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Abstract

Many organisms respond to DNA damage by inducing expression of DNA repair genes. We find that the human stomach
pathogen Helicobacter pylori instead induces transcription and translation of natural competence genes, thus increasing
transformation frequency. Transcription of a lysozyme-like protein that promotes DNA donation from intact cells is also
induced. Exogenous DNA modulates the DNA damage response, as both recA and the ability to take up DNA are required
for full induction of the response. This feedback loop is active during stomach colonization, indicating a role in the
pathogenesis of the bacterium. As patients can be infected with multiple genetically distinct clones of H. pylori, DNA
damage induced genetic exchange may facilitate spread of antibiotic resistance and selection of fitter variants through re-
assortment of preexisting alleles in this important human pathogen.
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Introduction

The Gram-negative human stomach pathogen Helicobacter pylori

occupies an exposed niche on the surface of the stomach

epithelium and faces a chronic inflammatory response. Despite

these challenges, H. pylori colonizes 50% of the world’s population

and chronic infection leads to gastritis, peptic ulcer disease, gastric

cancer and gastric mucosal-associated lymphoid tissue lymphoma

in a subset of infected patients [1]. Eradication requires a 7–14 day

course of multiple antibiotics [2] and treatment failure due to

chromosomally encoded antibiotic resistance is common [3].

Comparative genomic studies of H. pylori strains from diverse

global populations revealed extensive genetic diversity in nucleo-

tide sequence and gene content as well as a genome in linkage

equilibrium [4,5,6,7]. Allelic diversity is generated by mutation.

Some isolates of H. pylori, including the one used in this study, have

a mutation rate similar to E. coli [8,9], whereas other studies have

found a 10–700 fold higher mutation frequency in clinical isolates

that may drive strain variation [10,11]. Although infection of

humans with a single strain is most common, mixed infection with

distinct strains and genetic exchange between strains is observed

[12,13,14,15,16,17]. Most clinical isolates show natural compe-

tence for DNA uptake and recombination into the genome [18]

which likely contributes to the recombination signatures observed

in H. pylori genomes [4]. Exogenous DNA is transported into the

cell by the Com type IV secretion system (T4SS), which is

homologous to type IV systems found in Agrobacterium tumefaciens

and other Gram-negative species [19]. These systems are known

to transport DNA and proteins, but H. pylori is the only species

known to use a T4SS for natural competence [20]. Unlike other

organisms which carefully regulate competence, H. pylori compe-

tence is constitutive during logarithmic growth [21]. Thus, new

alleles created by mutation can spread and re-assort by DNA

exchange during mixed infection generating the heterogeneous

populations observed in clinical isolates [4].

All organisms encode genetic programs for response to stressful

conditions including DNA damage. In H. pylori, homologous

recombination is required for resistance to antimicrobial agents

that create DNA double strand breaks (DSBs) such as ciproflox-

acin and colonization of the mouse stomach [22,23]. The AddAB

helicase-nuclease complex resects DSBs and loads RecA onto

single strand DNA (ssDNA), which then mediates strand

exchange, leading to homologous recombination and repair

[23]. The requirement of RecA plus AddAB for efficient stomach

colonization suggests that in the stomach H. pylori is either exposed

to DNA damage that must be repaired or requires some other

recombination-mediated event.

In some bacterial species, DNA damage induces a transcriptional

program called the SOS response, which can include genes involved

in DNA repair, cell cycle control and low-fidelity polymerases. The

SOS response is triggered when RecA binds ssDNA, thus activating

its co-protease activity towards LexA, a transcriptional repressor [24].

Expression of many other genes is changed by DNA damage in a

LexA-independent manner and the genes expressed vary by species

[25,26]. Genome sequencing revealed that H. pylori lacks lexA, low-

fidelity polymerases, and an obvious cell cycle repressor, suggesting

that H. pylori lacks the SOS response [5,27]. Various Gram-negative

and Gram-positive organisms also lack lexA, including Campylobacter

jejuni and Streptococcus pneumoniae, but only limited studies of their

responses to DNA damage are available. In response to a short pulse

of DNA damage, C. jejuni induces several genes including mfd, which

encodes a transcription-coupling repair factor [28]. In S. pneumoniae,
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DNA damage and other stresses induce genetic competence [29].

The conservation of LexA-independent responses is unclear and the

transcriptional response to DNA damage in H. pylori has not been

described. Identification of the complete set of DNA damage

responsive genes thus promised to provide insight into how this

important pathogen responds to DNA damage and adapts to its

environment. This work indicates that induction of competence is a

major component of the H. pylori response to DNA damage and

suggests a close relationship between DNA damage and genetic

diversification during stomach colonization.

Results/Discussion

The H. pylori transcriptional response to DNA damage is
distinct from SOS

To define critical pathways for an H. pylori DNA damage

response, cDNA based microarrays [7] were used to measure

transcriptional changes in cells undergoing DNA damage. Wild-

type cells were exposed to the antibiotic ciprofloxacin, which binds

DNA gyrase, causing DSBs [30], and compared to untreated wild-

type cells. Using Significance Analysis of Microarrays (SAM, [31]),

we observed significant induction of 127 genes and repression of

170 genes in ciprofloxacin-treated cells relative to untreated cells

(1% false discovery rate (FDR)) (Table S1).

