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Abstract

Partial bladder outlet obstruction (PBOO), a common urologic pathology mostly caused by benign prostatic hyperplasia, can
coexist in 40–45% of patients with overactive bladder (OAB) and is associated with detrusor overactivity (DO). PBOO that
induces DO results in alteration in bladder myosin II type and isoform composition. Blebbistatin (BLEB) is a myosin II
inhibitor we recently demonstrated potently relaxed normal detrusor smooth muscle (SM) and reports suggest varied BLEB
efficacy for different SM myosin (SMM) isoforms and/or SMM vs nonmuscle myosin (NMM). We hypothesize BLEB inhibition
of myosin II as a novel contraction protein targeted strategy to regulate DO. Using a surgically-induced male rat PBOO
model, organ bath contractility, competitive and Real-Time-RT-PCR were performed. It was found that obstructed-bladder
weight significantly increased 2.74-fold while in vitro contractility of detrusor to various stimuli was impaired ,50% along
with decreased shortening velocity. Obstruction also altered detrusor spontaneous activities with significantly increased
amplitude but depressed frequency. PBOO switched bladder from a phasic-type to a more tonic-type SM. Expression of 5’
myosin heavy chain (MHC) alternatively spliced isoform SM-A (associated with tonic-type SM) increased 3-fold while 3’ MHC
SM1 and essential light chain isoform MLC17b also exhibited increased relative expression. Total SMMHC expression was
decreased by 25% while the expression of NMM IIB (SMemb) was greatly increased by 4.5-fold. BLEB was found to
completely relax detrusor strips from both sham-operated and PBOO rats pre-contracted with KCl, carbachol or electrical
field stimulation although sensitivity was slightly decreased (20%) only at lower doses for PBOO. Thus we provide the first
thorough characterization of the response of rat bladder myosin to PBOO and demonstrate complete BLEB-induced PBOO
bladder SM relaxation. Furthermore, the present study provides valuable evidence that BLEB may be a novel type of
potential therapeutic agent for regulation of myogenic and nerve-evoked DO in OAB.
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Introduction

Smooth muscle (SM) myosin (SMM) is the thick filament and

motor molecule of the SM contractile apparatus, composed of a pair

of myosin heavy chains (MHCs) and two pairs of myosin light chains

(MLC17 and MLC20) that are intimately intertwined [1]. It has been

shown that both the 39 and 59 end of the MHC pre-mRNA are

alternatively spliced to generate COOH-terminal (SM1 and SM2)

and NH2-terminal (SM-A and SM-B) isoforms, respectively. The

SM-B isoform is predominantly found in SMs that demonstrate a

more phasic contractile nature, faster shortening velocity and higher

ATPase activity (e.g., urinary bladder, saphenous artery), whereas the

SM-A isoform is found in slower more tonic-type SM with lower

ATPase activity (e.g., aorta) [2–5]. Also, the essential light chain

MLC17 is alternatively spliced and has two 3’ isoforms known as

MLC17a and MLC17b [6,7]. Similar to the SM-A and SM-B isoforms,

the relative ratio of the MLC17 isoforms has been associated with the

tonicity of SM with a higher ratio of MLC17a to MLC17b being

associated with a more phasic type contraction [2,8,9].

Blebbistatin (BLEB) is a small cell permeable selective myosin II

inhibitor that was originally discovered as the result of a high

throughput screen for inhibitors of nonmuscle myosin (NMM) II

[10]. Although originally thought to be much less efficacious on

SM than NMMII, BLEB has now been suggested to inhibit SM

contraction with near equipotency [11–13].

However, some data have suggested that BLEB is more

efficacious at inhibiting SM tissues that express more SM-B

SMM isoform. For example, Rhee et al. showed that force

maintenance was inhibited by BLEB to a greater percent in

bladder (mainly SM-B) than in aorta (mainly SM-A) while

maximum bladder SM contraction was not altered but aortic

SM was actually increased in the presence of BLEB [14]. In

contrast, KCl-induced contraction of chicken gizzard (almost

completely SM-B) was less potently (IC50 ,20 mM) inhibited than

the carotid artery that expresses predominantly SM-A (IC50

,3 mM) [11]. Thus, the influence of SM-A/SM-B splicing, which

occurs very close to the BLEB binding site on the head of the

myosin molecule and near the ATP cleavage site, is controversial.
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In addition, it has been suggested that NMM II may contribute

