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Contextual dependencies expand the re-usability
of genetic inverters
Huseyin Tas 1,4, Lewis Grozinger2,4, Ruud Stoof 2, Victor de Lorenzo 1✉ & Ángel Goñi-Moreno 2,3✉

The implementation of Boolean logic circuits in cells have become a very active field within

synthetic biology. Although these are mostly focussed on the genetic components alone, the

context in which the circuit performs is crucial for its outcome. We characterise 20 genetic

NOT logic gates in up to 7 bacterial-based contexts each, to generate 135 different functions.

The contexts we focus on are combinations of four plasmid backbones and three hosts, two

Escherichia coli and one Pseudomonas putida strains. Each gate shows seven different dynamic

behaviours, depending on the context. That is, gates can be fine-tuned by changing only

contextual parameters, thus improving the compatibility between gates. Finally, we analyse

portability by measuring, scoring, and comparing gate performance across contexts. Rather

than being a limitation, we argue that the effect of the genetic background on synthetic

constructs expands functionality, and advocate for considering context as a fundamental

design parameter.
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The abstraction of gene regulatory signals into on (high) and
off (low) values allows for the design and implementation
of genetic Boolean circuits1 inspired by digital electronics.

Such devices result from assembling two or more genetic logic
gates1,2—the basic unit for processing information in genetic
circuits based on Boolean logic. A core objective of synthetic
biology3 is the building of new regulatory circuits to compute
inputs into outputs according to predefined logical functions4,
which are then used in a number of applications, ranging from
bioproduction5 to medical diagnosis6. Although this approach
has been relatively successful, genetic logic gates are far more
fragile and less reliable than their electronic counterparts as their
signals are rarely constant and often fluctuate over time7,8.
Consequently, the large-scale control of gene regulation based on
Boolean logic alone is challenging. The central underlying issue is
that a number of features intrinsic to biological systems, such as
gene expression noise, analogue signalling9 and evolutionary
dynamics10, make the intracellular environment an unsuitable
domain for engineering idealised Boolean logic11.

A fundamental challenge for the design of robust synthetic
circuits, which underpins this work, is the oversimplified model
that assumes DNA elements (i.e., gates) alone explain the per-
formance of genetic circuits. Based on this assumption, the host
chassis (the cell that receives a specific genetic construct) is
generally ignored and the interplay of a genetic circuit with the
host context is most often overlooked in the bottom-up design
process—an issue that has been identified as essential for the

predictability of synthetic biology devices12. Our results here
suggest that, rather than being antagonistic, incorporating context
into the design of biological circuits can actually provide advan-
tages by enlarging the available design space. Both the burden
imposed by synthetic constructs on the host13,14 and the impact
of context on genetic activity15, have phenotypic implications that
cannot be predicted from a gene-centric standpoint. A common
strategy seen in nature is to achieve a similar outcome using a
different pathway in different organisms, rather than normalising
pathways across all organism. For instance, E. coli solves energy
requirements through the EMP metabolic pathway, while P.
putida does it via the ED pathway. The function is the same:
glucose as input and energy as output, but the circuitry is not
normalised. Rather, it depends on the context. Recently, the term
host-awareness16,17 has been coined to bring attention to this
problem, which is at the core of the lack of part interoperability18

(i.e., parts that show similar performance in different host con-
texts). Here, we propose to utilise a strategy that is inspired by
nature, and includes context as a parameter in the design of
optimal genetic circuits.

While most synthetic biology efforts make use of only one host
chassis to develop and characterise genetic constructs, potential
applications may require the same genetic devices to work with
different cell types19. For instance, circuit-constructs optimised in
Escherichia coli for rapid prototyping, might be implanted into
Pseudomonas putida for a bioremediation application20 or into
Geobacter sulfurreducens for bioelectricity production21. How-
ever, circuit performance will likely differ in different chassis,
gene dosages and vectors, highlighting the importance of context
in host-circuit design. As a result, the performance of a given
genetic logic device would not only be a consequence of its DNA
sequence but also would be influenced by its context. Within this
scenario, modifying the context could fine-tune the performance
of logic gates, thus engineering reconfigurable genetic logic
devices which share the same sequences but exhibit different
behaviours22. In the work presented below we inspect these sce-
narios by analysing quantitatively the behaviour of a collection of
genetic inverters in different strains of the same species, in other
species and in either case with the same devices borne by low,
medium and high-copy-number vectors. The results illustrate
that playing with these biological backgrounds expands the range
of parameters that rule the behaviour of each construct. On this
basis, we consider that context variability could be an advantage
for circuit design rather than being seen as problematic.