To further define the response to DNA damage, transcriptional

changes were similarly measured in cells lacking addA, which is

required for DSB repair by homologous recombination [22]. It is

likely that the DaddA mutant accumulates unrepaired DNA

damage, because cells lacking addA replicate 1.1 fold slower than

wild- type cells, which translates to a 100-fold decrease in CFU

after 20 generations (Figure S1A and [32]). In contrast, cells

lacking DNA single strand break repair due to mutation of recR

[32] replicated with the same efficiency as wild-type cells (Figure

S1B). These data suggest that DSBs occur during growth in broth

culture, and that therefore cells lacking DSB repair, including the

DaddA mutant, undergo chronic DNA damage. Microarray

analysis revealed that the DaddA mutant showed induction of 67

genes and repression of 167 genes, compared to wild-type cells

during logarithmic growth using a 5% FDR (SAM) (Table S1).

The DaddA mutant showed weaker transcriptional induction than

ciprofloxacin, necessitating use of a higher FDR, possibly because

ciprofloxacin treatment causes acute DNA damage whereas the

DaddA mutant undergoes chronic damage. We also queried

transcriptional changes in cells lacking single strand break repair

(DrecR mutant), but observed no significant changes in gene

expression (Table S2). These observations suggest that lack of DSB

repair in the DaddA mutant causes transcriptional changes.

Comparison of the transcriptional profiles of DNA damage

from ciprofloxacin treated cells and the DaddA mutant cells

demonstrated a strong correlation (r2 = 0.9) between their induced

and repressed gene sets (Figure 1A,B). Indeed, 41 induced genes

(Figure 1B) and 41 repressed genes identified by SAM were

common to both profiles and this overlap was statistically

significant (p,0.001, x2 test), demonstrating that these two DNA

damaging conditions regulated a similar subset of genes. We

focused on the 41 genes induced in both ciprofloxacin treated cells

and the DaddA mutant (Figure 1B). No DNA repair genes, a

hallmark of the SOS response, were induced in both conditions,

but we were surprised to note several genes involved in natural

competence for DNA transformation (explored further below).

Our findings are similar to those in diverse species, which

demonstrate that DNA repair genes are only one of many classes

of genes regulated by DNA damage [25,26]. Consistent with these

prior studies, we found genes required for energy metabolism,

membrane proteins, and fatty acid biosynthesis (Table S1) are

regulated in response to DNA damage, although the contribution

of these genes to survival in the face of DNA damage is not well

understood in any species. Several cell division genes were also

induced (minE, ftsK, fic); however there is no obvious homolog of

the SOS-regulated cell division inhibitor sulA in H. pylori [33].

Interestingly, translation factors were also induced. Although

induction of translation has not been observed as part of the DNA

damage response in other bacterial species, we explore below its

contribution to the DNA damage response. Finally, 30% of the

induced genes are species-specific genes, which may function in

cellular responses to DNA damage or have co-opted an existing

regulatory pathway for their expression [34].

RecA is required for the transcriptional response to DNA
damage

RecA expression is often induced by DNA damage, thus

increasing induction of SOS [25,26,35]. Although H. pylori seems

to lack lexA, it seemed possible that RecA may be required for a

transcriptional response to DNA damage. Thus we specifically

queried the expression of RecA in response to DNA damage.

Real-time quantitative PCR (qPCR) of either ciprofloxacin-treated

wild-type cells or cells lacking addA revealed expression of recA was

slightly repressed (Table 1). To test whether recA is required for the

induction of DNA damage regulated genes, cDNA microarrays

were used to measure transcriptional changes in cells lacking recA

that were either untreated or treated with ciprofloxacin (Figure 1B).

Only seven genes were induced in response to ciprofloxacin

treatment in cells lacking recA and there was no overlap with the

DNA damage responsive genes defined above. The absence of a

transcriptional response in cells lacking recA suggests that RecA

participates in sensing and transmission of the DNA damage

signal, despite the absence of lexA in H. pylori.

Natural competence is induced by DNA damage, but not
other cellular stresses

Gene-set analysis of gene ontology (GO) terms was used to

further identify pathways undergoing transcription changes in

response to ciprofloxacin treatment. As genes in the same GO

classes are both induced and repressed during the DNA damage

Author Summary

All organisms have genetic programs to respond to
stressful conditions. The human stomach pathogen,
Helicobacter pylori, survives on the surface of the stomach
lining for the lifetime of its host and causes a chronic
inflammatory response. In this niche, H. pylori is likely
exposed to constant DNA damage and requires DNA
repair systems to survive in the host. Many bacteria
encode a genetic program for a coordinated response to
DNA damage called the SOS response, which typically
includes transcriptional induction of DNA repair systems
and mutagenic DNA polymerases and a temporary halt to
cell division. This study demonstrates that H. pylori has a
distinct DNA damage response: instead of activating DNA
repair systems, it induces both DNA uptake machinery
and an enzyme that liberates DNA from neighboring cells.
This capacity for genetic exchange enhances recombina-
tion of exogenous DNA into the genome, thus contrib-
uting to both the high genetic diversity observed
between H. pylori clinical isolates and the spread of
antibiotic resistance.

