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Abstract

Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain
by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that
‘‘resting-state’’ fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect
on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due
to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is
poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local
correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate
how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We
introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and
demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise
displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level
covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and
some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on
experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of
displacement is highly variable among various brain regions, both within and between subjects. These regional differences
bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis
successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated
by the autism-related comparisons.
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Introduction

Background
Motion artifacts are problematic for all types of MRI including

resting-state functional MRI (fMRI) and therefore motion

correction is a vital step in every work-flow during fMRI analysis.

According to population-level analysis and group comparisons,

retrospective motion related artifact removal strategies can be

performed at five different stages of the data processing pipeline: (i)

motion correction of fMRI time-series by realignment to a

reference image (using automatic co-registration approaches) [1];

(ii) censoring data to exclude periods of high motion (scrubbing,

de-spiking) [2,3]; (iii) modeling the effect of motion-related

nuisance parameters on blood oxygen level dependent (BOLD)

signal [4–7]; (iv) temporal filtering of BOLD timecourses to

discard frequencies encumbered by motion artifacts and (v) correct

for subject-specific motion effects on population-level (descriptive

summary statistics of subject-specific motion as second-level model

regressors) [8–10].

Traditional realignment-based correction approaches ensure

that different time-points of the BOLD signal correspond to the

same location. However, such methods do not handle voxel-level

intensity confounds originating from the establishment of magnetic

gradients and subsequent readout of the BOLD signal [2,11].

Furthermore, automatic co-registration approaches may introduce

spurious displacements in intervals of relatively low motion [12].

Nonetheless, subject movement is often measured with parameters

based upon the resulting image realignment transformations.

Large BOLD intensity confounds (spikes) in time-frames with

extreme, abrupt movement can be eliminated from the analysis by

simply dropping the corrupted data (‘‘scrubbing’’) [2] or by spike-

regression [13]. However, the reduction in time points is
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associated with an increase in the likelihood of high correlation

scores [8]; moreover, recent findings [8,14,15] suggest that in

population-level functional connectivity studies, scrubbing can be

omitted from the analysis when using proper second-level

correction.

Intensity confounds originating from micro-movements (as

small as 0.1 mm from one time point to the next) can also disrupt

results, especially in case of correlation based connectivity analysis

methods, where such small but temporally concordant noise leads

to spurious increase in connectivity strength [2,9,16]. Nuisance

signal regression approaches aim to eliminate the signal compo-

nents of non-neuronal origin from the raw BOLD data utilizing

linear regression. These confounder signals can be defined by

dedicated physiological monitoring devices during the scan,

calculated from motion parameters extracted during spatial

realignment based motion correction or derived directly form

the data itself, using a ‘‘noise ROI’’ [6,7,17].

Temporal filtering is also a crucial step in the reduction of fMRI

brain connectivity artifacts, including motion confounds. Most

connectivity studies apply a band-pass filter with a high-pass cutoff

of 0.008–0.01 Hz and a low-pass threshold of 0.08–0.1 Hz [18].

While there is evidence that resting-state networks are present at a

relatively broad band in the frequency spectra [19], slight

modifications in the frequency band have been suggested [3].

Some of these techniques can effectively reduce not only

motion-related effects, but also physiological noise (e.g. cardiac or

respiratory confounds) or hardware drifts and instabilities.

However, recent studies [3,8,20] report that clear artifacts remain

in the data even after such regression and filtering approaches, and

that these artifacts have systematic effects upon resting-state

functional MRI connectivity (rs-fcMRI) patterns.

When performing group comparisons in functional connectivity

studies, one can account for these motion-related residual artifacts

during the second-level analysis by inclusion of motion-related,

subject-specific covariates into the population-level model. A

common choice is to include a measure of the average patient

movement [8–10]. Alternatively, the value of global voxel-to-voxel

correlation (GCOR) can be utilized as confounder, as in [20],

although the latter quantity can also carry valuable neurological

information.

Due to in-scanner head rotation, the effect of patient

movements on the BOLD signal is not spatially constant in the

whole brain; however, this local relationship is poorly understood

and is rarely considered in brain connectivity studies. The pattern

of voxel-wise motion not only varies among different loci of the

same subject, but also among subjects. According to Satterthwaite

et al. [9], between-subject differences of motion are stable and

hence, in-scanner head motion should be considered as a trait.

Thus, the effect of the subject-specific spatio-temporal motion

pattern on the BOLD signal could bias group analysis when

different groups have different tendencies in their spatio-temporal

motion patterns. This is particularly problematic in studies when

regional connectivity deficits are associated with a pathological

condition, and thus, limits the usability of functional connectivity

as a biomarker of disease. These biases in the functional

connectivity pattern can lead to invalid conclusions regarding

biomedical hypotheses, as denoted by [21] and demonstrated by

[20], especially in patholological conditions associated with

hyperkinetic patients (epilepsy, attention deficit hyperactiviy

disorder, some forms of autism). Group-wise inconsistencies in

motion patterns can arise from different patient positioning and

multi-center studies are also challenging in this regard.

Purposes
Here, we hypothesize that at least some of the above-mentioned

artifactual effects may originate from the complex voxel-wise

spatio-temporal nature of head displacement, and can be modeled

more efficiently using this information.

The possibilities for utilizing the voxel-wise nature of in-scanner

motion in artifact removal approaches has not been intensively

investigated, as yet. As recently reported by two studies [3,14] and

confirmed by our preliminary analysis, including voxel-wise

displacement parameters as voxel- or region-wise covariates in

the appropriate nuisance signal regression model does not

significantly improve motion artifact removal, compared to the

usual technique, the regression of spatially averaged global

displacement parameters. However, Yan et al. in [14] also brings

up the possibility that an appropriate correction technique may

have greater success in using the rich information encapsulated by

voxel-specific indices.

Our study was designed to characterize the impact of voxel-wise

head motion artifacts in population-level rs-fcMRI brain connec-

tivity studies and investigate how this local information on

displacement can be utilized for artifact removal.

We initially demonstrate the local correspondence between

head displacement and the changes in the rs-fcMRI BOLD signal.

We then aim to investigate how functional connectivity strength is

affected by the deviations in the average regional spatial

displacements on the population-level. We propose Regional

Displacement Interaction (RDI), a novel modeling approach for

second-level brain connectivity analysis, which provides the

opportunity to incorporate voxel-wise motion information into

the population-level model and to account for corresponding

artifactual effects. The effectiveness of this motion artifact

reduction technique is evaluated by investigating the variance

explained by the proposed confound modeling covariates in the

model. The method is than demonstrated in group comparisons of

cohorts with differing average voxel-wise displacement patterns.