Results
Generation of gate-context libraries. To generate enough data
on the contextual dependencies of genetic inverters we made use
of 20 NOT logic gates assembled with a suite of promoters and
repressors first developed as components of the CELLO platform
for E. coli1 and then recloned in broad host range vectors of
different copy numbers for delivery to different types Gram-
negative hosts23. The logic function (NOT or inverter) corre-
sponds to a genetic device that reverses the incoming signal (i.e.
output high to input low and vice versa). The inverters used are
pairs of a specific regulator (repressor) and its cognate promoter
(Fig. 1a). The characterised transfer functions measured the
impact on promoter activity (output; captured by the expression
level of an ypf reporter fused downstream) generated by specific
concentration of regulator (input). In order to manipulate the
expression level of the regulator, its coding sequence was placed
under the control of a lac promoter, which was externally induced
by IPTG. For gates characterisation, these were transformed into
a bacterial host, which was then used to measure the NOT
function (Fig. 1b). Relative promoter units (RPU) for both the

Fig. 1 Generating a library of gate-context devices. a Genetic inverters
(NOT logic gates) were placed in between the pTac/LacI system (the
input) and the yfp gene (the output). Key components are a repressor (Rx)
and its cognate promoter (pRx). b For a genetic construct to be measured, it
needs to be cloned into a plasmid which, in turn, is transformed into a host
cell—thus using a single context. c In this work, each genetic inverter (from
an initial library of 20 gates) was measured in a number of context setups.
These setups were based on combinations of two plasmid backbones (pAN
and pSEVA), one of which with three different origins of replication—RK2
(221), pBBR1 (231), RFS1010 (251)—and three different hosts (E. coli DH5α,
E. coli CC118λpir, P. putida KT2440). The performance of the resulting 135
gate-context devices was characterised experimentally by using flow
cytometry and analysed computationally to find the impact of contextual
dependencies on inverter’s behaviour.
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inputs and outputs of transfer functions were derived from yfp
fluorescence measurements, in order to standardise their char-
acterisations. The reference dataset of the behaviour of the 20
gates under inspection in E. coli NEB10β—12 main gates plus 8
variants—was retrieved from Nielsen et al.1 (Table S1).

To assess the impact of the host context on gate performance,
both the plasmid backbone and the cellular chassis were changed.
As far as the carrier backbone is concerned, gates were cloned
into the pAN and pSEVA24 backbones, considering different
origins of replication that led to low (RK2, pSEVA221), medium
(pBBR1, pSEVA231) and high (RFS1010, pSEVA251) copy
numbers. This contextual feature accounted for dynamics
generated by circuit burden25, since more copies of the same
gate would increase the cost (of running it) to the cellular
machinery. Regarding the chassis, we used two Escherichia coli
(DH5α and CC118λpir) strains that are evolutionary relatively
close and one Pseudomonas putida (KT2440) strain that is an
evolutionary distant host to the other two. Combinations of these
resulted in a library of gate-backbone-host devices (Fig. 1c) where
the final performance cannot be explained by the genetics of the
NOT logic gate alone. That is, the DNA sequence of the
constructs is not enough to predict the behaviour of the gate—
information about the context is then essential for understanding
the genotype-to-phenotype dynamics. As shown in Fig. 1c, each
logic gate in this study can have up to seven context-dependent
dynamic behaviours, some of which differ significantly. Specifi-
cally, plots shown in Fig. 1c correspond to the characterisations of
gate PhlF (one of the 20 gates of the initial library) in seven
different contexts. While the performance changes abruptly in
some cases (e.g., in contexts 3 and 4), it did not change
significantly in others (e.g. in contexts 5 and 6). The codes and
methods used for this analysis are made available to encourage
extensions to this work and its application to other data sets (see
Methods). Overall, our analysis suggests that contextual depen-
dencies act as a hidden layer of parameters that must be carefully
considered to achieve a predictable logic gate design—an issue
which has been traditionally overlooked.