H. pylori DNA Damage Response
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response in diverse organisms [25,26] a bipartite signal may be

expected for some gene sets. Thus, a statistic was calculated for

each GO term based on the absolute value of fold-induction

(Materials and Methods). Genetic exchange was among the terms

significantly enriched in wild-type cells treated with ciprofloxacin

(Table S3). The genetic exchange category includes several genes

that comprise the com T4SS and are essential for natural

transformation [19,36]. Moreover, com T4SS components comB3,

comB4 and comB9, which reside in two separate operons, comB2-4

and comB6-10 [36,37], are among the 41 genes significantly

induced by DNA damage (Figure 1A,B). qPCR confirmed

transcriptional induction of comB8 and comB9 in wild-type cells

treated with ciprofloxacin but not in DrecA cells (Table 1).

Many organisms are competent only under certain environmental

conditions, such as starvation [38]. In contrast, H. pylori is competent

throughout logarithmic growth [21] and little is known about its

regulation. Since expression of the com T4SS was DNA damage

inducible, we tested whether natural transformation is increased by

DNA damage. Wild-type cells were exposed to ciprofloxacin at

increasing concentrations and the frequency of transformation with

exogenously added genomic DNA harboring an antibiotic-resistance

cassette was measured. Cells treated with the minimum inhibitory

concentration of ciprofloxacin [39] had a 4–5 fold higher frequency

of transformation than untreated cells (Figure 2A,B) and the

frequency of transformation was easily saturated (Figure 2B). Further

increasing the concentration of ciprofloxacin decreased transforma-

tion frequency, possibly due to higher levels of DNA damage

(Figure 2A). No transformants were obtained after cipro-

floxacin treatment of the DcomB10 mutant at any concentration,

Figure 1. DNA damage induces natural competence. A. Cipro-
floxacin exposure and addA mutation lead to similar transcriptional
changes. A comparison of log2 ratios of gene expression changes
measured by microarray for ciprofloxacin treatment (2.5 hours, 106MIC)

Table 1. Transcription of the com T4SS is induced by DNA
damage but recA expression is not.

Genotype tested recA comB8 comB9

Wild-type plus cipro 21.9 (21.1–23.1) 3.5 (2.7–4.4) 4.3 (3.5–5.2)

DaddA 21.7 (21.1–22.9) 5.5 (4.3–7) 6.6 (4.9–8.9)

DrecA ND 1.2 (1.0–1.5) 1.4 (1.0–1.8)

DrecA plus cipro ND ND 1.2 (1.0–1.3)

comB4IE ND ND 3.1 (2.7–3.6)

DcomB10 DaddA ND 1.6 (1.3–2) 2.1 (1.7–2.7)

DcomB10 plus cipro ND ND 1.1 (0.9–1.3)

The fold change in transcription (range) for the indicated gene was measured
for cells of the indicated genotype by real-time PCR using the comparative
method. ND: not done.
doi:10.1371/journal.ppat.1001026.t001

vs untreated and untreated DaddA mutant vs wild-type cells during
logarithmic growth. Each condition is represented as mean values
measured from multiple microarray experiments from three independent
cultures. Regression correlation = 0.9. B. RecA is required for induction of
DNA damage responsive genes. Heat map showing 471 genes with 1.6
fold change upon treatment with ciprofloxacin (column 1) or in the
DaddA mutant (column 2). The enlarged panel shows genes with
statistically significant induction in both ciprofloxacin-treated cells and
the DaddA mutant, as determined by SAM (DNA damage responsive
genes), with annotation from strain G27 [46]. Untreated wild-type cells
compared to either wild-type cells treated with ciprofloxacin (WT+C),
untreated DaddA mutant (aA2), untreated DrecA mutant (rA2) or the
DrecA mutant treated with ciprofloxacin (+C). Bottom, scale bar for heat
maps in fold change. OMP = outer membrane protein, genes with no
annotation are left blank.
doi:10.1371/journal.ppat.1001026.g001

H. pylori DNA Damage Response
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demonstrating that the ciprofloxacin-induced increase in natural

transformation depends on activity of the com T4SS.

We also investigated whether other classes of antibiotics

influence natural transformation. No increase in transformation

was observed after treatment with ampicillin and there was little

change in cells treated with gentamicin (Figure 2A). To further

explore whether the slight increase in transformation observed

with gentamicin at the minimal inhibitory concentration (MIC)

resulted from weak induction of the DNA damage response, we

queried the transcriptional response of H. pylori to gentamicin by

microarray analysis. We observed induction of 80 genes (Table S4)

and repression of 114 genes using a 1%FDR. Comparison of the

gentamicin responsive genes to the DNA damage responsive genes

showed an overlap of only 4 induced genes and 4 repressed genes,

which was not statistically significant in either case (p = 0.2, x2 test).

As translation factors are induced by DNA damage (Figure 1B), we

determined whether ongoing translation is required for natural

competence. Cells were pre-treated for various times with gentamicin

at 106 MIC to fully block translation, then transformed with

genomic DNA. Release of cells from gentamicin was required to

recover expression of the antibiotic resistance cassette prior to

selection (data not shown). One hour of pre-treatment with

gentamicin caused a 5-fold reduction in transformation frequency

(Figure 2C). Inhibition of transformation by gentamicin suggests that

some component of the natural competence pathway must be

continually synthesized and that transcriptional induction of

translation by DNA damage is necessary for induction of natural

competence. Taken together, these results show that induction of

natural transformation is a specific response to DNA damaging

agents probably mediated by increased transcription and translation

of competence genes.