Due to the disagreement [3,14,20,22] about the optimal first-level

nuisance signal regression technique, we perform a comparison of

prevailing first-level nuisance signal regression approaches and

characterize their interference with the proposed method. Finally,

to test whether the proposed method preserves group differences

of neuronal origin, a comparison of autistic and control groups is

performed.

Materials and Methods

Image acquisition
Analysis was performed on the resting-state fMRI data of 184

patients obtained from the Autism Brain Imaging Dataset

Exchange database [15,23,24] (ABIDE). All of the images were

acquired at the NYU Langone Medical Center using a 3 Tesla

Siemens Magnetom Allegra syngo MR 2004A. A T1-weighted

sagittal MP-RAGE structural image was obtained (TE = 3.25 ms,

TR = 2530 ms, TI = 1100 ms, flip angle = 7, 256 slices with

1.36161.3 mm voxels). Functional images were obtained using

a BOLD contrast sensitive gradient echo echo-planar sequence

(TE = 15 ms, flip angle = 90, in-plane resolution = 363 mm;

volume TR = 2000 ms). Whole-brain coverage for the functional

data was obtained using 33 contiguous interleaved 4 mm axial

slices. During the resting-state fMRI scan, most participants were

asked to relax with their eyes open, while a white cross-hair against

a black background was projected on a screen. However, data

were also included for some individuals who were asked to keep

their eyes closed; and, in a few cases, participants closed their eyes

regardless of instructions to keep them open.

Voxel-Wise Motion Artifacts in fMRI Brain Connectivity Analysis
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The population sample consisted of 79 patients with autism

spectrum disorders (7.1–39.1 years) (53 Autistic Disorder, 21

Asperger’s Disorder, 5 Pervasive Developmental Disorder-Not

Otherwise Specified) and an age and gender-matched group of

105 typical control subjects (6.5–31.8 years).

Data collection for the ABIDE dataset was approved by the

institutional review boards of the New York University School of

Medicine and New York University. Prior to participation, written

informed consent and assent (for participants.18 years) were

obtained from all participants and their parents/legal guardians

(for participants,18 years). Participants received monetary

compensation for completing the study. In this study, the patient

data were analyzed anonymously.

Preprocessing
FMRI time series were co-registered and frame-wise estimation

of head displacement was performed using FSL McFlirt [25,26].

Matrices defining the rigid-body (three translation and three

rotation parameter) transformation that fit each frame to the

reference frame (at the middle time-point) were saved for further

use. The first five volumes of each dataset were discarded from

further analysis to allow for T1 equilibration effects. BET was used

to remove non-brain areas [27]. The resulting pre-processed fMRI

data were nonlinearly co-registered to the brain-extracted

anatomical image, and then, spatially standardized to the

MNI152 space using the FLIRT and FNIRT utilities [28] of the

FSL package, to achieve spatial correspondences for group

analysis. Since further processing steps utilized averaged regional

time courses, no smoothing was applied on the images.

Calculation of voxel-wise displacement
With an in-house-developed utility based on the m3i software

library system [29], transformation matrices outputted by McFlirt

were converted to world coordinate origin. The respective inverse

transformations were applied to each frame of the fMRI time-

series and the root mean squared voxel position change in world

coordinates was calculated for each voxel of each frame. The first

derivate of the resulting local displacement time-series was saved in

NIfTI format dynamic images in the same space as the fMRI time-

series (see Fig. 1 for demonstrative images), and then realigned to

standard space.

ROI definition
In order to improve the signal-to-noise ratio and reduce the

amount of data to analyze, all regional timecourses (regional

BOLD signal, temporal derivate of its root mean squared variance,

regional displacement) and corresponding correlation coefficients

presented in this paper were drawn from a set of ROIs (M = 88)

that were defined based on the Harvard-Oxford Cortical and

Subcortical brain atlases [30]. Probability maps for all regions

were accessed and region borders were delineated by retaining

voxels with a probability greater than 25%. Voxels associated with

multiple regions (in case of overlapping regions) were assigned to

the region in which the underlying probability was higher. To

avoid very small regions with poor signal-to-noise ratio, ROIs

having a volume less than 30 cm3 were merged into neighboring

ROIs. A complete list of the brain regions and the modifications

are summarized in Table 1. Fig. 2 presents the axial projection of

brain regions in the glass-brain plot used to demonstrate results.

Calculation of regional and frame-wise displacement
We defined two metrics of displacement: regional and frame-

wise displacement (RD and FD). RD time-courses were calculated

as averaged voxel-wise displacements over ROIs, while FD is the

analogous measurement for the entire brain. This method of

calculating FD and RD is analogous to the parameter FDvox

described in [14].

Quantification of global and regional BOLD intensity
change

While DVARS (D referring to temporal derivative of time-

courses and VARS referring to RMS variance over voxels) [31]

indexes the rate of change of BOLD signal across the entire brain

at each time-point of the data, Regional DVARS (RDVARS)

shows the same rate for each ROI:

Figure 1. Voxel-wise characteristics of head motion during an fMRI scan. Examples of different patterns of voxel-wise displacement within
the time frames of one illustrative subject (A) and temporally averaged voxel-wise displacement of six illustrative subjects (B).
doi:10.1371/journal.pone.0104947.g001
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Table 1. Brain atlas regions, left hemisphere.