to tonic force maintenance [15–18]. Ekman et al. showed that

BLEB was much more effective at inhibiting SM from neonatal vs

adult bladder SM which expresses much lower levels of NMM II

[16]. However, in contrast, Eddinger et al. showed that rabbit

arterial SM was potently inhibited by BLEB (IC50 ,5 mM)

although this tissue does not express significant amounts of NMM

II [11]. Thus, clearly the effect of SMM composition and relative

amount of NMM II on BLEB efficacy also remains to be

elucidated.

Most recently we provided novel data that BLEB also potently

relaxed both rat and human bladder SM in vitro and rat detrusor in

vivo and it was suggested that BLEB could be developed as a

potential agent for overactive bladder (OAB) [13]. Partial bladder

outlet obstruction (PBOO), a common urologic pathology mostly

caused by benign prostatic hyperplasia (BPH), occurs in up to 70%

of men over 60 years old [19]. However, OAB can coexist in 40–

45% of patients with PBOO [20] and is associated with detrusor

overactivity (DO) [21]. It has been documented that PBOO is

associated with overexpression of SM-A and other SMM isoforms

in obstructed animals with alteration in the expression of NMM II

as well [22]. Concomitantly, the contractile characteristics of the

bladder alter from a phasic to a more tonic-type contraction

[22–26]. Thus, the aim of the current study was to investigate the

effect of PBOO on rat bladder SMM isoform composition, NMM

IIB expression and functional activities and to determine whether

the effectiveness of BLEB is altered in the detrusor from PBOO rats.

Materials and Methods

Chemicals and tissues
All chemicals were from Sigma (St. Louis, USA) except (6)

BLEB was from Tocris (Ellisville, MO, USA). The racemic

mixture (6) of BLEB was used in all studies as it was determined

that the active (-) enantiomer form was equipotent to the (6)

racemic mixture in the in vitro studies and that the inactive (+) form

did not induce significant relaxation [10,11,13,27]. A stock

solution of BLEB was made in dimethylsulphoxide (DMSO); the

other substances were dissolved daily in double distilled water.

Control experiments showed that the final concentrations (1/

1000–3/1000) of DMSO used in these studies did not significantly

modify the relaxation response induced by (6) BLEB. Due to the

known light sensitivity of BLEB, it was always kept in the dark in

the refrigerator until just prior to usage and during the experiment,

the organ bath chambers were kept covered. Male rat urinary

bladders were obtained from adult male Sprague-Dawley (SD) rats

(Charles River; Raleigh, NC, USA). All animal studies were

approved by the Animal Institute Committee of the Albert

Einstein College of Medicine (study approval number 20100201).

Partial bladder outlet obstruction model
As previously reported [28,29], rats were anesthetized with

pentobarbital (35 mg/kg) via an intraperitoneal (i.p) injection. A

2 cm midline vertical incision was made from the penoscrotal

junction to the midscrotum to gain access to the bulbous urethra.

The urethra was then isolated from the cavernous bodies. A sterile

metal bar (19 gauge needle) with a 1.06 mm diameter was placed

on the bulbous urethral surface, and a 3-0 polypropylene suture

was used to place a tie around both the bulbous urethra and the

bar. As soon as the suture was secured, the bar was removed,

leaving the bulbous urethra partially obstructed. A 4-0 silk suture

was used to reapproximate the muscle layer, and a 4-0 nylon

suture was used to close the skin. Sham surgery was performed the

same as described above except the urethral ties were not placed.

All animals were kept 2 weeks on normal chow with a 12 h day/

night light cycle.

In vitro organ bath studies
The in vitro contractility studies were performed as previously

described [12,13,30,31]. Briefly, bladder dome strips containing

urothelium with identical length were mounted longitudinally in a

4 ml Multi-Myograph Model 810MS (Danish Myo Technology;

Aarhus, Denmark) organ bath. The myograph was connected in

line to a PowerLab 4/30 Data Acquisition System (ADInstru-

ments; Colorado Springs, CO, USA) and in turn to a Dual-Core

processor Pentium computer for real-time monitoring of physio-

logical force. The SM strips were equilibrated at least 1 h in

Krebs-Henseleit (Krebs) buffer [12,13,28,30,31] at 37uC with

continuous bubbling of 95% O2 and 5% CO2. The buffer had the

Table 1. Primer sequences used to amplify target genes by
PCR.