DNA uptake sustains expression of DNA damage
responsive genes

As mentioned above, previous work had suggested that

competence was constitutive in H. pylori. To explore whether a

component of the natural transformation machinery is limiting

for competence, we tested whether expression of a single

Figure 2. DNA damage increases natural transformation. A. Wild-type cells were treated at or above the MIC of ciprofloxacin (cipro),
ampicillin (amp) (0.016 ug/ml [50]) or gentamicin (1 ug/ml, data not shown) for 2.5 hours and transformed with 20ng genomic DNA harboring an
antibiotic resistance cassette and the fraction of cells transformed per CFU was determined. B. Wild-type cells were treated with the minimum
inhibitory concentration (MIC) of ciprofloxacin for 2.5 hours and the fraction of cells transformed by genomic DNA per CFU was determined. Wild-
type transformation frequency ranges between 1027 and 1024, depending on DNA concentration and experiment and for each panel, error bars are
the standard deviation of the mean with at least three replicates for each point and a representative from two experiments is shown. C. Wild-type
cells were treated with 106MIC gentamicin for the indicated time and the fraction of cells transformed by genomic DNA per CFU was determined
either by plating directly to selective medium or by plating to non-selective medium to allow translation of the selective marker prior to selection. D.
Increased expression of comB4 (comB4IE) increases natural transformation. The fraction of wild-type cells and comB4IE cells transformed by genomic
DNA was determined.
doi:10.1371/journal.ppat.1001026.g002
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com component might increase transformation. Merodiploids

with increased expression of competence apparatus com-

ponents, comB10 and dprA, a cytosolic protein required for

competence, showed no increase in transformation frequency

(data not shown); however two independent clones of the

comB4 merodiploid (comB4IE for increased expression) were

found to have a 5–8 fold increased transformation frequency

(Figure 2D).

ComB4 is the only known ATPase of the Com T4SS and is

thought to drive translocation of DNA through the competence

machinery [19]. Increased competence in comB4IE cells could

result from either increased activity of the ComB4 ATPase or

increased expression of the whole com T4SS. qPCR of comB9

showed that its transcription was increased in comB4IE cells

(Table 1) prompting us to perform microarray analysis of comB4IE

cells. Although no genes were significantly repressed, there were

167 genes significantly induced (SAM 5% FDR) and 57

overlapped with the induced gene set for ciprofloxacin, which

was statistically significant (p,0.001, x2 test) (Table S5). In

addition, SAM analysis demonstrated that 25 of the 41 genes

regulated by DNA damage were induced, including com T4SS

components comB3 (HpG27_15) and comB9 (HpG27_36) (Figure 3A)

further suggesting activation of at least a subset of the DNA

damage induced transcriptional program. The comB4IE cells

showed similar sensitivity to DNA damaging agents and an

equivalent mutation rate to wild-type cells (Table 2), suggesting

these cell do not accumulate unrepaired DNA damage. Thus,

increased expression of comB4 produces a similar effect as

ciprofloxacin treatment and the DaddA mutant, although it does

not appear to cause DNA damage.

We next defined the requirements for transcriptional induction

of DNA damage responsive genes in comB4IE. recA was required for

induction (Figure 3B), suggesting that transcriptional induction of

the DNA damage responsive genes in comB4IE occurs through a

similar pathway as in ciprofloxacin treated cells. We hypothesized

that increased DNA uptake in comB4IE cells is sensed by RecA and

leads to transcriptional induction of the DNA damage responsive

gene set. In support of this hypothesis, blocking DNA uptake by

mutation of comB10 significantly decreases transcriptional induc-

tion of DNA damage responsive genes in the comB4IE cells

(Figure 3B). Comparison of the comB4IE transcriptional profile with

either the comB4IE DcomB10 mutant or the comB4IE DrecA mutant

profile showed no statistically significant associations (x2 test,

p = 0.2). One possible explanation for these findings is that

increased DNA uptake induces DNA damage responsive genes.

Alternatively, a component of the natural competence machinery

may act as a transcriptional regulator of the DNA damage

responsive genes.

To further support the role for DNA uptake in stimulating the

DNA damage response, we tested whether natural competence is

required to stimulate transcription in cells undergoing DNA

damage. In the DaddA DcomB10 double mutant and the DcomB10

mutant treated with ciprofloxacin, qPCR revealed that comB9 was

not induced (Table 1). Microarray analysis revealed no transcrip-

tional changes in the DcomB10 single mutant compared to wild-

type cells (data not shown) and no induction of DNA damage

responsive genes in the DaddA DcomB10 double mutant (Figure 3C).

In the DcomB10 mutant treated with ciprofloxacin, only 4 of 41

DNA damage responsive genes were significantly induced (SAM

5% FDR), but close inspection of the microarray data indicated

that the DNA damage response was weakly induced (e.g.

HPG27_36, HPG27_73, Figure 3C), suggesting a role for natural

competence in sustaining expression of DNA damage responsive

genes.