id long name hemisphere short name H-O atlas regions merged

1 Left Caudate left l-caud Caudate, Accumbens

2 Cingulate Gyrus anterior division left l-cinga

3 Frontal Medial Cortex left l-fmedc

4 Operculum left l-operc frontal operc, central operc, parietal operc

5 Frontal Orbital Cortex left l-forbc

6 Frontal Pole left l-front

7 Inferior Frontal Gyrus pars opercularis left l-inffrontgop

8 Inferior Frontal Gyrus pars triangularis left l-inffrontgtri

9 Juxtapositional Lobule Cortex left l-juxlob

10 Middle Frontal Gyrus left l-mfg

11 Paracingulate Gyrus left l-parcing

12 Pre-frontal left l-prefront

13 Subcallosal Cortex left l-subcall

14 Superior Frontal Gyrus left l-sfg

15 Insular Cortex left l-ins

16 Cuneal Cortex left l-cun

17 Calcarine Cortex left l-calc intracalcarine, supracalcarine

18 Lateral Occipital Cortex inferior division left l-latocinf

19 Lingual Gyrus left l-ling

20 Occipital Fusiform Gyrus left l-occfus

21 Occipital Pole left l-occ

22 Angular Gyrus left l-ang

23 Cingulate Gyrus posterior division left l-cingpost

24 Lateral Occipital Cortex superior division left l-latoccsup

25 Postcentral Gyrus left l-postcent

26 Precuneous Cortex left l-precun

27 Superior Parietal Lobule left l-supparl

28 Supramarginal Gyrus anterior division left l-smarga

29 Supramarginal Gyrus posterior division left l-smargp

30 Lentiform left l-lent putamen, pallidum

31 Superior Temporal Gyrus left l-stg sup.temp.g. post; sup.temp.g. ant; Heschl gyrus

32 Inferior Temporal Gyrus left l-itg inf.temp.g. post; inf.temp.g. ant

33 Inferior Temporal Gyrus temporooccipital part left l-itgtempoc

34 Amygdala left l-amyg

35 Hippocampus left l-hip

36 Middle Temporal Gyrus anterior division left l-mtgant

37 Middle Temporal Gyrus posterior division left l-mtgpost

38 Middle Temporal Gyrus temporooccipital part left l-mtgtempoc

39 Parahippocampal Gyrus left l-parhipc Parahippocampal Gyrus post.; Parahippocampal Gyrus
ant.

40 Planum left l-plan Planum Temporale, planum polare

41 Temporal Fusiform Cortex left l-tfus fusiform ant, fusiform post

42 Temporal Occipital Fusiform Cortex left l-tofus

43 Temporal Pole left l-temp

44 Left Thalamus left l-thal

Lateralization, and long and short names of brain atlas-based ROIs used for estimating regional BOLD and motion related measures. The sources of brain regions are the
Harvard-Oxford Cortical and Subcortical brain atlases [30]. Probability maps for all regions were accessed and region borders were delineated by kretaining voxels with a
probability greater than 25%. Voxels associated with multiple regions (in case of overlapping regions) were assigned to the region in which the underlying probability
was higher. ROIs having a volume less than 30 cm3 were merged into neighboring ROIs, as indicated by column five. The table lists only regions in the left hemisphere.
The naming conventions and the region merging procedure was analogous for their contra-lateral pairs.
doi:10.1371/journal.pone.0104947.t001
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DVARS(DI)R
i ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(Ii(x){Ii{1(x))2T(R)

q
ð1Þ

where Ii(x) is the image intensity at locus x on frame i, angle

brackets S.T(R) denote the spatial average over all voxels x within

ROI R (R~1 . . . 88) and i~2 . . . N where N is the number of

time-frames. In order to effectively relate RDVARS to RD,

RDVARS was calculated on the timeseries following re-alignment,

but prior to confound regression and filtering.

Investigating the effect of regional displacement on
DVARS

We reproduced results showing global motion-related BOLD

changes [2,14,16] by computing the correlation coefficient

between FD and DVARS. Then, to distinguish global from local

effects, we defined two measures, residual RD and residual

RDVARS (denoted with DRD and DRDVARS), as follows:

DRD
(R)
i ~RD

(R)
i {FDi ð2Þ

and

DRDVARS
(R)
i ~RDVARS

(R)
i {DVARSi ð3Þ

where i~2 . . . N, N is the number of time-frames and R
(R~1 . . . M ) identifies the region. After computing these measures

for every subject and every ROI, we computed their correlation

coefficient and investigated whether it depends on the degree of

the global motion-BOLD relationship among subjects.

Functional connectivity processing and graph formation
For rs-fcMRI analysis, additional preprocessing steps were

utilized on regional BOLD timecourses to reduce spurious

variance that was unlikely to reflect neural activity. These steps

included: (i) multiple regression of nuisance variables; and (ii) a

temporal band-pass filter on residual data using a standard fourth-

order Butterworth band-pass filter, retaining frequencies between

0.01 and 0.1 Hz.

The detailed data processing steps involved in the following

strategies are discussed in the relevant works. Here, we only

summarize the protocols based on basic criteria, such as the

sources of nuisance signal, the number of such signal time-courses

and whether global signal regression was performed.

1. NOREG: No nuisance regression,

2. WMCSF: average BOLD signals of eroded white matter and

cerebrospinal fluid ROI-s, segmented using FAST [27],

3. GSREG: regression of whole-brain global signal as a covariate,

4. COMPCOR: Nuisance regression of five principal components

of a noise ROI, defined based on the temporal signal-to-noise

ratio, as proposed in [7],

5. NOREG+M6: NOREG + six motion parameters,

6. WMCSF+M6: WM+CSF regression + six motion parameters,

7. GSREG+M6: GSREG + six motion parameters,

8. COMPCOR+M6: COMPCOR + six motion parameters,

9. SAT36: A 36-parameter nuisance regression model proposed

in [3] (incorporating global signal regression).

To ensure that neighboring regional BOLD time courses do not

show spurious increase in connectivity strength, no smoothing was

applied. Connectivity strength between pairs of preprocessed

regional time series were calculated as the Fisher-Z transformed

Pearson product moment (z~atanh(r)), and ordered into 88688

correlation matrices for each subject (hitherto referred to as Ci for

subject i ) and for each nuisance regression technique, resulting in

a total of 184*9 = 1656 matrices.

Group formation
One subject with extreme in-scanner motion (average FD

greater than 0.7 mm) was excluded from further analysis. The

remaining 183 subjects were arranged into various groups:

N Autistic and normal control groups. Based on the clinical

neuropsychological diagnostic tests for autism, as detailed in

the original study description of the ABIDE dataset [15]. A

group of 49 autism subjects and a neurotypical control group

(n = 105) were defined.

N Groups of healthy control patents with different average voxel-

wise displacement patterns, based on the group mean voxel-

wise displacement maps. The healthy control group was

divided into two sub-groups randomly. Temporally averaged

standard-space voxel-wise displacement maps were averaged

across subjects of both sub-groups separately and the spatial

Pearson correlation coefficients for the group-mean voxel-wise

displacement maps were calculated between the sub-groups

(hitherto referred to as rW D). This random group formation

was repeated 5000 times to generate groups-pairs with

different between-group voxel-wise displacement correlation.

The histogram of observed rW D values can be seen in Fig. 3.