Effects of cross-context portability. When a genetic logic gate is
either passed onto another organism, or carried by a different
backbone, the interplay between itself and the context changes26.
Contextual dependencies are adjusted. These modifications alter
the expression levels of a gate, its dynamic range and (in some
cases) its logic function. Moreover, context-dependent changes of
qualitative behaviour imply that the dynamics of the interplay
between context and construct are nonlinear. That is, a given pair
of gates may suffer similar modifications in one context but very
different in another.

For example, PsrA-R1 and PhlF-P2 show these effects (Fig. 2a).
When both gates are hosted by chassis E. coli DH5α, the
backbone (either pAN or pSEVA221) seems to play a key role in
the logic outcome of PhlF-P2, which becomes more step-like with
pSEVA221 (i.e. sharper transition from on to off). In contrast to
this, gate PsrA-R1 does not follow that trend and remains
qualitatively unchanged, although absolute expression values
drop. Using the same backbone (pSEVA221) we then tested the
context impact of varying the E. coli strain. Whilst the
performance of PhlF-P2 is qualitatively the same (with smaller
dynamic range), PsrA-R1 shows a qualitative change, becoming
more step-like, thus showing more desirable behaviour than in
other contexts. These inconsistencies in changes of qualitative
behaviour of gates highlight the difficulty of compensating for
such effects in order to engineer context-independent circuits26.
However, there are also more predictable contextual changes in
which that strategy may work well. For example, when both gates

are hosted by E. coli CC118λpir, changing the backbone from
pSEVA221 to pSEVA231 (that only differ in the origin of
replication) generates almost the exact same phenotypic mod-
ification. Finally, a marked difference occurs when the gates are
hosted by P. putida KT2240. In these contexts, the gates lose their
NOT logic, regardless of choice of backbone (pSEVA221,
pSEVA231 and pSEVA251). The characterisation of the full
library (20 gates) is shown in Supplementary Information
Tables S4–23.

The issue of inter-context predictions arose as a formidable
challenge. For example, in Fig. 2, an attempt to predict the
performance that gates would display in the context E. coli DH5α
(pSEVA221), based on gate performance in E. coli CC118λpir
(pSEVA221) failed. The prediction was based on applying an
optimised linear transformation to the gates transfer function. No
linear transformation that performed consistently well could be
found using this procedure, suggesting that a nonlinear
transformation may be required. In this case, the optimisation
was done using the AmtR-A1 gate, and the predictions tested on
other gates in the library. As expected, some of the gates showed a
relatively good prediction (good candidates for portability
applications), but that was not the case for all of the constructs.
Although predictable, gate portability is highlighted as an open
problem and contextual dependencies offer a unique opportunity
for fine-tuning gate performance, which we carefully analysed as
explained next.

Enhanced gate compatibility by fine-tuning contextual
dependencies. Building a genetic circuit by coupling genetic logic
gates requires an assessment of their compatibility, to determine
which gates can be connected. In order to connect two gates, the
output levels of one must match the input levels for the other. If
not, it may result in failure of the overall circuit logic1,27,28. This
is one of the major bottlenecks that restrict the depth of genetic
logic circuits and limit scalability, since not every gate within a
library will be compatible with another. The analysis of inter-gate
compatibility is therefore fundamental for circuit design and is an
integral part of current synthetic biology Computer Aided Design
tools1,29. However, knowledge about the effect of context on gate
compatibility has until now been lacking.

In order to tackle this issue, we first scored the matching of all
the gate pairs in the library according to their input and output
thresholds (Fig. 3a). The inclusion of the input thresholds in the
output ones defines a pair as “compatible”. The extent of the
inclusion is used to compute a compatibility score (formula
presented in “Methods”), which is positive if the pairing is
compatible and negative otherwise. This metric permits the
comparison of all available compatible pairings and potentially
informs design decisions. That is, under this framework, a design
consisting of pairings with larger positive scores should be
preferred over designs with comparatively smaller or negative
scores. With this in mind, scoring of all pairings in a library may
indicate the overall quality of a gate library and of the circuits
produced thereof. Moreover, the information provided by the
compatibility was complemented by the introduction of a
similarity score (Fig. 3b). While the former relates two different
gates, the latter relates the same gate to itself when varying
contextual dependencies. This score quantifies the impact of
specific context variations on each gate.