Figure 3. com T4SS control of the DNA damage response. A. The
comB4 merodiploid (comB4IE) induces expression of DNA damage
responsive genes. Untreated wild-type cells are compared to either
wild-type cells treated with ciprofloxacin (WT+C) or untreated comB4IE

cells and the mean of fold change in RNA expression measured by
microarray from three independent cultures is shown. Bottom, scale bar
indicates fold change for heat maps in A,B,C. B. Increased expression of
DNA damage responsive genes in comB4IE cells requires recA and the
com T4SS. Untreated wild-type cells are compared to either comB4IE

DcomB10 (comB4IE B10) cells, or comB4IE DrecA cells and data is
represented as in Figure 1A. C. Full induction of DNA damage
responsive genes by DNA damage requires the com T4SS. Untreated
wild-type cells are compared to ciprofloxacin treated DcomB10 mutant
cells (B10- +C) and untreated DaddA DcomB10 double mutant cells (B10-
addA-). Data is represented as in Figure 1A.
doi:10.1371/journal.ppat.1001026.g003
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A phage lysozyme-like gene contributes to DNA
donation

Since no exogenous DNA was added to the transcriptional

profiling experiments, cells in culture are the likely source of

DNA taken up by the com T4SS [8]. The rate of genetic exchange

between DcomB10 mutant (donor) and wild-type (recipient) cells

was measured by fluctuation analysis. Genetic exchange of a

single chromosomally encoded antibiotic resistance gene oc-

curred at a rate of 2.4–5.8610210 exchanges/cell/generation,

suggesting that cells are constantly exposed to free DNA liberated

from other cells in the culture. Closer inspection of the genes

regulated by DNA damage revealed an induced gene (lys,

HPG27_320) that is homologous to phage T4 lysozyme and

has demonstrated lysozyme activity [40]. We hypothesized that

this protein lyses neighboring cells, thus liberating DNA for

uptake during culture. To test this idea, we used stationary phase

cells that were non-competent (the DcomB10 mutant) as donor

cells so that genetic exchange is unidirectional. Logarithmically

growing wild-type cells (recipient) showed a 12-fold higher

transformation efficiency than the Dlys mutant recipient

(Figure 4A), indicating that the lysozyme expressing cells could

obtain more DNA from donor cells for transformation.

Moreover, the Dlys mutant is transformed with purified genomic

DNA at the same or higher frequency than wild-type cells

(Figure 4B), indicating that Lys is not required for transformation.

These results suggest that a DNA damage-induced lysozyme may

target susceptible cells in culture and provide a source of DNA for

uptake. DNA uptake then activates the DNA damage responsive

genes in a positive feedback loop (Figure 5).

The H. pylori DNA damage response does not affect
mutation rate

GO analysis gave no indication of induction of DNA repair

functions by DNA damage (Table S3), but many of DNA damage

responsive genes are not annotated and might have been missed.

Since the DcomB10 mutant does not induce DNA damage

responsive genes, we investigated whether the DcomB10 mutant

is sensitive to DNA damaging agents, but sensitivity to ciproflox-

acin and mutation rate were indistinguishable from wild-type cells

(Table 2). In E. coli, mutation rates are increased by the SOS

response through induction of error prone polymerases [24],

therefore we determined the mutation rate for H. pylori cells that

constitutively induce DNA damage responsive genes. The comB4IE

cells have a mutation rate equivalent to wild-type cells, whereas

the repair-defective DaddA cells have a rate that is only slightly

elevated and is not statistically distinguishable from wild type

(Table 2). Thus, even under stressful conditions this H. pylori strain

maintains a low mutation rate, which further supports the

hypothesis that H. pylori strain variation is driven by recombination

among diverse strains [14,15].

Natural competence can be detrimental during stomach
colonization

Our results suggest that competence is a major output of the

DNA damage response in H. pylori, but does not contribute to

DNA repair or mutation. A mouse colonization assay [41] was

used to further explore the relationship between DNA damage and

competence during infection. The DcomB10 mutant showed

equivalent colonization to wild-type cells in a competition assay

Table 2. Mutation rate and sensitivity to DNA damage are
unchanged in cells expressing the DNA damage response.

Genotype
mutants/cell/
generation (95% CI)

MIC ciprofloxacin,

mg/ml (+/2 SD)

Wild type 4.761029 (2.7–7.161029) 0.18 (+/20.03)

DaddA 1.561028 (0.5–8.461028)* 0.053 (+/2.01)

comB4IE 4.561029 (1.6–5.461029)** 0.17 (+/20.03)

Mutation rate of sacB was determined by fluctuation analysis and p values were
determined by student’s T-test in comparison to wild type. *p = 0.07, **p = 1.
MIC of ciprofloxacin was determined by E-test (Biodisk). SD = standard
deviation.
doi:10.1371/journal.ppat.1001026.t002

Figure 4. Cells lacking lysozyme take up more genomic DNA
than wild-type, but are less able to acquire DNA from donor
cells. A. Log-phase recipient cells were mixed with stationary phase
donor cells and the frequency of transformation was determined. B.
The fraction of cells of the indicated genotype transformed by genomic
DNA per CFU was determined using 10 ng genomic DNA. Error bars are
the standard deviation of the mean with at least three replicates for
each point and a representative of two independent experiments is
shown.
doi:10.1371/journal.ppat.1001026.g004