Group-pairs were chosen so that the corresponding rW D

values are relatively low, meaning that the subjects in one sub-

group tend to have different voxel-vise displacement patterns

than in the other. We chose eight pairs of groups with rW D

Figure 2. Brain atlas regions. Short names of atlas regions in the
glass brain plot used to demonstrate results. Full names and additional
information about regions can be seen in Table 1. Red spheres imply
the axial projection of the center of mass of brain regions. Note that this
plot does not indicate the axial depth of the regions.
doi:10.1371/journal.pone.0104947.g002
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coefficients between 0.89–0.95 (Table 2). rW D was also

computed for the autism-related group-pair.

Group comparisons
Group comparisons were performed by fitting Generalized

Linear Models (GLM) [32] and arranging statistical parameters

into differential statistical parametric networks (SPNs) [33]. We

investigated the effect of the grouping variable on functional

connectivity strength. Additional covariates that might significant-

ly influence functional connectivity, and thus, disturb comparison,

were also included in the models. These are phenotypic covariates

describing age, full-scale Wechsler Abbreviated Scale of Intelli-

gence (full IQ), gender, and subject-specific mean FD. Connec-

tivity strength is therefore modeled as:

y
(A,B)
i ~azbGRPiz 1AGEiz 2FIQiz 3SEXiz 4FDizEið4Þ

where y
(A,B)
i is the measured connectivity strength between regions

A and B for subject i (element at the Ath row and Bth column of

the Ci matrix), GRPi is the dummy variable coding groups to

compare, and AGEi, FIQi, SEXi and FDi are the aforementioned

subject-specific confounder variables, a, b and is are the

coefficients to estimate, and Ei is the the ith independent identically

distributed normal error. Models were fitted utilizing an iteratively

reweighted least squares (IWLS) algorithm. T-scores and p-values

of the effect of interest were obtained by dividing the b coefficient

of interest by the estimated standard error.

Regional Displacement Interaction – RDI. According to

our hypothesis, differences in the mean RDs of region-pairs A and

B may have an important effect on the population-level

distribution of correlation coefficients corresponding to the given

connection. This can be tested by adding new terms to the linear

model: the temporally averaged RDs of regions A and B and,

furthermore, the interaction term between these two covariates.

Since RDs are strongly correlated with each other and with the

global FD, we introduced DRD which is an alternative to the

average RD, but with FD subtracted, in order to avoid multi-

collinearity in the model. Accordingly, DRD can be defined as

follows:

DRD
(R)

i ~

P1...Ti
t RD

(R)
i,t {

P1...Ti
t FDi,t

Ti

D i~1 . . . N ð5Þ

or using the terminology of equation (2):

Figure 3. Histogram of group averaged voxel-wise displacement correlations based on 5000 random permutations. Temporally
averaged standard-space voxel-wise displacement maps were averaged across the subjects of two randomly assigned groups. Spatial Pearson
correlation was calculated between these group-mean voxel-wise displacement maps (rW D)). The histogram of this inter-group voxel-wise
displacement correlation was computed based on 5000 random group formulation. Group-pairs with extrem inter-group differences in voxel-wise
displacement were chosen for further analysis.
doi:10.1371/journal.pone.0104947.g003
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DRD
(R)

i ~

P1...Ti
t DRD

(R)
i

Ti

ð6Þ

where i denotes the subject, t the time frame, Ti the number of

time frames in the fMRI time series of subject i (after exclusion of

first five volumes).

Thus, in case of a GLM model for the connection between

regions A and B, equation (4) extends to:

y
(A,B)
i ~azbGRPiz 1AGEiz 2FIQiz 3SEXiz 4FDiz

z 5DRD
(A)

i z 6DRD
(B)

i z 7DRD
(A)

i DRD
(B)

i zEi

ð7Þ

Henceforward, we refer to the model specified in equation (4) as

a standard (STD) model and, to the terms

5DRD
(A)

i z 6DRD
(B)

i z 7DRD
(A)

i DRD
(B)

i as regional displace-
ment interaction (RDI) and, to the model defined by equation (7) as

an STD+RDI model.

Characterization of the RDI effect. To investigate the RDI

interaction effect on connectivity strength we utilized the following

models:

y
(A,B)
i ~az 1AGEiz 2FIQiz 3SEXiz 4FDi

z 5DRD
(A)

i z 6DRD
(B)

i z 7DRD
(A)

i DRD
(B)

i zEi

ð8Þ

and

y
(A,B)
i ~az 1AGEiz 2FIQiz 3SEXiz 4FDizEi ð9Þ

which are alternative versions of models (7) and (4), respectively,

with GRP variable excluded. Since models (8) and (9) are nested,

we can compare the reduction in deviance to residuals utilizing an

F-test under the null hypothesis that none of the additional RDI

covariates in the STD+RDI model is related to the measured

connectivity strength. The resulting statistical parameters for each

connection were ordered into nine differential SPNs for each

nuisance regression model, showing connections significantly

related to RDI. Model (8) was also used to demonstrate RDI in

case of a single, representative connection.

We furthermore fitted a model defined as:

Yj~az 1AGEjz 2FIQjz 3SEXjz 4FDj

z 5DRDkz 6DRDlzbDRDkDRDlzEj

ð10Þ

where Yj~Y
(A,B)
i so that j~iM2zAMzB and DRDk~DRD

(A)

i

so that k~iM2zAM and DRDl~DRD
(B)

i so that l~iM2zB,

or, in other words, the dependent and independent variables of

model (8) are concatenated following the A and B

(A~1 . . . M,B~1 . . . M ) atlas regions. In contrast to the previ-

ously introduced models, here, we utilize one model for all

connections of all subjects. The effect of interest is the RDI

interaction term. This model was used to analyze the overall

nature of the interaction term.

To avoid the disturbing effect of autistic differences when

characterizing the interaction term, only the healthy control

population was involved when applying models defined by Eqs.

(8), (9) and (10).

Voxel-wise motion-related group comparison. Dif-

ferences between low and high motion groups were investigated

by two GLM models for every connection: STD (Eq. (4)) and

STD+RDI (Eq. (7)) models were applied where GRP was a

dummy variable that defined the motion-related groups as listed in

Table 2. Results were ordered into 8*9*2 t-score SPNs, summa-

rizing motion-related group differences (eight pairs of motion-

related groups, nine first-level nuisance regression methods, and

two second-level regression models [STD and STD+RDI]). Since,

in these comparisons, the variable of interest (grouping factor) and

the motion-related covariates (FD and the RDI covariates) are

potentially related, we computed the variance inflation factor

(VIF) [34] for each model. VIF values suggest that these modeling

approaches are free from multicollinearity issues. (Maximal

observed VIF values for the variable of interest are reported in

Table 2.)