Target gene Primer sequence (forward/reverse)

SM-A/-B 59-AAGGCAAGAAAGACAGCAGCATCA-39

59-TGCCGCCTCACATCTAT-39

LC17a/b 59-TGCATTGCCGAAAGCCTCCAG-39

59-CAACATTCGACAGCTTTTGTCACT-39

SM1/2 59-GCTGGAAGAGGCCGAGGAGGAATC-39

59-GAACCATCTGTGTTTTCAATAA-39

MHC 59-TTTGCCATTGAGGCCTTAGG-39

59-GTTCACACGGCTGAGAATCCA-39

NMM 59-TGAGAAGCCGCCACACATC-39

59-CACCCGTGCAAAGAATCGA-39

RPL19 59-GCGTCCTCCGCTGTGGTA-39

59-CATTGGCGATTTCGTTGGT-39

doi:10.1371/journal.pone.0025958.t001

Table 2. Rat body weight and bladder weight.

Group Body wt (g) Bladder wt (g) %Bladder wt/Body wt

Initial Final

Control (n = 14) 379.2617.3 462.5613.0 145.069.6 0.03260.002

PBOO (n = 11) 392.3614.1 372.5619.6** 398.0636.9** 0.10460.011**

** = P ,0.001 vs control.
doi:10.1371/journal.pone.0025958.t002

PBOO, SMM Isoforms and BLEB Sensitivity
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following mM composition: NaCl 110, KCl 4.8, CaCl2 2.5,

MgSO4 1.2, KH2PO4 1.2, NaHCO3 25 and dextrose 11 and it

was changed every 15 minutes (min). Strips were continuously

adjusted to 500–700 mg resting tension [32,33]. After equilibra-

tion, rat detrusor was contracted with 60 mM KCl, cumulative

concentrations (1028–1024 M) of carbachol or electrical field

stimulation (EFS) at varying frequencies of 2, 4, 8, 16 and 32 Hz,

duration 1.5 ms, train 5 s, and 80 V. Force produced by the above

stimuli was normalized to strip weight. Next, strips were pre-

contracted with 3 mM carbachol and allowed to reach stable

tension and then the relaxant effects of increasing doses of BLEB

were evaluated. Additionally, after pre-incubation with (6)BLEB

(20 mM, equal to 10 mM active BLEB) for 30 min, its inhibitory

effect on carbachol (3 mM) or aforementioned EFS mediated

contractility was also tested.

RNA extraction and cDNA synthesis
Total RNA was extracted using TRIzol reagent (Invitrogen;

Carlsbad, CA, USA) according to the manufacturer’s protocol.

Briefly, the tissue was ground into a powder using a mortar and

pestle cooled in liquid nitrogen without allowing the tissue to thaw.

The powder then was homogenized immediately in denaturing

buffer using a T8 Ultra-Turrax minielectric homogenizer (IKA

Works; Wilmington, NC, USA), chloroform was added and

mixed, the phases separated by centrifugation, and the RNA

precipitated by isopropanol and then washed with 70% ethanol

and dissolved in RNase-free sterile water. The resulting RNA was

quantitated by spectrophotometry at 260/280 nm. Total RNA

Figure 1. Typical tracings of rat urinary bladder strip spontaneous contractions. Stable spontaneous activity of rat detrusor strips was
recorded. The x-axis represents time (min) while the y-axis represents force (mg). Upper panel is from the sham group while the lower panel is from
the PBOO group.
doi:10.1371/journal.pone.0025958.g001

Table 3. Spontaneous activities of rat detrusor strips.