H. pylori DNA Damage Response
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in which differentially marked mutant and wild-type cells were

introduced into the mouse stomach for one week (Figure 6A). In

contrast, the DaddA mutant cells are compromised for infection in

both competition and single strain infections [22]. Since the DaddA

mutant can colonize, albeit with lower efficiency than wild-type

cells, we tested whether the comB10 mutation would further

compromise the DaddA mutant colonization by virtue of its

requirement for activation of DNA damage responsive genes and

competence. As shown in Figure 6A, the opposite result was

observed: the DcomB10 DaddA double mutant showed enhanced

colonization relative to the DaddA mutant, but not the DcomB10

mutant. We tested whether this effect is specific to cells lacking

DSB repair. The DrecR mutant, which lacks single strand break

repair, is defective for stomach colonization, but this defect is not

suppressed by the loss of com T4SS activity (Figure 6B). The

enhancement of growth by loss of com T4SS activity was not

observed in broth culture. Although the DaddA mutant grows

slower than wild-type cells in broth culture (Figure S1), the DaddA

mutant and the DaddA DcomB10 double mutant grew at the same

rate (Figure 6C). In total, our results suggest that neither

competence nor DNA damage responsive genes contribute

significantly to DNA repair during culture or initial stomach

colonization. Furthermore, during colonization, the com T4SS

exerts a fitness cost in the context of a DNA repair mutant. Thus,

the observed transcriptional and translational control over natural

competence may represent mechanisms to control a costly process

during colonization.

Conclusions
Our data reveal a connection between natural competence and

the response to DNA damage in H. pylori. Similar to our

observations in H. pylori, natural competence is induced by DNA

damage and other stresses in the Gram-positive organism S.

pneumoniae [29]. In contrast, S. pneumoniae regulation of competence

and its molecular machinery for DNA uptake are completely

different from H. pylori [19,38], suggesting induction of compe-

tence in response to DNA damage is the product of convergent

evolution. In H. pylori our data support a model (Figure 5) whereby

DNA damage induces RecA-dependent expression of both a

lysozyme-like protein, which stimulates donation of DNA from

Figure 5. Model for positive feedback of DNA on DNA damage
responsive genes. RecA binds DSBs and transcription of DNA damage
responsive genes is induced that includes a lysozyme-like protein,
which may be used to acquire DNA and the com T4SS, which transports
DNA in the cell. Once in the cytosol, transforming DNA is bound by
RecA and further induces transcription of DNA damage responsive
genes.
doi:10.1371/journal.ppat.1001026.g005

Figure 6. DNA damage responsive genes do not contribute to
DNA repair during stomach colonization. Each data point shows
the competitive index of mutant cells vs wild-type cells or the indicated
double mutant compared to either single mutant for a single mouse
after one-week stomach colonization (A, B) or for a single well during
co-culture in broth (C) and bars indicate the geometric mean. A.
Competition between the DcomB10 mutant and wild-type cells shows
no defect during stomach colonization; however stomach colonization
of the DaddA mutant is improved by disruption of natural competence.
B. Competition between the DrecR mutant and wild-type cells shows a
strong defect during stomach colonization, but is unaffected by
disruption of natural competence. C. Competence does not affect
growth of the DaddA mutant in broth culture. The DaddA DcomB10
double mutant and the DaddA mutant were maintained in logarithmic
growth for three days in broth culture by dilution.
doi:10.1371/journal.ppat.1001026.g006
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susceptible H. pylori, and the com T4SS, which increases the import

of foreign DNA. Through a second RecA-dependent mechanism,

DNA acquired via the com T4SS induces DNA damage responsive

genes, thus amplifying the signal. A similar mechanism for signal

amplification occurs in eukaryotic cells in which processing of

DNA breaks creates single stranded DNA oligonucleotides that

trigger the DNA damage checkpoint [42]. This newly described

connection between the DNA damage response and DNA uptake

suggests that natural competence contributes to persistence of

H. pylori in its human host and explains its retention in most

clinical isolates [18]. As patients are sometimes infected with more

than one distinct strain [12,13,14,15], up-regulation of natural

competence may increase exchange of antibiotic resistance alleles

and facilitate selection of fitter variants through re-assortment of

pre-existing alleles. Our study suggests that H. pylori have co-opted

signals of their harsh environment, namely DNA damage and

extracellular DNA to induce genetic exchange within a heteroge-

neous population.

Materials and Methods

Ethics statement
All animal studies were done under practices and procedures of

Animal Biosafety Level 2. The facility is fully accredited by the

Association for Assessment and Accreditation of Laboratory

Animal Care, International. The FHCRC Institutional Animal

Care and Use Committee approved all activities.

Media and antibiotics
H. pylori strains were grown on solid horse blood agar (HB)

plates containing 4% Columbia agar base (BD Bioscience), 5%

defibrinated horse blood (HemoStat Laboratories), 0.2% b-

cyclodextrin (Sigma), vancomycin (Sigma; 10 mg ml21), cefsulo-

din (Sigma; 5 mg ml21), polymyxin B (Sigma; 2.5 U ml21),

trimethoprim (Sigma; 5 mg ml21) and amphotericin B (Sigma;

8 mg ml21) at 37uC either under a microaerobic atmosphere

generated using a CampyGen sachet (Oxoid) in a gas pack jar or

in an incubator equilibrated with 14% CO2 and 86% air. For

liquid culture, H. pylori was grown in Brucella broth (BD

Biosciences) containing 10% fetal bovine serum (BB10; Hyclone)

with shaking in a gas pack jar with a CampyGen sachet. For

antibiotic resistance marker selection, bacterial media were

additionally supplemented with kanamycin (50 mg ml21),

chloramphenicol (Cm; 15 mg ml21) or metronidazole (Mtz;

36 mg ml21). When culturing bacteria from mouse stomachs,

Bacitracin (Bac; 200 mg ml21) was added to eliminate contam-

ination. For cDNA microarray and natural transformation assays

BB10 medium was supplemented with ciprofloxacin, ampicillin, or

gentamicin as indicated (Sigma).