Autistic-control comparison. We tested the proposed RDI

second-level interaction covariate set by comparisons of autistic

and control groups defined by phenotypic information that was

provided with the Autism Brain Imaging Dataset Exchange

Table 2. Voxel-vise displacement-dependent groups.

rWD FA1 FA2 pFA1~FA2
maxVIF STD

GRP maxVIFSTDzRDI
GRP

0.89 0.06 (60.03) 0.08 (60.04) 0.011 1.11 1.2

0.90 0.07 (60.04) 0.07 (60.03) 0.46 1.24 1.09

0.91 0,07 (60.03) 0.07 (60.04) 0.99 1.36 1.00

0.92 0.07 (60.03) 0.07 (60.04) 0.11 1.37 1.08

0.93 0.07 (60.03) 0.08 (60.04) 0.12 1.41 1.07

0.94 0.07 (60.02) 0.07 (60.04) 0.78 1.38 1.1

0.95 0.07 (60.03) 0.07 (60.04) 0.67 1.23 1.02

0.96 0.07 (60.03) 0.07 (60.03) 0.82 1.21 1.01

Formation of voxel-wise displacement related groups. N = 105 healthy control patients were divided into group-pairs randomly, 5000 times. Eight pairs of groups were
chosen so that correlation between the group-mean voxel-wise displacement maps (rWD) were 0.89, 0.9, 0.91, 0.92, 0.93, 0.94, 0.95 and 0.96. FA1 and FA2 denotes the
mean (+ standard deviation) FD of the group-pairs (in mm) and pFA1~FA2

denotes the probability that the groups are identical regarding FD (obtained using

permutation test). MaxVIFSTD
GRP and maxVIFSTDzRDI

GRP denotes the obtained maximal variance inflation factor (VIF) (throughout all connections) corresponding to the

grouping factor, in models STD and STD+RDI, respectively. None of the groups introduce multicollinearity in the models. (however there is a slight difference between
the FDs of the group-pairs with a spatial voxel-wise displacement correlation of 0.98).
doi:10.1371/journal.pone.0104947.t002
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database. Results were arranged into 9*2 SPNs for nine nuisance

regression methods and two second-level regression methods (STD

and STD+RDI).

Computations and network visualization
Computations in this study, when not specified otherwise, were

performed using R statistical programming language [35], using

the packages ‘‘glm’’ [36], ‘‘fdrtool’’ [37,38], ‘‘HH’’ [39] and

‘‘visreg’’ [40]. Differential SPNs were thresholded and visualized

with the in-house developed software BrainCON (www.minipetct.

com/braincon) [29].

Results and Discussion

fMRI motion artifacts have spatial predisposition
As noted by Power et al. [2,41], the effect of motion appears to

scale with the amplitude of the displacement over the whole brain:

frames with greater amplitude displacements are associated with a

greater change in BOLD signal. As a first step, we reproduced

these results by observing a r~0:485 (p,0.000001) correlation

between frame-wise displacement FD and DVARS.

Our results also show that this effect is not spatially constant.

Although as also reported in [3], RD time courses a show high

correlation in the entire brain of one subject, if the global effect is

subtracted from the regional measures (FD from RD and DVRAS

from RDVARS, respectively) the resulting residual measures

DRD
(R)
i and DRDVARS

(R)
i (Eqs. (2) and (3)) still show a significant

correlation of r~0:278 (p,0.0001). In addition, as presented in

Fig. 4, the correlation of these residual regional measures increases

with the global motion-BOLD relationship throughout subjects.

In-scanner head motion consists not only of translations.

Rotational components make the displacement diverse in distinct

locations: it becomes greater when moving further from the center

of rotations. A plausible explanation of the reported regional

relationship is that this complex spatio-temporal pattern of

displacement implicitly affects local BOLD signal changes.

These results can also yield a potential explanation of the

phenomenon that motion tends to increase connectivity for locally

adjacent nodes, but reduces connectivity between distant nodes

[2,8,9,14,16]: neighboring regions having more similar RD will

share more similar motion artifacts than regions being far from

each other and this effect biases the distance dependence of

connectivity strength.

However, we should point out that all the discussed voxel-wise

and regional displacement measures are only ‘‘apparent displace-

ments’’: their estimated values may have been affected by

phenomena other than head motion, including physiological

noise, magnetic field inhomogeneities, instrumental instabilities, as

well as BOLD activity of neuronal origin. This effect should be

more pronounced for regional displacements than for the frame-

wise displacements. Furthermore, the computation of RD

implicitly include integrating of motion effects within each fMRI

volume. Rapid head movements occurring on time scale shorter

than the fMRI repetition time TR may affect different slices within

an fMRI volume differently [42]. Effects of such rapid movements

cause slice-specific image distortions that cannot be accurately

taken into account by the volume realignment-based procedure,

but can still affect fMRI functional connectivity results. Averaging

over all time frames and within time frames is a simplification in

modeling the spatial predisposition of head motion. However, as

suggested by the significant correlation between DRD
(R)
i and

DRDVARS
(R)
i , this simplification seems to be reasonable.

Nevertheless, sub-TR frequency components of in-scanner motion

deserve more attention and their voxel-wise effect should be

investigated in more detail in future publications.

The interaction of regional displacements affects
measured connectivity strength

Evidences of a spatially non-constant motion artifact in brain

connectivity analysis, like an increase in short-range and a

decrease in long-range connectivity, or the special pattern of

related changes in connectivity strength reported in [2,8,9,14,16],

suggest that the reported local relationship between motion and

BOLD signal changes should be considered when performing

correction techniques. This is especially true for correlation-based

functional connectivity analysis, where the similarity of two

regional BOLD time courses can be increasingly affected by these

small but systematic variations.

However, including voxel-wise motion parameters in nuisance

signal regression does not seem to be efficient (as reported by

[3,14] and also found in our preliminary analysis). Yan et al. [14]

used voxel-wise displacement as a reference to evaluate the

differential region-specific impact of motion on the BOLD signal.

Although these authors presented significant correlations with a

spatial pattern similar to that previously reported, it is still not clear

whether those patterns can be explained only by locally differential

BOLD answers to a global motion effect, or, alternatively, by a

real local relationship with the spatio-temporal motion pattern.