Group Frequency (cycles/10 min) Amplitude (mg)

Control (n = 11) 42.363.3 626.06118.1

PBOO (n = 9) 16.161.6** 1191.16225.6*

* = P,0.01 vs control;
** = P,0.001 vs control.
doi:10.1371/journal.pone.0025958.t003

PBOO, SMM Isoforms and BLEB Sensitivity
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Figure 2. Rat bladder smooth muscle in vitro contractility in response to KCl. Left (sham) and middle (PBOO) panels are typical tracings. The
x-axis represents time (s) while the y-axis represents force (mg). Accordingly, right panel is summary graph for the representative data shown in left
and middle panels. Responses were normalized to strip weight. Values are expressed as mean 6 SEM. ** = p,0.01 vs PBOO. (n = strips obtained from
25 different animals, one to two strips were used for each animal).
doi:10.1371/journal.pone.0025958.g002

Figure 3. Rat bladder smooth muscle in vitro contractility in response to carbachol. Left panels are typical tracings. Upper portion of left
panel is sham group while lower portion is PBOO group. The x-axis represents time (s) while the y-axis represents force (mg). Accordingly, right panel
is summary graph for the representative data shown in left panels. Responses were normalized to strip weight. Values are expressed as mean 6 SEM.
(n = strips obtained from 25 different animals, one to two strips were used for each animal).
doi:10.1371/journal.pone.0025958.g003

PBOO, SMM Isoforms and BLEB Sensitivity
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(1 mg) then was reverse transcribed using 0.5 mg oligo (dT)12–18

primer (Invitrogen), 500 mM dNTPs (Invitrogen), and 200 U of

SuperScript II RNase H reverse transcriptase in a total volume of

20 ml for 50 min at 42uC.

Competitive reverse transcriptase polymerase chain
reaction (competitive RT-PCR)

As previously reported [34], polymerase chain reaction (PCR)

was performed on 100 ng of the reverse transcribed cDNA using 2

units of Red Taq DNA polymerase (Sigma; St Louis, MO, USA),

200 ng each of upstream and downstream primer and 200 mM

dNTPs (Invitrogen). SM-A/SM-B, SM1/SM2 and MLC17a/

MLC17b isoforms were amplified with competitive PCR, using a

GeneAmp 9700 thermal cycler (Applied Biosystems; Foster City,

CA, USA). The primer sequences are shown in Table 1. The

cycling conditions were an initial 5 min at 94uC followed by 35

cycles (30 s at 94uC, 30 s at 55uC, and 120 s at 72uC), followed by

a final one-time 7 min incubation at 72uC to ensure extension of

all products.

The PCR products were then separated by electrophoresis on a

2.5% agarose gel and were visualized using GelStar (Cambrex Bio

Science Rockland, Inc.; Rockland, ME, USA) staining and

ultraviolet illumination. Band density was quantified by reflectance

scanning of gel photographs obtained with a BioDoc-It camera

setup (UVP; Upland, CA, USA) using a Bio-Rad (Hercules, CA,

USA) GS-700 imaging densitometer and subsequent analyses

using the Bio-Rad Molecular Analyst 1D program that enabled us

to obtain quantitative relative SMM isoform transcript expression

data for all isoform pairs.

Real-Time reverse transcriptase polymerase chain
reaction (Real-Time RT-PCR)

As previously reported [31], RT products were also amplified in

a 96-well plate in a 25 ml reaction volume with all samples run in

triplicate, using the model 7300 Real-Time Thermocycler

(Applied Biosystems). The following experimental protocol was

utilized: denaturation (95uC for 10 min to activate the polymerase)

followed by an amplification program repeated for 40 cycles (95uC
for 15 s, then 60uC for 60 s) using a single fluorescence

measurement. SMMHC and NMMHC targeted genes were

amplified using SYBR Green for amplicon detection. For relative

quantification, the efficiency of amplification for each individual

primer pair (sequences shown in Table 1) was determined using

Figure 4. Rat bladder smooth muscle in vitro contractility in response to EFS. Upper panels are typical tracings. Left portion of upper panel
is sham group while right portion is PBOO group. Accordingly, lower panel is summary graph for the representative data shown in left panels.
Responses were normalized to strip weight. Values are expressed as mean 6 SEM. ** = p,0.01 vs PBOO. (n = strips obtained from 25 different
animals, one to two strips were used for each animal).
doi:10.1371/journal.pone.0025958.g004

PBOO, SMM Isoforms and BLEB Sensitivity

PLoS ONE | www.plosone.org 5 October 2011 | Volume 6 | Issue 10 | e25958



cDNA target and the 2-DDct method [35] in conjunction with the

RQ Study Software version 1.2.3 (Applied Biosystems). Gene

expression was normalized to expression of the RPL19 ribosomal

housekeeping gene.

