragmentation spectra for single peptide

protein hits. This file contains a series of MS/MS fragmentation

spectra for single peptide protein hits shown in Figure 5. The list

also includes those single peptide hits that were sampled multiple

times (i.e. multiple spectral evidence single peptide hits). In such

cases, the protein number is repeated as many times as the number

of spectra contributing for a given peptide.

Found at: doi:10.1371/journal.pone.0002097.s004 (4.28 MB PDF)

Table S1 List of genes with probable divergent mRNA-protein

behavior discovered by PCA The list shows only data for which at

least two unique peptide identifications in mass spectrometry data

are available. Please refer to supplementary tables S2 and S3 for

complete dataset including proteins with single peptide hits and

concordant mRNA-protein behavior.

Found at: doi:10.1371/journal.pone.0002097.s005 (0.19 MB

PDF)

Table S2 Protein identification, quantification and analysis

results summary. Tab delimited text file containing mass-

spectrometry protein identification and quantification summary.

PCA results are also shown.

Found at: doi:10.1371/journal.pone.0002097.s006 (0.29 MB

TXT)

Table S3 mRNA quantification and analysis results summary

for those genes identified in proteomics analysis. Tab delimited

text file containing transcriptome data from microarrays. PCA

results are also shown.

Found at: doi:10.1371/journal.pone.0002097.s007 (0.21 MB

TXT)
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