To investigate this question, we defined RDI, a set of second-

level regression covariates that models the interaction effect

between the temporally averaged regional displacements of the

regions involved in the connection. In regression analysis, an

interaction effect is said to exist when the effect of the focal

independent variable on the dependent variable differs depending

on the value of a third variable [43], called the moderator variable.

(Statistically, the choice of which of the two independent variables

should be the moderator variable is unimportant.) The proposed

RDI interaction term in the second-level GLM model defined by

Eq. (10) was found to be significant (p,0.000001) for all first-level

nuisance regression methods), which means that the effect of the

average RD of one region on the dependent variable (connectivity

strength) changes when the average RD of the other region

changes. The effect is visualized in Fig. 5 by the filled contour

plots. The predicted connectivity strength changes depending on

the simultaneously varying values of DRD
(A)

i and DRD
(B)

i , in case

of all investigated first-level nuisance regression methods. These

results imply that throughout the population, connectivity strength

between two brain regions tends to increase if the average RD of

the regions is similar (eg. both are larger or smaller than the

average FD) and tends to decrease otherwise.

This effect is demonstrated for a representative connection

(occipital fusiform gyrus - prefrontal gyrus) in Fig. 6. While the

presented partial residual plot reveals no significant relationship

between connectivity strength and DRDA, the DRDADRDB

interaction effect is significant implying that the effect of DRDA

on connectivity strength differs depending on the value of DRDB.

This is demonstrated by dividing the data into four groups based

on the value of DRDB and visualizing the corresponding cross-

sectional CCPR (component and component-plus-residual) plots,

which reveal that in each group the relationship between DRDA

and partial residual connectivity strength is significant in all cases

but the regression lines have different slopes. Thus, this latent

relationship is not observable without accounting for the

interaction of the regional displacement covariates.

To characterize how this phenomenon is related to the spatial

patterns of measured functional connectivity and to what extent it

Voxel-Wise Motion Artifacts in fMRI Brain Connectivity Analysis
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is present in case of the applied first-level nuisance signal

regression techniques, we performed a comparison of the STD

(Eq. (8)) and STD+RDI (Eq. (9)) models. The model comparison

was realized by F-tests between the models and resulted in the

SPNs shown in Fig. 7. In this figure, connections are visualized,

where the STD+RDI model explains significantly more variance

than the STD model (the null hypothesis of the F-test can be

rejected) with a false discovery rate of q,0.05. The proposed

method, RDI proved to be the most efficient with nuisance signal

regression methods NOREG, WMCSF, WMCSF+M6, GSREG,

and COMPCOR+M6. The explanatory power added by RDI is

most pronounced typically in case of middle- and long-range

connections of the temporal poles.

The interaction of regional displacements may bias
functional connectivity group comparisons

The correlation coefficient of two regional BOLD time courses

can be sensitive to the regional displacement time course (RD) of

both regions. Even if the motion-related artifactual component is

small, it still can significantly affect correlations, depending on the

degree to which it is shared between the time courses.

This phenomenon becomes even more problematic on the

population-level. Satterthwaite et al. [9] reported that between-

subject differences in head motion are stable: that subjects who

tend to move on one occasion tend to move on another occasion.

This means that analyses of functional connectivity needs to

consider the possibility that certain aspects of head motion behave
as a trait. Accordingly, even if the above-mentioned effect is

otherwise small, it can disturb group comparisons and lead to

erroneous conclusions, since it is of non-neural origin.

This assumption can be admitted easily by considering two

patient cohorts where region A and B have similar RD within each

subject of one group (e.g., due to relatively smaller rotations), and

different RD in the subjects of the other (e.g., more prevalent

rotations with a center to which A and B are located

asymmetrically). The significant RDI interaction effect means

that the corresponding correlation coefficient will be biased, and

tends to be larger in the first group, even in the absence of a real

functional difference. However, it is still not clear how different

grouping conditions interfere with the tendency of motion

patterns.

One can hypothesize that the spatio-temporal pattern of motion

can be significantly different between groups that were defined by

a factor in relation to motion. This could be the case in group

comparisons in several physiological and pathological conditions

co-occurring with hypo- or hyperkinetic signs.

Our results show that the spatio-temporal pattern of head

motion biases measured connectivity strength on the population

level, and, practically speaking, the proposed second-level covariates
(RDI) can be utilized as a method to incorporate these individual
regional differences of in-scanner head motion into the model, and
thus, reduce artifactual variance in the data.

Figure 4. Regional motion-BOLD relationship scales with the global motion-BOLD relationship. Within-subject correlation of DRD
(R)
i and

DRDVARS
(R)
i (horizontal axis) plotted against the correlation of FD and DVARS (vertical axis) for all brain regions and time frames of N = 183 subjects.

The regional effect of motion on BOLD seems to scale with the global relationship which is correlated (r~0:485 (p,0.000001) with the mean FD.
doi:10.1371/journal.pone.0104947.g004
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Including RDI as a covariate in second-level regression
efficiently reduces group differences caused by
differences in voxel-wise motion

To demonstrate the reported confounding effect of voxel-wise

motion on population-level analysis, we performed eight group

comparisons (See Table 2) where the groups to compare have

different average voxel-wise displacement patterns.

Results are summarized in Table 3. In Fig. 8, the number of

significantly (p,0.01) differing connections is plotted against the

group-defining mean FD threshold for each nuisance signal

regression method. Results show that, for less extensive nuisance

regression methods (NOREG, NOREG+M6, WMCSF,

WMCSF+M6), when the voxel-wise displacement maps between

groups are more different (lower between-group mean voxel-wise

displacement map correlations), more group differences appear.

These findings seem to confirm that group comparisons may be

biased when groups show different tendencies in voxel-wise

motion. Results, in conjunction with the results of the F-test

based model comparisons Fig. 7, also show that the inclusion of
RDI covariates seems to decrease these artifactual group differences,
especially by moderate nuisance regression methods.

The change in the corresponding connectivity pattern is

visualized in Fig. 8 for the nuisance signal regression methods

NOREG, COMPCOR, and GSREG, and for each motion-

related group comparison defined by rW D. Results with the STD

and STD+RDI second-level regression models are presented in

the upper and lower rows on each panel, respectively. Group

differences with probability (p. = 0.01) are not visualized.

As predicted by the F-test-based model comparisons (Fig 7), the

reduction of false group differences caused by voxel-wise motion

most markedly improved in the NOREG, WMCSF and

COMPCOR methods. Regressing out six motion parameters

did not seem to be highly efficient but may be beneficial when no

other nuisance signal regression covariate is applied (NOREG+
M6).