In this analysis, constructs were considered as gate-context
entities (e.g. E. coli DH5α (pAN::PsrA-R1) or E. coli DH5α
(pSEVA221::PsrA-R1), rather than individual gates alone (e.g.
PsrA-R1) so that results account for the performance of a gate in
a given context. We consider that high numbers of compatible
pairs in a library are a desirable trait, and examine the impact of
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the two contextual features we focus on (backbone and host) on
this metric, both independently and together. As a general trend,
relaxation of the contextual parameters of backbone and host
results in an increase in compatible pairings. More importantly,
this increase is made up of not only new pairings within the
additional contexts, but also additional pairings between gates in
different contexts. In the example shown in Fig. 3c, 85 pairings
are possible in DH5α without using two different backbones, 67
with pAN (Fig. 3c, left) and 18 with pSeva221 (Supplementary
Figure S3), whereas 203 pairings are possible when allowing
mixing of these backbones (Fig. 3c, middle). Thus, compatible
pairings in the library increased ~240% as a result of incorporat-
ing connections between gates with different backbones. A similar
jump of ~240% is observed when incorporating connections
between gates with different hosts in addition to different
backbones (Fig. 3c, right). We conclude that consideration of
backbone and host as a design parameter results in a more
flexible, and reconfigurable, library with the ability to include
dynamics that are not captured by just DNA sequences e.g., the
copy number of circuits (thus their burden to the cell).

Due to the consideration of contextual dependencies of host
and backbone, the original gate library of only 20 genetic devices
was increased to 135 different functions. Therefore, there were
many more options to evaluate and more compatible pairs found.
However, some of these pairs correspond to gates that are

compatible only if they are inside different hosts. For example, the
gates HIyIIR-H1 and AmeR-F1 can only be matched (i.e., their
function is complementary) if the former is hosted by E. coli
DH5α and the latter by E. coli CC118λpir. This suggests that
taking a multicellular (distributed) computing approach30–33 will
be required to couple the functions of these two constructs. In
multicellular computations, a predefined function is distributed
across different engineered bacterial strains (or species), which
are connected in such a way that the output of one cell is the
input of another one. Therefore, considering the host of a genetic
construct within circuit design will allow for building both intra-
and inter-cellular computations11.

Context-aware design rules for layered logic gates. The design
of synthetic genetic circuits typically overlooks contextual features
by considering that phenotypic performance can be explained by
the DNA sequence of the synthetic construct alone. However, this
over-simplification has negative implications; for example, it
requires considerable effort to adapt a genetic circuit to a new
host34. The fact that genetic constructs show different dynamics
depending on their context is not necessarily a disadvantage
for predefined circuit design—could we rationally use such
variability? To begin to address this question, we carried out
computations in order to identify the maximum circuit depth

Fig. 2 Nonlinear effects in the cross-context portability of inverters. a Plots comparing the characterisation of two gates, PsrA-R1 and PhIF-P2, in different
contexts. As well as each individual characterisation is differing across contexts, the relationship between the two characterisations also differs, depending
on both strain and plasmid. This is, some contextual changes impact on a similar way on the performance of two inverters, while others impact on a
different way—what we refer to as nonlinear modifications. b Nonlinearities made the prediction of gate performance changes between contexts an
overarching challenge. Predictions were made for gates in the E. coli DH5α (pSEVA221) context (‘Predicted’ line), based on their characterisations in E. coli
CC118λpir (pSEVA221) i.e. ‘Reference’ line. Predictions were made using a transformation matrix found by searching for the optimal linear transformation
between the AmtR-A1 gates in each context. The actual characterisation of the gate is shown for comparison (‘Measured’ line). It can be seen that the
optimised linear transformations cannot accurately predict changes in gate behaviour between contexts. In particular, although translations (a linear
transformation) in the Input and Output axis appear to be predicted well in some cases (see for example QacR Q2), more qualitative changes in the shape
of the response curve cannot be addressed by this linear transformation (see for example QacR-Q1). All response curves are plotted in RPU-RPU.
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(i.e., number of layers35) that could be achieved by connecting
gates within our library, and assessed the impact of contextual
effects in such a chain (Fig. 4). First, when considering all gates in
the same context, with backbone pSEVA221 and hosted by E. coli
CC118λpir, the maximum depth was 3 (Fig. 4a). That is, there are
three gates that can be connected consecutively while maintaining
the correct logic output (i.e., logic values 0/1 are effectively
transmitted from beginning to end). Every other valid config-
uration will result in fewer (or the same) number of layers. We
find that increasing the number of contexts available can sig-
nificantly increase the maximum depth computed by the search
algorithm. As shown in Fig. 4b, allowing another context by
including gates characterised with any backbone (but still hosted
by E. coli CC118λpir) increases the maximum depth to 5. This
can be further improved upon by allowing freedom in the choice
of host, for a total of 7 contexts (Fig. 4c). In this case, the com-
puted maximum depth is 11, far beyond the current state-of-the-
art for synthetic circuitry1. Of course, this maximum circuit
depth is a hard upper bound on the depth of any circuit that
could be constructed using the library, but does not guarantee