Statistical analysis
Results are expressed as mean 6 SEM for n experiments.

Statistical analysis was performed using either the Student’s t-test

(when two sample treatments were being compared) or using

ANOVA when multiple means were compared. p,0.05 was

considered significant.

Results

Enlarged bladder mass was observed in the PBOO group with

mean bladder weight significantly increased from 145.069.6 mg

to 398.0636.9 mg (P,0.001) representing a 2.74-fold increase.

Since the body weight actually decreased in the PBOO rats, the

bladder-to-body weight ratio actually increased 3.25-fold (Table 2).

Almost all bladder SM strips, after 30 min of equilibration at a

resting tension of 500–700 mg displayed spontaneous contractions

(Fig. 1). Obstruction altered detrusor spontaneous activities with

contraction amplitude significantly increased (from 626 to

1191 mg force) but frequency significantly decreased (from 42.3

to 16.1 cycles/10 min) on average (Fig. 1, Table 3). PBOO also

lessened bladder SM in vitro contractility and heightened tonicity.

The force produced by bladder strips from PBOO rats was

lowered by ,50% in response to KCl depolarization (Fig. 2). For

muscarinic receptor activation, ,35% less contraction was

observed at higher doses (1025 and 1024 M) of carbachol

stimulation but there were no significant differences at lower

concentrations (1028 to 1026) while EC50s were similar at 2.09 and

1.19 mM for sham and PBOO, respectively (Fig. 3). PBOO was

also associated with a 55–60% decrease in force generation in

response to EFS at all stimulation frequencies (Fig. 4).

PBOO bladder SM also exhibited a decreased shortening

velocity as reflected by an approximately 2.5-fold slower time to

50% maximum contraction in response to both KCl and

carbachol mediated contraction (27.968.3 vs 10.262.1 S and

35.068.0 vs 15.462.0 S, respectively)(Figs. 2 & 3) and much better

maintenance of force. Consistent with elevated tonicity, obstruc-

tion altered bladder SMM isoform composition with the

expression of SM-A relative to SM-B increased approximately 3-

fold (from ,10% to 30%) while MLC17b (from 30% to 35%) and

Figure 5. Rat detrusor smooth muscle myosin isoform composition. Panels A-C are representative GelStar-stained agarose gels of cDNA
products resulting from competitive RT-PCR analysis of the SMMHC pre-mRNA of the 5’ region containing the SM-A/SM-B alternative splice site, the
17 kDa essential MLC pre-mRNA of the 3’ region containing the MLC17a/MLC17b alternative splice site and the SMMHC pre-mRNA 3’ region containing
the SM1/SM2 alternative splice site from sham and PBOO rats, respectively. Panel D shows averaged quantitative determination of SMM pre-mRNA
mean isoform percentages in detrusor determined by using the information gathered from gels as in panels A–C. Values are expressed as mean 6
SEM. * = p,0.05 vs PBOO; ** = p,0.01 vs PBOO. (n = 5 different animals for each group).
doi:10.1371/journal.pone.0025958.g005

PBOO, SMM Isoforms and BLEB Sensitivity
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SM1 (from 70% to 75%) also increased significantly but to a lesser

extent (Fig. 5).

To determine whether the altered SMM isoform composition in

the PBOO rat bladder influences BLEB inhibitory ability, various

physiological experiments were performed. The results shown in

Figs. 6 & 9 reveal that BLEB strongly and dose-dependently

relaxed carbachol pre-contracted bladder SM strips from both

sham and PBOO rats but exhibited ,15% less efficacy in relaxing

detrusor strips from PBOO rats at the lower doses of 1 mM and

5 mM but no difference was noted at 15 mM, a dose which totally

attenuated the contraction of both preparations.

Preincubation of detrusor strips with 20 mM (6) BLEB (equal to

10 mM active BLEB) effectively inhibited 3 mM carbachol-induced

tension increase for both sham and PBOO rats but inhibition was

,20% less on detrusor from PBOO rats (Figs. 7 & 9). BLEB

substantially inhibited EFS-induced contraction at all stimulation

frequencies with inhibition at 2 Hz being more pronounced.