However, the small number of differences surviving the q,0.05

false discovery rate criterion implies that - when utilizing a proper

second-level model - all the investigated methods are able to

reduce motion-related group comparison artifacts to a decent

extent. With the RDI correction, no FDR significant group

differences remained in any of the comparison cases.

We note, that, in contrast to most prior studies, here, we

performed more than a single pair of group comparisons, thus

avoiding that results reflect only the random effects of the grouping

condition.

Including RDI as a covariate in second-level regression
preserves autism-related group differences

To test the efficiency of the proposed correction method, we

performed group comparisons where both motion-related artifacts

[20,21] and real neuronal differences [10,15,44] were expected to

be present. We compared the functional networks of autistic and

control patients.

Figure 5. Filled contour plots visualizing the Regional Displacement Interaction (RDI) effect: how the predicted connectivity

strength (color-coded) changes depending on the simultaneously varying values of DRD
(A)

i and DRD
(B)

i , in case of no nuisance

regression (A:NOREG) and all investigated first-level nuisance regression methods, i.e., NOREG+M6 (E), WMSCF (B), COMPCORR (C),

GSREG (D), WMSCF+M6 (F), COMPCORR+M6 (G), GSREG+M6 (H), and SAT36 (I). Vertical and horizontal axes of plots B-I are the same as
those of plot A. Gray bars next to the legends indicate the (21,1) interval to ease interpretation of color-coded Z-score values.
doi:10.1371/journal.pone.0104947.g005
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The correlation between the group-mean voxel-wise correlation

map (rW D) between the autistic and the normal control groups

was found to be 0.98. It suggests that this grouping condition

should be only slightly biased by the effect of regional displace-

ment on the measured connectivity strength. Thus, as predicted by

voxel-wise displacement pattern-related group comparisons, uti-

lizing the RDI correction method should introduce only minor

changes in the differential connectivity patterns.

Results are presented in Fig. 9 and Tables 4 and 5.

More than 200 connectivity differences survived the q,0.05

false discovery rate criterion in NOREG and COMPCOR (both

with and without RDI) and none survived in GSREG+RDI,

GSREG+M6, GSREG+M6+RDI, SAT36 and SAT36+RDI. As

predicted above, the inclusion of RDI introduces only slight

changes in the pattern of autism-related group differences.

All the evaluated signal regression approaches revealed

presumably autism-linked impairments of functional connectivity.

Autism was mainly characterized by decreased synchronicity, i.e.,

under-connectivity. This finding is in line with the majority of

intrinsic functional connectivity studies. The spatial predisposition,

along with the 30 most significant differences, is presented in

Fig. 9 and Table 4 and 5.

While including RDI significantly reduced (presumably artifac-

tual) differences between voxel-wise displacement-related subject

cohorts, differences in the autism-related comparison were more

or less preserved. These results suggest that the proposed

correction method, while effectively reducing motion artifacts in

group comparisons, preserves the sensitivity to neural differences.

A critical interpretation of our autism-linked findings in this

study is not directly possible. This mainly stems from the lack of

ground truth information about the basic neuropathology of the

disease. Furthermore, larger-scale, multi-centric comparisons

would be optimal to test the reproducibility of any finding.

Contrasting the impact of head motion and nuisance
signal regression strategies

The efficiency of nuisance signal regression techniques in the

context of rs-fcMRI motion artifacts analysis has been intensively

investigated in the last few years; however, a significant part of

these studies did not apply second-level regression covariates

Figure 6. RDI effect in case of a demonstrative connection: occipital fusiform gyrus (A = 20) - prefrontal gyrus (B = 12). On the left, the
partial residuals for DRDA from the model defined by Eq. (8) (dependent variable: connectivity data of the healthy control population (N = 105),
without nuisance signal regression (NOREG)) are plotted against DRDA. Although the model reveals no significant relationship (t = 21.46,p = 0.15)
between connectivity strength and DRDA, the DRDADRDB interaction effect is significant (t = 3.31, p = 0.0013), implying that the effect of DRDA on
connectivity strength differs depending on the value of DRDB. This is demonstrated by dividing the data into four groups based on the value of
DRDB (color-coded on the left plot) and visualizing the corresponding cross-sectional CCPR (component and component-plus-residual) plots (on the
left). Mean value of DRDB corresponding to the cross-section is indicated. Partial residuals are plotted with colored dots corresponding to the cross-
section group. The corresponding regression line estimated from the full model fit and the corresponding 95% confidence interval is displayed in
black and gray, respectively. The horizontal and vertical axes of the cross-sectional CCPR plots are the same as those of the partial residual plot on the
left. Cross-sectional CCPR plots imply that in each group the relationship between DRDA and partial residual connectivity strength is significant but
the regression lines have different slopes, which makes this latent relationship not observable without accounting for the interaction of the regional
displacement covariates.
doi:10.1371/journal.pone.0104947.g006
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[2,3,9,16] in population-level analysis. Their overall conclusion

was that global signal regression, high-parameter nuisance signal

regression, scrubbing, and de-spiking are potentially beneficial.

However, recent studies have questioned some of these conclu-

sions. In the following, we summarize the latest findings in the

literature in contrast to our results.

Effect of global signal regression. In our analysis, patterns

of group differences become extremely different when regressing

out the whole-brain signal from regional BOLD time courses

(GSREG, GSREG+M6 and SAT36). Most of the above-

mentioned studies, which did not utilize second-level correction,

applied GSREG in their analysis pipeline. Recent studies using

mean FD as a second-level regressor [14,45] also concluded that

GSREG mitigates the effects of motion-related differences among

subjects, but warns that investigators must weigh up the pros and

cons of GSREG when deciding whether to employ it in the

context of testing specific hypotheses.

Our results show that, after the correction of group-wise

differences in head movement in the autism-control comparison,

over-connectivity and under-connectivity can simultaneously

appear. However, global signal regression in the processing

pipeline appears to bias results toward over-connected differential

networks. In addition to under-connectivity, many authors

suggested short-distance over-connectivity (in the frontal lobe or

globally) as a possible finding in autism spectrum disorders [46].