that this depth can be achieved in a circuit that does not simply
layer inverters. However, the increasing depth we observe as
contextual parameters are relaxed suggests that there is potential
for deeper circuits with context as a design parameter than
without. Libraries of genetic gates which are allowed to be placed
in multiple contexts appear to be less restrictive than their single-
context counterparts, and could potentially permit a broader
range of more complex circuit designs.

Discussion
A fundamental driving force for synthetic biology3,35 is the
clarification of mechanistic assumptions as our understanding of
molecular processes increases, which allows scientists to add
novel tools to the catalogue for engineering living systems.
Although the cellular environment consists of much more than
DNA, circuit design1,29 typically revolves around genetic ele-
ments (promoters, terminators, RBSs…) in order to link genotype
to phenotype—an oversimplified reductionist approach. The
comfortable, yet error-prone, assumption that engineered parts

Fig. 3 Comparing inverter compatibility and similarity across contexts. a Gate compatibility indicates if two gates can be sequentially assembled—the
output of the first gate is compatible with the input of the second—or not. Since the IH (Input High) and IL (Input Low) thresholds of the output gate,
AmeR-F1, lie between the OH (Output High) and OL (Output Low) thresholds of the input gate, LitR-L1, this pairing is compatible. b A heatmap of similarity
scores (which refers to how similar the shape of both inverter’s transfer function is) calculated using discrete Frechet distance between the
characterisation of PhIF-P1 in each of the seven contexts (darker is more similar). Most values within the score scale are covered, which highlights context
contribution to final gate behaviour. c Maps of compatible pairs for the gates characterised in: the strain E. coli DH5α with pAN as the only plasmid for all
inverters (left), the strain E. coli DH5α with any variation in plasmid type (middle) and in any context choice (right). Considerably more compatible pairs are
found when freedom is given in the choice of backbone, rising from 67 (left) to 203 (middle) pairs. The freedom to use both backbone and strain as a
design parameter yields the most compatible pairs at 697. Further, from 19 functional NOT gates, with a possible 320 pairings between them, 198 of these
(61.8%) can be realised by allowing different backbones and strains to be utilised.
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alone can ultimately explain phenotypic performance needs to be
expanded upon12. This leads us to consider what has been termed
genetic background15 and host-aware16 dynamics: cellular fea-
tures and constraints that have an impact on circuit performance
but are not captured by the DNA sequences of the construct. In
recent years, several of these features have been analysed: the
impact of having limited cellular resources36,37 (e.g. ribosomes) to
“spend” on synthetic constructs, the effects of placing DNA parts
in different genomic locations38,39, the role played by metabolism
in genetic control40,41, or even genetic stability42 due to evolution
over time. All these effects turn the portability of genetic circuits
into an overarching challenge—the fine-tuning of a circuit to
work inside a different host (to the one it was originally built-in)
is still a major task26. Furthermore, it limits the scope of biolo-
gical circuits by solely using a DNA-insert toolbox for designing
circuits.

Here, we use the word “context” to refer to the molecular
background of the cell beyond genes and analyse how such
context can be used for improving biocircuit design. By “depen-
dencies”, we mean the constraints imposed by the context on a
given genetic construct. Therefore, genetic logic gates are exposed
to contextual dependencies that influence their phenotypic
behaviour. In the extreme case, these constraints can even result
in unviability of the cellular host, for example, during the con-
version to pSEVA broad host range backbones, five of the genetic
inverters were not functional when cloned into a high-copy
plasmid (pSEVA251), perhaps due to overload in the allocation of
cellular resources resulting in toxicity23.