When compared with sham, similarly, an approximately 20%

lesser inhibition rate was observed frequency by frequency in

PBOO rats (Figs. 8 & 9).

Finally, as some have suggested BLEB to be more efficacious on

NMM II than SMM as described in the Introduction, we

performed Real-Time PCR to quantify the relative expression of

SMM II and NMM II. As demonstrated in Fig. 10, MHC

transcript expression was significantly downregulated by approx-

imately 30% while NMM expression was strongly upregulated

,4.5- fold in obstructed bladder resulting in a more than 5-fold

increase in the relative ratio of NMMHC II to SMMHC II

transcripts.

Discussion

The present study demonstrated that 2-week PBOO induced a

significant relative overexpression of the SM-A and SM1

SMMHC isoforms as well as the MLC17b essential light chain

isoform in the rat bladder, which was associated with a switch to a

more tonic-type SM contraction phenotype. Our novel data also

revealed that the Type II myosin selective inhibitor BLEB potently

relaxed detrusor SM, with sensitivity only slightly attenuated for

detrusor from rats with PBOO but BLEB still able to provoke

complete relaxation.

Our PBOO rat model was validated by a ,3.5-fold increase in

bladder weight within the 2-week obstruction period. It has been

shown that PBOO can result in either a mild or severe obstruction

Figure 6. Representative tracings of BLEB-induced relaxation effects on detrusor SM pre-contracted with carbachol. Upper portion is
the sham group while the lower portion is the PBOO group. The x-axis represents time (min) while the y-axis represents force (mg).
doi:10.1371/journal.pone.0025958.g006

PBOO, SMM Isoforms and BLEB Sensitivity

PLoS ONE | www.plosone.org 7 October 2011 | Volume 6 | Issue 10 | e25958



depending upon factors such as the duration of obstruction [36]

and the diameter of the surgical ligation [37]. In our study, we

placed a 1.06 mm outer diameter 19 gauge needle on the bulbous

urethral surface and tied the suture around the urethra with the

needle bar similar to the technique used by Saito et al. to induce

severe obstruction [37]. In the Saito et al. study, a ligation around

a 1.09 mm catheter produced a 4-fold bladder weight increase

close to our 3.5-fold increase, while an obstruction classified as

mild was induced using a 1.70 mm outer diameter catheter and

resulted in an average of only an approximately 80% increase in

bladder weight.

Isolated detrusor strips of many small animals, including rats,

often develop spontaneous activity, generally occurring upon

action potential discharge resulting in Ca2+ influx through L-type

Ca2+ channels and associated Ca2+ transients [38]. Our current

data revealed that frequencies of spontaneous contractions in

detrusors from sham rats outnumbered the ones from PBOO rats

which became less phasic as stated above (Fig. 1 & Table 3).

However, our data demonstrated that PBOO significantly

heightened the amplitude of spontaneous contraction when

compared to sham (Fig. 1 & Table 3). Yet, the exact mechanism

underlying these pathophysiological changes remains to be

ascertained.

As previously reported in male PBOO animals with more severe

obstruction, bladder SM contractility was found altered in the

present study with not only a switch to a more tonic-type

contraction [22,39,40] but also a decrease in maximum force

generation (35–50%) [25,40–42] in response to various stimuli,

including KCl depolarization, carbachol muscarinic receptor

activation and EFS frequency-dependent intramural nerve

activation (Figs. 2–4). Of note, at lower concentrations (1028–

1026 M) of carbachol stimulation, contractile performance did not

differ between the sham and PBOO group (Fig. 3), which may be

attributed to increased sensitivity and an upregulation of M2

receptor expression in obstructed bladders to accommodate force

loss as shown by other labs [43,44].

It is likely that the loss of contractility may be associated with

significant intracellular and extracellular changes: dysregulation of

SM contractile protein expression, impaired energy production

(mitochondrial dysfunction), calcium signaling abnormality, and

increased detrusor collagen and relative denervation [45,46].