This theory was then questioned on the grounds that head-

Figure 7. Network pattern of connections where utilizing RDI significantly improves second-level modeling. Statistical parametric
networks presenting the model comparison performed by F-tests between the STD and STD+RDI models (Eq. (9) and (8)). Connections are only
visualized, when the STD+RDI model explains significantly more variance than the STD model (the null hypothesis of the F-test can be rejected) with a
false discovery rate of q,0.05. The proposed STD+RDI method proves to be most efficient with the nuisance signal regression methods NOREG,
WMCSF, WMCSF+M6, GSREG, and COMPCOR+M6, and seems to demonstrate no significant improvement in case of SAT36, after correction for
multiple comparison.
doi:10.1371/journal.pone.0104947.g007
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movement could induce similar effects [21]. As reported in [47],

correlation estimates obtained after GSREG are more susceptible

to the presence of motion and exacerbate distance-dependent bias.

Moreover, as reported in [20,22], correlation patterns and group

differences may become distorted after GSREG (depending on,

e.g., region size or the underlying true connectivity structure).

According to Müller et al. [48], pre-processing strategies greatly

affect the spatial patterns of autism-linked connectivity traits,

although under-connectivity is the most prevalent across studies. It

is, therefore, safe to conclude that GSREG not only introduces

anti-correlations in the functional connectome [49], but can also

confound case-control comparisons in autism.

Effect of including motion parameters. In the case of

voxel-wise motion pattern-related group comparisons, inclusion of

the six motion parameters in first-level nuisance signal regression

showed no obvious improvement in motion-artifact reduction.

However, the inclusion of these parameters had a pronounced

effect in autism-related group comparisons, especially in NOREG,

WMCSF and COMPCOR techniques: the number of significant

group differences decreased. Whether this phenomenon is due to

improved motion-artifact reduction in the special case of autistic

group comparisons, or due to overfitting and the removal of real

brain signal, remains a question. However, evidence that spatial

realignment-based estimation of motion parameters may yield

poor results in periods of small movements [12] point toward the

conclusion that motion parameter estimates should be applied

carefully. As a possible solution, we suggest utilizing thresholded

motion estimates and avoiding the use of motion parameters in

periods of relatively small movements.

Optimal choice of individual-level motion-correction

technique. In some cases, it is not clear whether various high-

parameter nuisance regression techniques eliminate group differ-

ences due to increased specificity or decreased sensitivity.

Considering most significant autism-related group differences,

minimal nuisance regression techniques (NOREG, NOREG+M6)

show a high consensus with moderate (WMCSF, WMSCF+M6)

and more complex (COMPCOR, COMPCOR+M6) methods.

This points to the conclusion that when analyzing a sufficiently

large sample and utilizing an appropriate second-level model, the

choice of individual-level signal nuisance regression technique

becomes less crucial. However, when analyzing small samples and

also with individual analysis, the role of these techniques is

unquestionably important.

The role of confounds not related to subject

motion. This article focused on motion-related artifacts, which

are only one, although a conspicuous source of confounding effects

in functional MRI. In thes context, the performance of NOREG

and NOREG+M6 methods in motion-related comparisons

deserves attention. One possible explanation is that, although

artifacts of other sources are obviously present in the data, their

individual spatio-temporal pattern is more constant and their

population-level distribution is more similar among the investigat-

ed subpopulations compared to motion-related confounds. Thus,

these artifacts may have only a moderate disturbing effect in large-

sample group comparisons. However, by grouping conditions in

relation to physiological conditions, like blood pressure and blood

oxygenation (or artifacts of scanner-related sources in multi-center

studies), non-motion originated artifacts can appreciably affect the

results. Thus in such experimental designs, nuisance regression

methods may have a more important role.

This is also suggested by the results of autism-related group

comparisons, where pronounced differences were experienced

among various nuisance signal regression techniques. A potential

explanation for these deviations is that, although the proposed

Figure 8. The effect of RDI on motion-related group differences. The number of significantly (p,0.01) differing connections is plotted
against the spatial correlation coefficient of group-mean voxel-wise displacement maps for RD-based group-pairs for each nuisance signal regression
method. The number of significant group differences is plotted on logarithmic axis. Improvement in the reduction of motion-related group
differences was most pronounced for the NOREG, WMCSF and COMPCOR methods. Nuisance regression methods incorporating GSREG seem not to
be sensible for differences in group-mean voxel-wise displacement patterns however, they show relatively high number of group differences by all
group comparisons.
doi:10.1371/journal.pone.0104947.g008

Figure 9. Autism related group comparisons. Autism related group differences for the investigated correction strategies. Colors denote
significance levels as detailed in the legend.
doi:10.1371/journal.pone.0104947.g009
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motion-correction technique successfully reduces motion-related

erroneous group differences, artifacts of other physiological and

scanner-related sources affect autism-related group comparisons

and these phenomenon is handled differently by various signal

regression techniques.

Conclusion

In this study, we demonstrated that small movements during

scanning can cause different displacements in various locations of

the brain, and, accordingly, motion-related BOLD signal changes

also depend on location. We characterized the effect of this spatio-

temporally complex BOLD artifact pattern on functional connec-

tivity. We proposed RDI, a set of regression covariates for the

population-level correction of motion artifacts arising from local

head motion. As shown with comparisons of groups with differing

average voxel-wise motion pattern, the proposed correction

technique efficiently reduces artifacts caused by differences in

voxel-wise motion patterns in population-based connectivity

analysis; and meanwhile, as demonstrated by comparing autistic

and control groups, preserves differences corresponding to neural

origin. Our findings suggest that, especially by moderate nuisance

correction methods, the inclusion of RDI as second-level nuisance

covariates is generally appropriate and may become increasingly

necessary when the variable of interest is interrelated with altered

subject kinetics.

A limitation of the proposed method is that it cannot be

effectively applied in case of individual studies or small sample

sizes. Nevertheless, one should note that, in situations where the

variable of interest is correlated with motion, second-level

regression-based, motion-correction approaches can be conserva-

tive, as they remove common variation among regressors.

Furthermore, the proposed method is based only on a simplified

measure of motion and does not handle rapid sub-TR displace-

ments, which may play an important role in regional motion

artifact interactions.

The question of what is the optimal individual-level signal

regression technique for motion correction remains open, but,

seems less crucial for large-sample, group-level studies using a

proper second-level correction method.

This article focused on motion-related artifacts, which are only

one, although a conspicuous source, of confounding effects in

functional MRI. In-scanner head motion is relatively easy to

measure, and thus, corresponding artifacts are actively investigat-

ed. However, as suggested by the observed differences among

nuisance signal regression techniques, physiological and scanner-

related artifacts may also have an essential impact on fc-MRI

studies.
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