Strains and plasmids
All H. pylori isogenic mutants were generated as described [23]

in strain NSH57 [43]. Strains are listed in Table S6 and

oligonucleotides in Table S7. All complementation constructs

were generated and introduced into H. pylori as described [23].

Antibiotic resistance testing
H. pylori were grown overnight in liquid culture to optical

density at 600 nm (OD600) 0.3 and 200 mL was plated on solid

medium lacking all other antimicrobials, incubated for 30 minutes

in a CO2 incubator. E-test strips (AB Biodisk) were then placed on

the plates, which were further incubated for 2 days and read

according to the manufacturers instructions.

RNA isolation and DNA microarray analysis
An overnight liquid culture was grown to (OD600) 0.8, then

collected on 0.1 mm pore size filters (Whatman) and frozen in

liquid nitrogen. RNA was extracted as described [44]. Appro-

ximately 10 mg RNA was reverse transcribed with Superscript II

(Invitrogen), 1.5 mM each dATP, dCTP, dGTP, 0.75 mM each

dTTP, 5-(3-aminoallyl)-29-deoxyuridine-59-triophosphate, (aa-

dUTP) and random octamer primers (Fisher). To hydrolyze

RNA, 100 mM EDTA, 200 mM NaOH was added and the

mixture was heated to 65uC for 15 minutes. cDNA was purified

over DNA Clean and Concentrator-5 (Zymoresearch), eluted with

50 mM sodium bicarbonate and coupled to Cy3- (untreated

sample) or Cy5- (treated sample) mono NSH ester (Amersham) for

one hour at room temperature. Treated and untreated samples

were then mixed and unincorporated dye removed over a DNA

Clean and Concentrator-5 (Zymoresearch), with samples eluted

into 10 mM Tris-HCl and prepared for hybridization to custom

DNA microarrays as described [45].

Microarray scanning and analysis were performed on a

GenePix 4000B scanner (Axon) using GenePix Pro 6.0 software

(Axon). Spots were filtered for slide abnormalities and signal from

duplicate spots were averaged. These data were stored and

processed in the Stanford Microarray database (http://smd.

stanford.edu/). Values for genes found in strain G27 by

comparative genomic hybridization [15,46] were extracted from

this set and filtered for a regression correlation .0.6 of the Log2

red/green normalized ratio (mean). These data sets were then

either analyzed using SAM [31] or clustered using Cluster and

visualized with Treeview (http://rana.lbl.gov/EisenSoftware.htm).

To determine whether the overlap between arrays was significant,

we used a chi-squared test comparing the induced genes in both

conditions to the repressed or unchanged genes for each condition.

Raw microarray data have been deposited in NCBI’s Gene

Expression Omnibus and are accessible through GEO Series

accession number GSE19334 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE19334).

Creation of a gene ontology for H. pylori and gene set
analysis

Two gene ontologies were created for H. pylori. GO terms

associated with H. pylori strain 26695 were downloaded from the

Uni-prot database (http://www.uniprot.org/). We then hand-

annotated genes that were not identified on this database using

GO terms from Amigo (amigo.geneontology.org). H. pylori-specific

and conserved hypothetical genes were identified using genolist.

pasteur.fr/PyloriGene/ and GO terms were created for these

categories. This procedure produced the generation0 GO list. In

addition, the Bioconductor GO.db was used to identify the parent

each of those GO terms, to provide a more general set of

associations for each gene and creating the generation1 gene

ontology.

Each array was normalized individually to adjust values for dye

effects and background-corrected in the red (treated) and green

(untreated) channel data. Array effects were normalized across 10

microarrays from ciprofloxacin treated cells, comB4IE cells and the

DaddA mutant. Expression was calculated as the difference of the

normalized log2 ratio of the red and green channels in each array.

Finally, the two or four values for each probe on an array were

averaged. We used the R package ‘limma’ to estimate treatment

effects on expression.

A GSEA-style approach was used to assess differential

expression for each of GO term with 10 or more associated

probes [47]. A statistic was generated by summing the absolute

value of the test t-statistics of probes associated with a GO term. A
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permutation test was used to estimate the p-value since the

analytical function describing this distribution is not known.

qPCR
RNA was extracted as described above and reverse tran-

scribed in a standard reaction with Superscript II (Invitrogen).

qPCR was performed in a standard reaction using SYBR green

on an ABI prism 7900HT sequence detection system (Applied

Biosystems). Expression differences were calculated using the

DDCT method.

Quantification of natural transformation
Cells of the indicated genotype were grown overnight to

approximately OD600 0.9 in shaking culture, then placed in 96

well plates (66107 cells/well), and the indicated amount of

genomic DNA harboring the aph3 gene, which confers kanamycin

resistance, at a neutral locus [48] was added. After one hour,

appropriate dilutions were plated to non-selective medium to

determine the number of colony forming units. In addition, 50 mL

was plated to non-selective plates, incubated for 24 hours to allow

expression of the antibiotic resistance cassette, then replica plated

to selective medium to determine the frequency of transformation.