However, SMM myosin isoform composition, the topic of our

Figure 7. Representative tracings of BLEB-induced inhibitory effects on carbachol induced detrusor SM contractions. Upper portion
is the sham group while the lower portion is the PBOO group. The x-axis represents time (min) while the y-axis represents force (mg).
doi:10.1371/journal.pone.0025958.g007

PBOO, SMM Isoforms and BLEB Sensitivity
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current study, is clearly important as transgenic knockdown of

either SM-B [47] or SM2 [48] has been demonstrated to greatly

alter bladder SM contractility. In fact, in the current study,

obstruction for 2 weeks significantly increased the mRNA level of

SM-A 3-fold from 10% to 30% (Figs. 5A & D), paralleling the

aforementioned more tonic-type bladder SM contraction and

previous studies in other species [22,25]. Also our approximate

50% decreased contraction in the PBOO rat bladder correlates

well with the lessened isometric detrusor force generation by

almost 50% in the SM-B isoform knockout mice [47]. Moreover,

to our knowledge, our current study is the first report on the effect

of PBOO on the relative expression of the SM-A and SM-B

alternatively spliced SMM isoform pair in the rat.

In addition to the attenuated contraction, the time to reach 50%

maximal contraction was increased by PBOO for both KCl and

carbachol stimulation at 27.968.3 vs 10.262.1 S and 35.068.0 vs

15.462.0 S, respectively, as can be seen in Figs. 2 & 3. The

deceased shortening velocity of the detrusor from PBOO rats

correlated with the slower shortening velocity measured in aorta

(expressing mainly SM-A) compared to saphenous artery (express-

ing mainly SM-B) [5] and the decreased shortening velocity of

bladder SM from SM-B knockout compared to wild type mice

[47,49]. Hence, the switch to a greater SM-A isoform composition

for PBOO bladder is related to a decreased force generation and

shortening velocity resembling a more tonic SM phenotype.

We further characterized the 3’ alternatively spliced SM1/SM2

and the essential light chain isoforms. The relative expression of

the MLC17b mRNA was also increased but only by about 5% from

30% to 35% (Figs. 5B & D). An increase in the detrusor MLC17b

isoform was similarly reported in response to rabbit PBOO.

However, the relative expression of MLC17b in the normal rabbit

detrusor was only ,8% but then increased more than 7-fold to

,37% in response to PBOO, a value similar to that of the rat

PBOO detrusor [22]. In mammalian SM tissues, the relative

expression of the MLC17b isoform has been found to exhibit an

inverse relationship with the Vmax of the particular SM tissue [50]

and MLC17 isoform exchange/reconstitution demonstrated that

the relative MLC17b expression related to a lower ATPase activity

and Vmax [9,51,52] thus correlating with our current finding in

the rat PBOO model. Again, the SM1 mRNA was increased by

only about 5% compared to SM2 mRNA from 70% to 75%

(Figs. 5C & D). This is similar to what has been reported in the

rabbit and mouse in response to PBOO but the changes in these

species were much greater with the rabbit SM1 increased from

,35% to ,50% [24,26] and mouse SM1 increased from 47% to

80% [25]. Of note, the 70% relative expression of SM1 is much

higher in the normal rat bladder than either the rabbit or mouse.

It has been reported that the tail of the SM1 isoform may inhibit

contraction [53,54] which would support a role for the increased

SM1 expression correlating with our decreased force generated by

detrusor from PBOO rats. However, selective knock out of the

SM2 isoform (thus all SM1 type MHC remaining) in mice has

been shown to increase KCl and carbachol-induced contraction

[48] and transgene overexpression of SM1 in mice increased

Figure 8. Representative tracings of BLEB-induced inhibitory effects on EFS induced detrusor SM contractions. Upper portion is the
sham group while the lower portion is the PBOO group. The x-axis represents time (min) while the y-axis represents force (mg).
doi:10.1371/journal.pone.0025958.g008
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bladder contraction by 92% while in contrast transgene overex-

pression of SM2 decreased bladder contraction by 80% [55].

Thus, based upon these two latter SM1/SM2 MHC genetic

manipulation experiments, the increased expression of SM1 in the

current study would actually be expected to increase force rather

than to decrease.