Although synthetic biology is a field full of metaphors43

already, we entertain here a new one that we consider to provide a
useful conceptual frame: the use of contextual dependencies as in
a software engineering problem. Any piece of software, or pro-
gram, must run inside a specific environment (e.g. operating
system) and software engineers usually face the problem of
adapting it to the particular dependencies of the environment/
context at stake. Under this metaphor, genetic circuits are con-
sidered software (instead of hardware44) whose performance is
deeply linked to context-specific dependencies, which can allow
designers to access functions that could not be coded otherwise.
In this paper, we propose that contextual dependencies are
important parameters for circuit design, and focus on [i] back-
bone carrying the construct, and [ii] cellular host in which the
construct performs.

In this work, we exploited a library of 20 genetic inverters
(NOT logic gates), which are combined with four different
backbones and three cellular strains to give a total of 135 gate-
context constructs. In this regard, the number of functions
exposed by the library increases by 675% due to the addition of
these two contextual dependencies. With this new library we
carried out experiments in order to assess the implications of
adding context to the context-free initial collection of NOT gates.
First, the characterisation of the constructs showed how gate
behaviour changed across contexts in a nonlinear fashion. That is,
the phenotypic modifications in the performance of one gate
across two contexts may not match those of another gate under
the same contextual transformations. This has major implications

Fig. 4 Calculation of maximum circuit depth as a result of layering inverters. Based on the compatibility between gates, these were layered within the
library in order to evaluate the impact of contextual dependencies on circuit size. For all graphs: x-axis refers to the input and y-axis to the output (both
RPU). a The maximum depth calculated when the computational method is forced to consider all gates carried by the low copy-number plasmid pSEVA221
and hosted by Escherichia coli CC118λpir, is 3 gates-deep. b If the algorithm is free to select any plasmid (but still forced to E. coli CC118λpir), the maximum
depth increases to 5. In this scenario, two gates are carried by the medium copy-number plasmid pSEVA231. c In the last analysis, the calculation used all
contextual dependencies, including the variation in host chassis. The maximum number of gates layered increases to12 (only 5 shown in figure—refer to
Supplementary Material for more information). In the sketch shown in the figure, 4 out of the 5 gates were characterised in the strain Escherichia
coli DH5α.
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for the portability of genetic devices, since not all genetic com-
ponents may be affected in the same way upon host change—thus
building complex portable devices will become difficult (if not
entirely impossible). Second, our experiments suggested that
the compatibility of gates (so that they could be composed; the
output of the first being the input of the second) does not only
depend on selected genetic inserts, but also on their context.
While only 67 compatible pairs were found in the original library
of 20 inverters, the number increased to 697 in the new library.
For instance, by allowing gates to be carried by four different
backbones, the computational algorithm was able to evaluate
the compatibility of four functions instead of 1 and return not
only the name of the compatible gate but also the name of the
backbone to use for carrying it. This allows reconfiguration of
genetic constructs, since the same piece of DNA-insert can have
different behaviours depending on rationally selected contextual
dependencies. Finally, the use of the cellular host as a separate
design parameter allowed identification of gate pairs that were
only compatible if connected gates were located in different
strains/species. Consideration of different contextual dependen-
cies was found to increase the theoretical maximum circuit
depth from 3 to 12, as shown in Fig. 4. Practical implementations
of such context-dependent designs would comply with the fol-
lowing three rules. Firstly, designs necessarily rely on multi-
cellular distributed computing approaches30,32,45,46 in order to
connect logic gates in different hosts. These connections could be
established by using orthogonal quorum sensing (QS)
systems47,48. In order to prevent the number of orthogonal QS
systems from being a limiting factor, paths should be selected that
minimise these inter-host connections—therefore maximising the
number of gates per host. Secondly, linking gates inside a host
requires using repressor molecules for signalling, which must also
be orthogonal to ensure correct gate operation. Since the library
of repressors would also be limited, the adoption of multicellular
approaches offers an important advantage: the re-usability of
parts i.e. a repressor that is used in one host may be reused in
another. This second rule may be used to distribute circuit burden
across different strains. Finally, plasmid backbones can coexist
inside the same host as long as their origins of replication are
different—otherwise, some plasmids may be lost during the
process. Altogether, these guidelines establish a rational criteria
for the selection of context-dependent circuitry components from
a bottom-up design.