In some cases, cells were directly plated to selective medium, as

described in the text.

To determine the frequency of transformation using stationary

phase cells as donors, the recipient cells were grown overnight to

log phase. Donor cells were grown to OD600 = 2 and then

incubated for a further 16 hours. Donor and recipient cells were

mixed 1:1 for three hours, then plated to the appropriate selective

medium to determine the frequency of transformation of the

recipient cells to the donor genotype.

Competition in broth culture
Cells were grown overnight in liquid culture to mid-log phase,

diluted to OD600 = 0.0015 for each clone and grown 24 hours in

96 well plates. After 24 and 48 hours, cells were diluted 450-fold

into fresh medium and incubated for another 24 hours. At each

time point, cells were titred for colony forming units (CFU) on

selective medium and non-selective medium to determine the ratio

of each clone in the mixture. The competitive index was

determined by dividing the CFU ratio of the two clones at each

time point by the starting ratio.

Mutation rate and rate of exchange between cells in
culture

Mutation rate was measured in cells harboring a dual cassette

consisting of aph3, which confers kanamycin resistance and sacB,

which confers sensitivity to sucrose that was integrated at the

omp27 locus (for wild-type and comB4IE cells) and at the rdxA locus

(for wild-type and DaddA cells). Cells were grown overnight in

liquid culture to mid-log phase, diluted to 10 cells/200mL in BB10

in 20 wells of a 96 well plate and incubated for 72 hours or

96 hours (for the DaddA mutant). The entire well was plated to

medium containing sucrose and 4 wells were titred on non-

selective medium to determine average cell number. The mutation

rate was calculated using the maximum likelihood method. To

determine the rate of exchange between cells in culture, cells were

similarly diluted and then mixed together. Wild-type cells were

marked with the aph3 gene at a neutral locus [48] and the DNA

donor, DcomB10::cat, is resistant to chloramphenicol. The entire

well was plated to medium containing kanamycin and chloram-

phenicol. The rate of exchange was calculated using the maximum

likelihood method [49].

Mouse colonization
Female C57BL/6 mice 24–28 days old were obtained from

Charles River Laboratories and certified free of endogenous

Helicobacter infection by the vendor. The mice were housed in

sterilized microisolator cages with irradiated PMI 5053 rodent

chow, autoclaved corn cob bedding, and acidified, reverse-osmosis

purified water provided ad libitum. All mouse colonization

experiments were performed exactly as described [23].

Supporting Information

Figure S1 The DaddA mutant shows decreased replication

efficiency in broth culture. The DaddA mutant and wild-type cells

were maintained in logarithmic growth for three days in broth

culture by dilution. B. The DrecR mutant shows no change in

replication efficiency in broth culture.

Found at: doi:10.1371/journal.ppat.1001026.s001 (0.19 MB TIF)

Table S1 Similar genes are induced in cells treated with

ciprofloxacin and in the DaddA mutant. All genes listed are

significantly induced by SAM, using a 1% FDR for ciprofloxacin

and a 5% FDR for the DaddA mutant. DNA damage regulon genes

are highlighted in bold. Induced transcripts are listed in genome

order for the strain G27 [46].

Found at: doi:10.1371/journal.ppat.1001026.s002 (0.22 MB

DOC)

Table S2 The DrecR mutant shows no significant transcriptional

induction, although there are genes showing greater than 1.6-fold

induction by microarray in the DrecR mutant relative to wild-type

cells. No genes listed are significantly induced by SAM at 1% FDR

and no FDR below 85% generates significant changes from wild-

type cells. Independent clones of the DrecR mutant marked with

different antibiotic resistance cassettes gave similar transcriptional

profiles.

Found at: doi:10.1371/journal.ppat.1001026.s003 (0.20 MB

DOC)

Table S3 Gene set analysis of gene ontology (GO) terms for

ciprofloxacin treated cells. Terms listed have p,0.03, using the

generation1 gene ontology (Materials and Methods).

Found at: doi:10.1371/journal.ppat.1001026.s004 (0.05 MB

DOC)

Table S4 Genes significantly induced in wild-type cells treated

with gentamicin (SAM, 1% FDR). DNA damage regulon genes

are highlighted in bold. Induced transcripts are listed in genome

order for the strain G27 [46].

Found at: doi:10.1371/journal.ppat.1001026.s005 (0.11 MB

DOC)

Table S5 Genes significantly induced in comB4IE cells (SAM,

1% FDR). DNA damage regulon genes are highlighted in bold.

Induced transcripts are listed in genome order for the strain G27

[46].

Found at: doi:10.1371/journal.ppat.1001026.s006 (0.21 MB

DOC)

Table S6 H. pylori strains used in these studies H. pylori strains

used in these studies

Found at: doi:10.1371/journal.ppat.1001026.s007 (0.03 MB

DOC)

Table S7 Oligonucleotides used in this study. Gene specific

sequences are in upper case and sequences added for cloning in

lower case. *Denotes oligos used for qPCR. All others were used to

generate deletions # denotes oligos also used to generate

complementation plasmids.
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Found at: doi:10.1371/journal.ppat.1001026.s008 (0.05 MB

DOC)
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