Since it has been suggested that BLEB efficacy may be impacted

by the relative expression of the SM-A/SM-B SMMHC isoform

composition, we compared the efficacy of BLEB at inhibiting

bladder SM from sham rats to that from PBOO animals which we

demonstrated to have an altered SMM isoform composition

including a 3-fold increase in the relative expression of the SM-A

isoform. Our data revealed that the myosin Type II selective

inhibitor BLEB potently relaxed carbachol pre-contracted detru-

sor SM force maintenance and preincubation with BLEB

attenuated carbachol and EFS induced detrusor contraction, with

sensitivity only slightly attenuated for detrusor from rats with

PBOO but with BLEB still able to provoke complete relaxation of

the PBOO bladder strips. It has been reported that the PBOO/

BPH bladder has enhanced permeability resulting from distension

or inflammation [56]. Thus, it is unlikely the urothelium of PBOO

rats may blunt the BLEB effect.

Finally, to further explore the fact that detrusor strips from

PBOO rats was slightly less responsiveness to BLEB, the

expression of SMMHC II and NMMHC II were examined with

Real-Time RT-PCR. Our data revealed that SMMHC transcript

expression decreased by 30% while NMMHC transcript expres-

sion increased by ,4.5-fold (Fig. 10). As BLEB has been found not

to compete with ATP binding or inhibit myosin light chain kinase

[10] or alter SMM regulatory light chain phosphorylation

levels[14], it thus appears that BLEB functions via binding to

the myosin-ADP-Pi complex and blocking the myosin II in an

actin-detached state. Therefore, the 30% downregulation of

SMMHC and/or the more than 5-fold increase in the relative

ratio of NMMHC II to SMMHC II possibly contributed to the

,20% decreased effect of BLEB for SM from PBOO rats.

However, BLEB was found still effective for PBOO strips. As

shown in Figs. 6 & 9,15 mM (6)BLEB (equal to 7.5 mM active

BLEB) totally and equally relaxed bladder preparations for both

groups. Moreover, BLEB can directly relax prostatic SM in vitro

Figure 9. Summary graphs of BLEB relaxation and inhibitory effects on rat detrusor strip contractility. Upper left, upper right and lower
panels summarize data shown in Fig. 6, 7 & 8, respectively. Response to stimulus was taken as 100%, while the relaxation or inhibitory effect of BLEB
was evaluated as a percentage of this response. Values are expressed as mean 6 SEM. * = p,0.05 vs PBOO; ** = p,0.01 vs PBOO. (n = strips obtained
from 25 different animals, one to two strips were used for each animal).
doi:10.1371/journal.pone.0025958.g009
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(data not show). Since BPH is a common illness coexisting in 40–

45% of patients with OAB [20] which remains in 20–30% patients

even after surgery [57], it is important to note that BLEB may be a

potential therapeutic agent for these patients. As BLEB relaxes SM

via a novel targeting of the SM contractile apparatus, it is further

suggested that when intravesically delivered, side effects such as

the bothersome dry mouth related to anticholingeric therapy can

be avoided. However, we have difficulty to keep BLEB in the

PBOO bladder long enough and in vivo experimentation was not

performed in the present study. Therefore, further studies are

required. It is important to find a practical BLEB delivery

approach for the PBOO/OAB model and BLEB dosing should be

carefully determined with attention paid to find a dose which

relieves OAB symptoms without impairing voiding contraction.

Another limitation for the current study is that protein levels of

SMM isoforms were not determined, as SM-A/SM-B antibodies

are not commercially available at present. However, our previous

study in partial outlet obstructed rabbit bladder demonstrated that

mRNA level correlated well with protein expression [22].

In conclusion, bladder outflow obstruction altered detrusor

SMM isoform composition, expression and functional activities.

PBOO bladder SM contractility was attenuated and switched

from a phasic-type SM to a more tonic phenotype with

overexpression of SM-A, MLC17b, SM1 and NMM. Our novel

data also showed that the myosin II selective inhibitor BLEB

potently inhibited bladder SM contraction but its efficacy

decreased slightly with obstruction but only at lower doses.

Importantly, it seemed that the SMMHC played a more

important role than NMMHC in modulating BLEB inhibitory

ability. The present study provides valuable evidence that BLEB

may be a potential therapeutic agent for the regulation of

myogenic and nerve-evoked DO in OAB.
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