In a similar way to living systems that use a number of
mechanisms to go from genotype to phenotype, we advocate for
the development of genetic circuits by considering whole-cell
dynamics—including contextual dependencies. Although in this
work we have considered backbones and strains as the contextual
dependencies, this library could be extended by adding other
contextual parameters such as other promoters, context-specific
genetic parts, or substrates. This will result in the design of bio-
logical circuits that are closer to the internal workings of natural
systems11—therefore more robust, reliable, predictable and
reproducible.

Methods
DNA and strain construction. All cloning steps were done in E. coli CC118λpir.
Primers are ordered from Merck Sigma Aldrich, Inc. The repressible and inducible
systems were previously described by Voigt Lab and acquired by the courtesy of
Voigt Laboratory in MIT (USA). Description of the 20 different NOT gates moved
into broad host range pSEVA backbones are described in Tas et al.23. Components
of the original inverters, like terminators, RBSs and insulators were kept the same
during the SEVA conversion. SEVA backbones have two terminators, T0 and T1
which are important to lower potential leakages. Required oligo list can be found in
the Supplementary Information (Supplementary Table 3). The pAN backbone1 has

a kanamycin resistance gene with a p15A origin of replication which is ~15 copy
number in E. coli NEB10β strain.

Medium and experimental protocols. In all experiments (unless stated otherwise)
M9 minimal medium for E. coli and M9 medium for P. putida were used. The
ingredients of the M9 medium used are as following: for 250 ml of liquid medium,
25 ml 10X M9 salts, 500 μl of 1 M MgSO4, 2.2 ml of 20% carbon source (glucose for
E. coli and citrate for P. putida), 125 μl of 1% Thiamine, 2.5 ml of 1% Casamino
acids and milliQ-H2O up to 250 ml. The concentration of kanamycin used is 50 µg
ml−1 in the experimentation procedures. IPTG was used as inducer for pTac/LacI
inducible system in 12 different concentrations diluted from 1M stock con-
centration that are 0, 5, 10, 20, 30, 40, 50, 70, 100, 150, 200, 500 and 1000 μM. For
synchronising the cells in the experimental procedure, cultures are started from a
single colony picked from LB agar plate which is each time freshly prepared from
−80C glycerol stock by inoculating it O/N in 1 ml M9 minimal medium. O/N
cultures after saturation were diluted by ~666 times to inoculate 200 μl
M9 minimal medium in 96 well plate for 24 h, which is enough to reach to 0.2 - 0.3
OD in 96 well plate after which for halting the growth cells were kept on cold
platform during the measurements.

Flow cytometry analysis. Miltenyi Biotec MACS flow cytometer at channel B1
with an excitation of 488 nm and emission of 525/50 nm was used for measuring
YFP fluorescence distribution of each sample. 30000 events were defined as the
statistically sufficient amount under singlet gating for each sample. Calibration of
the flow cytometer was done daily by using MACSQuant Calibration Beads.
Throughout flow cytometer measurements samples were always kept on cold 96
well plate platforms. For the analysis of the data FlowJo software was used. In the
analysis, gating was done via the usage of auto-option and allowing to cover at least
50% of the whole events run while Forward and Side scatters were plotted, and the
same gating conditions were kept for all samples in the same group.

Fluorescence data pre-filtered by cell size. In order to unify fluorescence
measures between and within flow cytometry experiments, we analysed fluores-
cence and scattering values. Variation in cell size across experiments showed that
median fluorescence values were decisively affected, therefore inaccurate for the
sake of comparison. To compare between experiments, we took the distribution of
fluorescence for single scattering values. A full description of this process is detailed
in Supplementary Information.

Standard fluorescence measurements. Two extra plasmids were used for mea-
surements, the autofluorescence plasmid (Backbone::1201), and the reference
standard plasmid (Backbone::1717) that triggers yfp expression under the pLacI
constitutive promoter. In order to derive relative promoter units (RPU), the fol-
lowing equation was applied:

RPU ¼ <YFP>� <YFP>autofluorescence

<YFP>standardization � <YFP>autofluorescence
;

where <YPF> stands for the median fluorescence value of the inverter that is to be
standardised into RPU, <YPF>autofluorescence is the median fluorescence value of the
autofluorescence plasmid, <YPF>standardisation indicates the median fluorescence
value from the standardisation plasmid. RPU values were calculated in transfer
function plots for different data points using at least 6 inducer levels covering the
range of induction up to saturation.

Data fitting. The pre-filtered experimental data were fitted to a 4-parameter hill
equation of the form

hðxÞ ¼ ymin þ
ðymax � yminÞkn

kn þ xn
:

This model is often used to relate gene expression levels to the concentration of
a repressive transcription factor, most notably in1, where it is used to describe the
input–output relationship of genetic inverters (NOT gates). In this study, we
consider only NOT gates, for other types of gate, other models should be selected

The parameter values for ymin and ymax were set to the minimum and maximum
of the corrected experimental data. The values for k and n were then fitted using
the least squares method from the scipy.optimize Python package49, with
logarithmic residuals.

Fits were obtained for all gates presented in this paper. The fitted parameters are
shown in tables in the Supplementary Materials. However, for many gates, it was
found that the model was a poor fit to the data. In this case, the gate cannot be
considered an example of a NOT gate and should not be used as parts in circuit
design. In particular, the criteria for valid inverters as described below should omit
these poorly behaved gates.

Calculating compatibility. Thresholds OL, OH, IL and IH were computed from
the parameters of the fitted hill curves according to the definitions given in [1]. OL
and OH are twice ymin and half of ymax, respectively. IL and IH are the values of x
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for which the output of the fitted hill function is equal to OL and OH, respectively.
Accordingly, the values of IL and IH were calculated with the following formulae:

IL ¼ knymax

ðymax � 2yminÞ
� �1=n

;

IH ¼ knðymax � 2yminÞ
ymin

� �1=n

:

Inverters were considered operational under the condition that OH>OL and
IH>IL for their fitted hill curve.

Compatibility scoring. For a pair of operational inverters, A and B, their com-
patibility score was defined as

min ln
ILB
OLA

� �
; ln

OHA

IHB

� �� �
:

A positive score indicates that a high(low) output from A will also be
interpreted as high(low) by B, because IL(IH) of B is greater(less) than OL(OH) of
A. From this we imply that inverter A can be connected as input to inverter B, if
and only if their compatibility score is positive.

Computation of inverter chains. Chains of compatible inverters were found by
creating a table of compatibility between available inverters, for which the entry for
a compatible pair was 1, and all other entries were 0. This table was then treated as
the adjacency matrix of the graph of all possible connections, and the longest paths
were enumerated using a depth-first search of the graph. Paths in which the same
repressor was used more than once were excluded from the results, thus imposing
an upper bound of 12 on path length.

Similarity measure. The discrete Frechet distance50 was used to measure simi-
larity of the shapes of two experimental curves, after first log transforming and
min-max normalisation of the data along both axes. The Frechet distance was then
subtracted from 1 in order to produce a metric that increases as the shape of the
curves becomes more similar. The discrete Frechet distance was computed using
the ‘similarity measures’ Python package51.

Prediction. The goal of the prediction is to transform the characterisation of gates
in a source context, to a characterisation in the target context. A single operable
gate was selected arbitrarily upon which to base the prediction. The ‘scipy.optimise’
Python package49 is used to compute a linear transformation matrix, which when
applied to the source characterisation, minimises the L1Loss between the trans-
formed characterisation and the target’s true characterisation. Predictions for other
gates in the library are then made by applying the same transformation to their
characterisation in the source context.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Availability of data, genetic material and supporting software. The flow cytometry data
used for analysis in this study is available as a figshare repository at https://data.ncl.ac.uk/
ndownloader/articles/12073479/versions/1. This SBOL files for the genetic constructs
used in the study are available at https://github.com/lgrozinger/pyolin/tree/master/
results/sbol. The constructs themselves are retained at SEVA bank (http://seva-plasmids.
com) at CNB-CSIC, Madrid, Spain and ready for distribution for research purposes.

Code availability
The Python package used to perform all the analysis presented, the preprocessing of the
raw cytometry data, and to generate the figures shown here, is made available at https://
github.com/lgrozinger/pyolin.
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